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Numerical Simulation of Wave
Propagation Phenomena in Vocal
Tract and Domain Decomposition

Method

T. KAKO!, & T. KANO?

INTRODUCTION

We develop a finite element approximation method for the Helmholtz equation in some
unbounded region £2y:

—Au—w?u=0 in Q (1)

and apply the method to the wave propagation phenomena in a vocal tract. For
various time frequencies w, we solve the Helmholtz equation in an unbounded acoustic
region €y a part of which forms a vocal tract. Then we investigate the resonance
phenomena of the sound wave propagation which is important to characterize vowels
and consonants. We use a two dimensional model as well as one dimensional model
called Webster’s horn equation.

In this research, we confine our study to the case in which the outer region consists
of a semi-infinite cylinder, and we assume that the original three dimensional acoustic
region is planar which enables us to reduce the problem into a two dimensinal one
after the Fourier mode decomposition with respect to the perpendicular direction to
the corresponding plane of the planar region.
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Figure 1 Acoustic region in 2D case

Assuming the radiation condition at infinity, we derive a radiation boundary
condition on the artificial boundary which forms a part of the boundary of the bounded
sub-region of the original unbounded acoustic region. In the radiation condition, we
use the Dirichlet to Neumann map for the Helmholtz problem in the unbounded outer
cylindrical region.

We introduce a one dimesional Webster’s model which corresponds to the 2-D plane
region using the width of the vocal tract. There is a good coincidence between the
results of 1-D and 2-D models as far as the magnitude of the modulus of a wave
number is not large, i.e. less than some constant. The results justify the use of the
1-D Webster’s model as the approximation of the 2-D model in case that the incident
wave from the vocal cord contains only low time frequency modes.

MATHEMATICAL MODELS

We consider the case where the outer unbounded region consists of a semi-infinite
cylinder € . with a bounded 2-D cross section Sp .:

Qoe={x=(2,y,%) |20 <z < +00, (y,%) € So,e} (2)
and we assume that the original three dimensional acoustic region is planer:
Qo = (Qz U Qe) X (O,Zo) with QO,e = Qe X (O,Zo) and SO,e = (O,yo) X (O,Zo), (3)

which enables us to reduce the problem into a two dimensinal one after the
Fourier mode decomposition with respect to the perpendicular z-direction to the
corresponding zy plane of the planar region.

Now, consider the following wave equation:

92 ) 5?2 H? 0?
(w—A)u(t,x) = f(t,x) in Ry x Q, AI@"‘@"'@_W (4)
0
(aa_n + B)u(t,x) = g(t,x) on Ry x 9, (5)

with some initial condition for 4 and Ju/8t, and consider a stationary time harmonic
solution: u(t,x) = e"“*u(x) for inhomogeneous data: f(t,x) = e'“! f(x) and g(t,x) =
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¢™!g(x). Then u satisfies the Helmholtz equation:

(_A_wz)u(x) = f(X) inQ, (6)
(a%—kﬁ)u(x) = g(x) on 99, (7)

with some radiation condition at infinity ( |x| = +00).

DOMAIN DECOMPOSITION INTO INNER AND OUTER
REGIONS

We consider the case of outgoing wave and derive a radiation condition on the artificial
boundary S, = {2g} x (0, yo) which forms a part of the boundary of the bounded sub-
region €2; of the original unbounded acoustic region @ = ; U Q. (Figure 1).

The radiation condition is then given by the Dirichlet to Neumann map A, for the
Helmbholtz problem in the unbounded outer cylindrical region €2, (see [Mas87] in the
case of obstacle scattering):

0
a_xu(xoay) = Ayu(l‘o’y), (8)
where -
nm
Aju=Au= nCh (1) cos(—
y 3ol eos()
with
Yo
y%/ u(zo,y)dy (n=0),
Cn(u) = . o nmw
o u(xo, y) cos(—y)dy (n>1),
0 Yo
i, = =GR < <,
T e e ={(BD)P w2 wnn
Then, we have the following Helmholtz equation in the inner region €2;:
(—w? = A)u =0 in Q;, (9)
8—“:0 on I, Ou =g¢gs onl'g, a—u:Au onl'gp = 5..

on an on

WEBSTER’S HORN EQUATION

Now, we introduce a one dimensional approximation of the original problem which is
called Webster’s horn equation:

dv_ Afx) Ou
ou  pc? Qv
ot A(x) dx (11)
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Figure 2 Acoustic field for some wave numbers

which can be reduced to the form of the second order equation:

o~ A" o ) =0 (12)

where A(z) corresponds to the width of the original 2-D or 3-D region of the vocal
tract. The corresponding time harmonic equation becomes to be

d%u 1 ZQA Ju

d. 1 d o
T A(x)%u(x)}—w u(x) = 0. (13)

—A(z)

NUMERICAL RESULTS AND ERROR ANALYSIS

As for the discretization, we adopt the finite element method for respective 1-D and 2-
D models using a finite element subspace of piecewise linear continuous functions, and
compare the numerical results for various wave numbers w. There 1s a good coincidence
between the results of 1-D and 2-D cases for the frequency responce as far as the
magnitude of the modulus of a wave number (frequency) is not large (see Figure 2,3).
The results justify the use of the 1-D Webster’s equation model as the approximation
of the 2-D model in case that the incident wave from the vocal cord contains only low
frequency modes

Next, we give the convergence results for the finite element calculation. First, we
write the two domensional problem in the following weak form:

Find u € V = HY(Q) :
a(u,v) + b(u,v) = (f,v)(= ao(y,v)) Yv eV (14)

where
a(u,v) = ag(u,v) + b5°(u,v), b(u,v) = by(u,v) + b5(u,v)
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Figure 3 Comparison between the results of 1-D and 2-D cases for the

frequency responce

with

ap(u,v) = /VU'W—I— uvdzdy,

Q
bi(u,v) = —(w?+ 1)/u5dxdy,

Q

bz(u, U) = (AU(l‘R, ')a U(l‘R, )) = bg(ua U) + bgo(u’ U),
bg(uav) = Z PYHCH(U)C” (U),

0< B Cw
b2 (u,0) = > mCn(u)Ca(v).

w< B

Based on this formulation we introduce a finite element method:
Findu, €V, CV:

a(up, vp) + b(un, vn) = (f,vp)(= aolg,vn))  Vop € Va. (15)
Concerning the above finite element methods, we have the followings:

1. 65° (u,v) is a nonnegative sesquilinear form, and hence a(u, v) is an inner
product in V;

2. b3(u,v) and hence b is a compact form with respect to a(u,v) in V;

3. Applying the results of Mikhlin [Mik64], we get the convergence of the
approximation (see [Kak81],[LK98]);
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4. After the finite element approximation, we can approximate b5° (u, v) by
the one with a finite summation up to the N-th Fourier mode, and the
approximation converges to the original finite element solution in the
finite dimensional space Vj, as N tends to infinity.

CONCLUDING REMARKS

We summerise our results as follows:

1. Mathematical models for the speech production problem are formulated.
In the outer infinite region, the exact solution is given and the radiation
boundary condition is proposed by using the Dirichlet to Neumann
mapping on the artificial boundary between inner and outer regions;

2. A comparison between 1-D and 2-D calculations is given. When the
time frequency of a sound source is low enough, the coincidence of the
two calculations is good and 1-D Webster’s horn equation model can
be used to simulate the resonance phenomena of the vocal tract. A
discrepancy becomes large when the frequency is larger than the value
above which the single mode approximation is violated due to transversal
higher modes (see Figure 2);

3. Numerical analysis of the 2-D problem is given. Using the property of
the Dirichlet to Neumann mapping, we can prove the convergence of
the finite element approximation, and then the approximation of the
Dirichlet to Neumann mapping by its finite Fourier mode summation
can be justified in the finite dimensional approximation subspace.
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