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Abstract� In the �nite element approximation of the exterior Helmholtz problem� we propose an
approximation method to implement the DtN mapping formulated as a pseudo�di�erential operator
on a computational arti�cial boundary� The method is then combined with the �ctitious domain
method� Our method directly gives an approximation matrix for the sesqui�linear form for the DtN
mapping� The eigenvalues of the approximation matrix is simpli�ed to a closed form and can be
computed e�ciently by using a continued fraction formula� Solution outside the computational
domain and the far��eld solution can also be computed e�ciently by expressing them as operations
of pseudo�di�erential operators� An inner arti�cial DtN boundary condition is also implemented by
our method� We prove the convergence of the solution of our method and compare the performance
with the standard �nite element approximation based on the Fourier series expansion of the DtN
operator� The e�ciency of our method is demonstrated through numerical examples�

� Introduction

We consider the following two�dimensional exterior Helmholtz problem�
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where 
 is the interior of the complement of a bounded region O in R� with smooth boundary �

on which the Neumann boundary condition ��b
 is imposed and ��c
 is the Sommerfeld radiation
condition at in�nity�

The equation can be used to simulate the scattering phenomena of time�harmonic electromagnetic
or acoustic wave by an obstacle O which is sometimes called a scatterer� Here� uinc�x
 � eik�x is the
time�harmonic incident plane wave whose direction of propagation is given by the vector k� and n
is the outward unit normal on the scatterer �see Fig� �
�

O

Ω n
ΓR

O

nΩ R

Figure �� Obstacle and arti�cial boundary

In order to solve the exterior Helmholtz problems numerically� it is a common practice to intro�
duce an arti�cial boundary to limit the area of computation and to prescribe an arti�cial boundary
condition on this boundary� The boundary condition is expected to �absorb� the outgoing waves
and to exclude any incoming waves� Various arti�cial boundary conditions have been proposed in
the literature for this purpose �see Givoli ���� Ihlenburg ��� and the references therein
� The arti��
cial boundary condition that gives the solution to ��
 is given by the Dirichlet to Neumann �DtN

mapping�
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In the �nite element approximation of the problem� the implementation of the DtN mapping or
its approximations has been a subject of interest by many authors �see� for example� Kako ���� Liu
����� Liu and Kako ���� and the references therein
� As for the case of using the exact DtN mapping�
MacCamy and Marin ���� used an integral representation of the DtN mapping and obtain its �nite
element matrix by explicitly solving some auxiliary integral equations� Keller and Givoli ��	� used
the Fourier series representation of the DtN mapping and use the standard �nite element technique
to obtain the matrix in an in�nite series form �see also Ernst ��� and Heikkola et al� ���
�

In this paper� we propose an approximation method to implement the DtN mapping by expressing
it in a form of pseudo�di�erential operator� The �nite element approximation corresponding to the
sesqui�linear form of the pseudo�di�erential operator is given by a matrix which we call a mixed
type approximation matrix� This matrix is obtained by replacing the argument of the function
in the pseudo�di�erential operator� which in this case is the Laplacian on the unit circle� by its
�nite element matrix� This gives a matrix in a closed form which can be e�ciently computed by a
continued fraction without use of the Hankel function and its derivative� The computational cost
for the boundary condition in this method is O�n�
 where n� is the number of partitions in angular
direction�

When the origin of the polar�coordinate system is outside the obstacle domain� one can consider
an inner arti�cial boundary that excludes the origin from the computational domain and another
DtN boundary condition is imposed on the inner arti�cial boundary which is also treated by our
method�

The solution outside the computational domain and the far��eld pattern are expressed in closed
forms by using pseudo�di�erential operators and our previous method can also be applied to compute
the quantities�

We consider the �ctitious domain method to form the linear equations and use the Krylov
subspace iterative method to solve the linear system �Kuznetsov et al� ����� Heikkola et al� ���
�

The rest of the paper is organized as follows� In Section �� we review the arti�cial boundary
condition and its standard �nite element approximation� In Section �� we introduce a mixed type
method for the arti�cial boundary and its application in �ctitious domain method� In Section ��
we consider the application of the mixed type method for the solution outside the computational
domain and the far��eld pattern� In Section �� we prove the convergence of the solutions� We present
the results of numerical tests in Section � and make some concluding remarks in Section ��

� Arti�cial boundaries and arti�cial boundary conditions

For the numerical treatment of the problem ��
� the unbounded domain 
 is truncated by an arti�cial
boundary� denoted by �R� and an arti�cial boundary condition is introduced� The arti�cial boundary
is a circle of radius R and we denote by BR the circular domain of radius R bounded by �R� The
approximate boundary value problem is then given by
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where M is the DtN mapping which we regard as a pseudo�di�erential operator as a function of the
Laplacian operator D� �� ������� and is given by
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where we denote by H����x� �
 the Hankel function of the �rst kind of order �� The basic de�nition
of pseudo�di�erential operator can be found� for example� in Nirenberg ���� and Taylor �����

��� Weak formulation and FEM

Let V � H��
R
 where H
s�
R
 is the Sobolev space of order s � R in 
R and � � H��
R
 �

H�����R
 be the trace operator� Then� the weak formulation of the boundary value problem ��
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Now� based on the element partitioning of the computational domain described in Subsection ����
we form a �nite dimensional subspace Vh of V � The �nite element approximate problem is then
given by� Find uh � Vh such that

a�uh� vh
 � h�uh� �vhiM � ��uinc��n� vh
��� �vh � Vh	 ��


��� FEM matrix of DtN mapping by the Fourier mode representation

The �nite element approximation matrix corresponding to the DtN mappings given in the form of
��
 has been obtained by several authors �e�g�� Ernst ���
�

According to the �nite element partitioning of 
R� the arti�cial boundary �R is discretized by
a uniform partitioning with n� nodes and an equal number of intervals� We use piecewise linear
continuous functions f�ign���i�� as the basis for the �nite element approximation� The sesqui�linear
form corresponding to the DtN mapping is represented in terms of the Fourier modes as
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n �� 	� Qh�n � ��� ei��n�n� � � � � � ei��n�n�����n� ��pn� and h� � ���n�� Clearly� Qh�j � Qh�ln��j for
	 � j � n�� l � Z� Substituting c�uh�n and c�vh�n in ��
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Note that �stdh�j � �stdh�n��j � From the estimate jM�n�
j � C�� � jnj
 �see Masmoudi ����
� the sum
tends to RM�j�
�j	 and ��� � cos jh�
��h	� � j	 as h� � 	� Thus� we get the following facts for
	 � j � n����

�stdh�j�h� � RM�j�
 as h� � 	� ��
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� A mixed type method

We propose a method which gives an approximation matrix directly for the sesqui�linear form
h�u� �viM � The matrix is circulant and its eigenvalues are one term expression which can be com�
puted e�ciently by means of a continued fraction �see Section ���
� The standard �nite element
matrixMstd

h is then replaced by this matrix in the linear equations to be solved�
With the same partition and basis functions considered in the last section� the �nite element

matrices corresponding to the sesqui�linear forms �u�� v�
L������� and �u� v
L������� respectively are
given by
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where we denote by Circ�a� b� c
 the circulant matrix for which the main diagonal is formed by b and
the lower and upper diagonals are formed by a and c respectively�

De�nition �� A mixed type approximation matrix corresponding to the operatorM�D�
 is de�ned
by

M
mixed
h �� �B�hRM��B���h �A�h
� ���


where the matrices �A�h and �B�h are given in ���
�

In the error analysis� we introduce a sesqui�linear form ���
 corresponding to this matrix� Since
Mmixed

h is circulant� it can be expressed as Mmixed
h � Q� mixed

h Q as in the standard FEM case�

The jth eigenvalue ofMmixed
h is given by �mixed
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�h� and �
B�h
h�j � h��� � cos jh�
��� Clearly� we have �

mixed
h�j � �mixed

h�n��j and the similar
estimates to ��
 and ��	
 hold for �mixed

h�j as well as �stdh�j �

��� Continued fraction

In this subsection� we present an e�cient computation of the logarithmic derivatives of the Bessel and
Hankel functions which appear in the DtN mappings� The key idea is to use continued fraction forms
for the logarithmic derivatives� These continued fractions are rapidly converging and an e�cient
algorithm for computing them is readily available as the modi�ed Lentz!s method �Thompson and
Barnett ��	�
� The continued fraction for the DtN mapping on the exterior arti�cial boundary is
given by
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where x � kR� and the continued fraction for the DtN mapping on the inner arti�cial boundary is
given by
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These continued fractions converges for all values of � and x except those in the neighborhood

of zero� It converges very rapidly for x 	p��� � �
�
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��� Fictitious domain method

In order to solve the problem with general obstacle� we use the �ctitious domain method ��� ��
to form the approximation subspace Vh� For this� the computational domain 
R is extended to a
�ctitious domain 
FR which is a circular annulus and includes the obstacle boundary� When the
obstacle is not narrow and contains a larger neighborhood of the origin� 
R is extended inside the
obstacle to form the �ctitious domain� When the obstacle is thin� we choose the polar coordinate
system such that the origin is outside of the obstacle and 
FR is obtained as the union of 
R and
the obstacle domain O �see Fig� �
�

Now� the annulus �ctitious domain is partitioned by an orthogonal polar mesh� The nodes of the
mesh next to the boundary of the obstacle O are shifted onto the boundary �
� and the modi�ed
quadrilateral elements in the computational domain are triangulated such that the resulting mesh
gives a shape regular triangulation �B"orgers ���
� This leads to a locally �tted mesh� which is
topologically equivalent to the original mesh and di�ers from it only in an h�neighborhood of the
obstacle boundary� The mesh inside the obstacle domain is discarded to obtain the mesh for 
R�

The approximation subspace Vh consists of functions uh such that the restrictions of uh in the
unmodi�ed rectangles are bilinear and the restrictions on the triangles near the obstacle boundary
are linear�

Figure �� � Fictitious domains and locally �tted mesh

For more details on the �ctitious domain method� see Kuznetsov and Lipnikov���� and Heikkola����

� Further applications

The mixed type method can be used in other cases of radiation problems where pseudo�di�erential
operators appear� We consider cases of an inner arti�cial boundary� computing solution outside the
computational domain and computing the far �eld pattern�

��� Inner arti�cial boundary

When the obstacle does not contain the origin� one can introduce an inner arti�cial boundary �r�
which is a circle of radius r�� Then we consider the computational domain 
R which also excludes
the disc of radius r� and we impose an inner DtN boundary condition on �r� given by
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where J�x� �
 is the Bessel function of order �� Its corresponding sesqui�linear form h��u� ��viN will
be added to the weak form ��
� In the �nite element approximation� we replace its standard FEM
matrix by the mixed type matrix Nmixed

h de�ned analogous to De�nition ��
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��� Solution outside the computational domain and far �eld pattern

The solution on a circle of radius r outside the computational domain can be represented by series
with respect to the solutions on the arti�cial boundary� For the exterior region� the solution pr��
 �
u�r� �
 can be expressed as a pseudo�di�erential operator form as follows�
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and for the interior region the solution is given by

pr��
 � S��D
�
u �

J�kr�
p
D�


J�kr��
p
D�


pr���
� r � r�	

The far��eld pattern corresponding to the solution is obtained by using the asymptotic formula of
the Hankel function in the solution ���
 and is given by
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In order to compute these solutions� one can use the �nite element method in which we apply
the mixed type method� The weak formulation of the generic form pr��
 � S�D�
p���
 is given by
�pr� q
 � hp�� qiS and hence� using the uniform partition as before� and using �nite element method�
we get the matrix equation

�B�hPr � S
mixed
h P�� ���


where the matrix Smixed
h is given as in ���
 for the function S and Pr and P� are column vectors

corresponding to pr��
 and p���
 respectively with respect to the nodal basis functions� One can
cancel the pre�multiplication of the matrix �B�h on both sides of ���
� Hence� computing the solution
is reduced to a matrix multiplication which can be performed e�ciently by using FFT� Clearly� the
solution at radius r is not coupled with solutions of the adjacent circles� Hence� in order to save
computing time� one can choose the minimum amount of circles for the solution that will provide
the resolution of the waves� As a rule of thumb� one can choose �	 radial intervals per wavelength�

� Convergence Analysis

Let a��u� v
 �
R
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 �
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To prove the theorem� we need some lemmas� Let u and uh be the solutions of �E
 and �E

mixed
h

respectively� and put eh � u � uh� Since �
 is smooth� u � H��
R
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where rh�u� v
 � h�u� �viM � h�u� �vimixed
M�h � Now we have the following lemmas�

Lemma �� There exists a constant C��h
 with limh�� C��h
 � 	 and h� such that for all h � �	� h�
�

jrh�u� vh
j � C��h
kuk���Rkvhk���R � for all vh � Vh	

Lemma �� For every 
 � 	� there exists a constant C��
� h
 with limh�� C��
� h
 � 	 such that

jamixed
M�h �eh� eh
j � 
kehk����R � C��
� h
kuk����R 	

Lemma �� There exist two constants C��h
 and C	�h
 with limh�� C��h
 � limh�� C	�h
 � 	 such

that

jb��eh� eh
j � C��h
kehk����R � C	�h
kuk����R 	

Proof� Proof of Theorem �
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For the uniqueness� if f � 	� then u � 	 by the solvability of �E
� Then� by the last inequality�
eh � �uh � 	�
Proof� Proof of Lemma � First� we establish an estimate for kphks��R � s � R� Analogous to ��
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For the treatment of �II
� we adjust the index range as �n��� � j � n��� for simplicity� We
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exists C�j�� h
 with limh�� C�j�� h
 � 	 such that j�stdh�j � �mixed
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Proof� Proof of Lemma � By ���
� we have amixed
M�h �eh� eh
 � amixed

M�h �eh� u�uh
 � amixed
M�h �eh� u�vh
�

rh�u� u� vh � eh
� and hence�

jamixed
M�h �eh� eh
j � Ckehk���Rku� vhk���R � C��h
ku� vh � ehk���Rkuk���R

� �Ch� C��h

kuk���Rkehk���R � C��h
hkuk����R
� 
��kehk����R � C��
� h
kuk����R

where C��
� h
 �
�
�� �Ch� C��h



� � C��h
h� 	 as h� 	�

Proof� Proof of Lemma � There exists a unique w � H��
R
 such that a
std
M �v� w
 � ��v� �k���
eh


for all v � V � and

kwk���R � Ckehk���R 	 ���


where C is a constant independent of eh and w� Using ���
� we have� for all vh � Vh�

b��eh� eh
 � astdM �eh� w
 � amixed
M�h �eh� w
 � rh�eh� w


� amixed
M�h �eh� w � vh
� rh�u� vh
 � rh�eh� w


� amixed
M�h �eh� w � vh
 � rh�u�w � vh
� rh�u�w
 � rh�eh� w
	 ���


Now� from the boundedness of rh��� �
 in H��
R
� lemma � and with the use of orthogonal projection
Ph � V � Vh with respect to H

��
R
�inner product� we have�

jrh�u�w
j � jrh�u�w � Phw
j � jrh�u� Phw
j
� Ckuk���Rkw � Phwk���R � C��h
kuk���RkPhwk���R
� �Ch� C��h

kuk���Rkwk���R �

jrh�eh� w
j � jrh��I � Ph
eh� w
j � jrh�Pheh� w
j
� Ck�I � Ph
uk���Rkwk���R � C��h
kehk���Rkwk���R
� �Chkuk���R � C��h
kehk���R
kwk���R 	

�



Using jb��eh� eh�j � �k� � ��kehk
�

���R
� the boundedness of amixed

M ��� �� and rh��� ��� the fact that
infvh�Vh kw � vhk���R � Chkwk���R � and ����� we have from �����

�k � ��kehk
�

���R
� C�kehk���R � kuk���R� inf

vh�Vh
kw � vhk

�fC��h�kehk���R � ��Ch� C��h��kuk���Rgkwk���R

� kehk���RfC��h�kehk���R � C��h�kuk���Rg

� �kehk
�

���R
� C���fC�

� �h�kehk
�

���R
� C�

� �h�kuk
�

���R
g�

where C��h� � Ch � C��h�� C��h� � 	Ch � C��h�
 Rearranging the inequality completes the
proof


� Numerical tests and results

We present in this section some of the results of numerical testings of our method for various
examples
 We compare the e�ciency of our mixed type method with the standard FEM


All computations were carried out on VT�Alpha
� 
		Mhz� 
��MB RAM with Linux operating
system environment with double precision arithmetic using object oriented C�� codes
 The iteration
scheme in solving the system of linear equations using �ctitious domain method� we use the transpose
free quasi minimal residual �TFQMR� by Freund �
�
 The residual tolerance was set to � � ����


��� Convergence testing

To test the convergence of the computed solutions and compare with the standard FEM solutions as
the mesh size decreases� we consider an example of a circular obstacle of radius r� � � with arti�cial
boundary radius R � ��	���
 We choose the wave numbers k � �� �� and ��� and the incident wave
as a plane wave in the x�axis direction � � �
 For the �nite element mesh� we choose orthogonal
partition with size �nr� n�� ranging between �������������	�����
 For the standard �nite element
approach� the in�nite series in eigenvalues are computed until machine precision is achieved
 The
resulting separable linear system is solved by using fast direct method with FFT


The maximum errors ku � ustdh k���R � ku � umixed

h k���R against the angular partition size are
shown in Fig
 	�a�
 The maximum error between the two computed solutions kustdh �umixed

h k���R is
shown in Fig
 	�b� in logarithmic scale
 Both solutions converge linearly as well as their di�erence
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Figure 	� Convergence

��� E�ciency testing

To test the computing time di�erence between the methods� we consider the �rst test example above
and an example with an elliptic shape obstacle with axes �a � ��� and �b � ���
 The wave number

�



k � �
 We choose the arti�cial boundary radius R � ��� and 	��
 The radial and angular partition
sizes nr � �� and n� � �
� respectively
 The results are shown in Table �


Table �� Comparison between MTM and standard FEM
R Obstacle Std FEM time �sec
� MTM time �sec
� Iterations
�
� Circle �
�� �
		 ���both�
�
� Ellipse 

�� �
�� 		 �both�
	
� Circle �
�� 

�� ���both�
	
� Ellipse ��
�� �	

� 	� �both�

We also considered an arc shaped obstacle and the Helmholtz resonator with the domain trun�
cated by inner and outer arti�cial boundaries
 The scattering waves and the far��eld pattern are com�
puted by using the formula for solution outside the computational domain
 From the far��eld pattern�
the radar cross section �RCS� is computed by using the formula RCS��� � �� log

��
��jF ���j�� which

is in decibel units ���
 The total waves �real part� for circular arc with waves number k � �� and
scattering waves �real part� for the Helmholtz resonator with wave number k � 	� and their radar
cross sections are shown in Fig
 �


Figure �� Wave pattern for antenna and Helmholtz resonator

Figure 
� Radar cross sections for antenna and Helmholtz resonator

� Conclusions

In this paper� we proposed a mixed type method for the �nite element approximation of non�local
radiation boundary condition written in the form of pseudo�di�erential operator
 We de�ned a
mixed type approximation matrix to approximate the sesqui�linear form corresponding to the DtN
operator
 The method is also e�ciently applied to compute the solution of the radiation problem
outside the computational domain and to compute the far��eld pattern


Numerical tests show that the mixed type method is computationally e�cient
 The convergence
is con�rmed for the mixed type method and is observed to be of the same order as the standard
�nite element approximation


��
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