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Abstract

The DtN finite element method for solving the exterior Helmholtz problem is
mathematically analyzed. The reduced problem with DtN artificial boundary con-
dition is shown to be equivalent to the original exterior problem. Error estimates
for solutions obtained by the DtN finite element method are established.



1 Introduction

We consider the exterior Helmholtz problem with the outgoing radiation condition:
—Au—ku = f inQ,
u = 0 on~,

1) 1
lim r% <%—2ku> = 0.

r—+00 r

Here k, called wave number, is a positive constant, 2 is an unbounded domain of R?
(d = 2 or 3) with sufficiently smooth boundary v, and r = |z| for € R?. We assume
that © = R? \ © is a bounded open set and that f has a compact support.

When numerically solving problem (1), one often introduces an artificial boundary in
order to reduce the computational domain to a bounded domain and imposes an artificial
boundary condition (ABC) on the artificial boundary. Imposing the Drichlet-to-Neumann
(DtN) ABC, we can reduce problem (1) equivalently to a problem on the bounded domain
between the boundary ~ and the artificial boundary. The DtN ABC is given in the
following form: on the artificial boundary I',,

ou

a—n - —SU,
where n is the unit normal vector on I', being toward infinity and S is the DtN operator
for the Helmholtz equation with the outgoing radiation condition. We choose the artificial
boundary T, as follows: T, = {z € R? | |z| = a}, where a is a positive number such that
OUsupp f C {z € R* | |z| < a}. Then the bounded computational domain is defined by
Q, ={z € Q| |z] <a} (see Fig. 1), and further the reduced problem is as follows:

—Au—Ku = f in Q,,

u = 0 on v,
(2) Su
o —Su onl,.

We discretize problem (2) by the finite element method in order to compute numerical
solutions. The obtained discrete problem can not be computed because the DtN operator
is analytically represented with an infinite series. Hence this infinite series has to be
truncated in practice.

Our main goals are to show that problem (2) is equivalent to problem (1) and to
establish error estimates for solutions of the discrete problems with and without the
truncation of the DtN operator.

The remainder of this report is organized as follows. In Section 2, we show well-
posedness of problem (1). In Section 3, we define the DtN operator by using the Hankel
functions, properties of which are studied in Section 4 and are used in the following
sections. In Section 5, we show well-posedness of problem (2). In Section 6, we show the
equivalence between problems (1) and (2). In Section 7, we establish the error estimates
mentioned above.

2 Uniqueness and existence of the solution to the
exterior Helmholtz problem

We define, for every domain Q C R?,
L} () = {u]|ue L*B) for all bounded open set B C 0},
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Figure 1: Artificial boundary I', and computational domain (2,.

m
Hloc

() = {u|ue H™(B) for all bounded open set B C Q} (m € N).

THEOREM 2.1 For every compactly supported f € L*(S), problem (1) has a unique

solution in HZ_ ().

We prove Theorem 2.1 by following Phillips [10] and Sanchez Hubert and Sanchez
Palencia [11]. To do so, we present several lemmas and a proposition in the following.

We here denote by 1 the fundamental solution of the Helmholtz equation which sat-
isfies the outgoing radiation condition:

%Hél)(k]x\) it d=2,
(3) v@)=1{ 7 eklal

A |a

if d=3,

where H(()l) is the cylindrical Hankel function of the first kind of order zero.
LEMMA 2.1 Let f be a function of L*(RY) with compact support. Define

u=1=*f.
Then we have u € L}, (R") and
—Au—ku=f in R?

in the sense of the distribution.

Proof. We first consider the case of d = 3. Let B be a bounded measurable set of
R Set K = supp f. Noting that ) € L (R®), we have

loc

[u@Pd =[] [ @)t — ) dy o
= [ [ syt — ) dyl do
132y [, [ 1@ = o) dyda.

There exists an R > 0 such that B, K C Ug, where Up = {z € R* | |z| < R}. For every
x € B and for every y € K, we have |x — y| < |z| + |y| < 2R. Hence we have

[ [ 10t = )P dyde < (meas B30,

IN
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Therefore we have

/ lu(z)|* do < +o0.
B

In the case of d = 2, we can prove in exactly the same way as above, since ¢ € L2 _(R?),
which follows from the following asymptotic behavior:

2
Hél)(kr) ~i—logr
7T
for r — 0 (see Abramowitz and Stegun [1]). W

LEMMA 2.2 Let f be a function of L*(Q) such that supp f C Q,. Let u € HL () be

a solution to problem (1). Then u belongs to C*(Y,) with Q) = {x c R | |z| > a} and
can be analytically represented as follows. In the two dimensional case,

o )k
@ (o)=Y Dl

n=—o0 r(zl)(ka)un(a)yn(e),

where 1, 0 are the polar coordinates, HV) are the cylindrical Hankel functions of the first
kind of order n, Y, are the spherical harmonics defined by

ein@
Vor

and u,(r) (r > a) are the Fourier coefficients defined by

Yn(m =

2

(5) wnlr) = [ ur, 0)Y.(0) do.
0

In the three dimensional case,

n h(l )

© wr0.9)=3 3 Tt

where r, 0, ¢ are the spherical coordinates, hf}) are the spherical Hankel functions of the
first kind of order n, Y, are the spherical harmonics defined by

n (@)Y"(0, 0),

(2n+1) (n — |m|)!
dr  (n+ |m])!

Y0, ¢) :J (P (cos 0)e™?,

where P are the associated Legendre functions, and ul'(r) (r > a) are the Fourier
coefficients defined by

— /02” /(:u(r, 6, )Y (0, §) sin 6 dOdo.

Proof. By the usual interior regularity theory, we have u € C*°(€2.).
We next show (4). For every r > a, we have

[e.o]

u(r, 0) = Z Uun(r)Yn(0) in L*(T,),

n=—oo



where T, = {x cR||z| = r}. Then the Fourier coefficients u,, € C*°((a, 00)). Since

Pu 10u 1%, _
57 “yor pow Fu=0 ma,

we have, for r > a,

2 2 2 —inf
0 = / <_@_l@_i@_k2u>e 46
0

or?2  ror 12002

1 n?

_ _ n . /! -

- un(r) Tun(r) + (7"2

Hence, u,, can be represented as follows:

(7)) un(r) = A, HY (kr) + B,HP (kr),

where A,, and B,, are constants and Hff) are the cylindrical Hankel functions of the second
kind of order n. We here note the asymptotic behavior, as r tends to infinity, of the Hankel
functions of order v € R:

2 +i(kr—Zv—=) -3/2
— 2Y7 3 O
7Tk:7“€ +0(r );

(8) HY(kr) =

with sign + and — for j = 1 and 2, respectively [1], and hence, by setting v = n + 1 in
(8), we also have

y 2 s s
9)  H(kr) = Fiy| 03D 4 O(r),

We here have, for j =1, 2,

d | | | |
(10) (d— - zk) HO(kr) = ZHD (kr) — kHY) | (kr) — ik HD (kr)
T

r

because we have the following recurrence relations [1]:
N/ n . ;
HY () = EHT(l])(I) - H(Ql(x).

n

Combining (8) with v = n, (9), and (10), we can get

(11) <di—ik) HY(kr) = O@F=%?),

r
d 2k g m n
12) (— —ik | HP(kr) = —2iy) —e tr=2n=0) 4 O(r=3/2).
1) (i) ) = 202 0
Since u satisfies the outgoing radiation condition, we have
0 2
—u—zku —/ ——Zku rd9—>0 (r — o0).
or 2T

This implies that for all n € Z,
(13) V/r(uy(r) — ikun(r)) — 0 (r — o0)
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because
=S VR ) — k()

‘ ou
L2(T,) n=-—o00

— —iku
From (7), (11), (12), and (13), we can deduce

or

B,=0 forallne Z.

We next show
1

(14) A, = mu

n(a).

Since u € H}.(2), we have
(15) wu(r, ) — u(a, ) in L*(0, 2w) (r — a+0).

This can be shown by using the trace theorem and the fact that C*°(Q2) is dense in
H(Q%) for every b > a, where

(16) Q= {x € R |a<|z| <b},
C=(B) = {u=iloy | i€ C(RY}.
It is easily seen from (15) that
(17) up(r) — uy(a) (r— a+0).
On the other hand, we have
(18) un(r) = A, HY (kr) — A, HY(ka) (r — a+0).
From (17) and (18), we have
un(a) = Ay HWY (ka),

which implies (14). Therefore we get (4).
Next we consider the case of d = 3. Then u (€ C*°(£2,)) can be represented, for every
r > a, as follows:

u(r8.6)= 3" Y wY(6, ) in LA(T)

n=0m=-n

Then Fourier coefficients u;' satisty

_d2unm (r) — 2 duyy ") + <n(n +1) k2> () = 0,

dr? r dr r2
and hence
ur(r) = ArhiD (kr) + BR b (kr),

n

where h(?) are the spherical Hankel functions of the second kind of order n. From (8) and

(19) 1 (x) = \/5-H L ()



(j=1,2and n € NU{0}), we can get the asymptotic behavior of h{):

(Fi)"*!

(20) A9 (kr) = .

R 1 O(r ) (r — 400),

with sign + and — for j = 1 and 2, respectively. We further have the following recurrence
relations [1]:

21) b (x) = =hP (@) = ha(@) (=1, 2).

Using (20) and (21), we can show

_

in the same way as in the case of d = 2. Thus we can get (6). W

LEMMA 2.3 Let f be a function of L?(Q) such that supp f C Q,. Let u € HL_(Q) be a
solution to problem (1). Then, there exists a ® > 0 such that

b = / ud’y for allr > a,

and further

922) &= Ii /
(22) Jm o [

where n is the unit normal vector being toward infinity.

ou

+/€2|U|2} d,

Proof. Since u € C*(€2,), by the Green formula, we have, for v’ > r > a,

0 = —/ (Au+ku)ude
Qr

8u
— —ud / 2 kQ
[ S /F,a ady+ | (Vuf* = K[uf?) da
where Qﬁ/ is the annular domain defined by (16). Taking the imaginary part of this
identity, we get
du

0
Im [ —uady=1Im —uﬂdy = o.
r. on r,, on

Here we note that for r > a,

2

ou ou ouw . _
/Fr a—n—zk‘u dy = / <%—2k‘u> <%+2ku> dy
B dul? ou ou 91 12
= /FT o —zkua —Hka u+k!u!]
oul” . , ou_  om
= [ |[gn| + ¥ f““%(% ”%) .




From this identity, we get

1
Im auual’y = —/ a—uﬂ—u@ dry
on on

- L] i

Letting r — 400 in this identity, we obtain (22) since u satisfies the outgoing radiation
condition. MW

ou?

on

+ k2|u|2]

LEMMA 2.4 Let f be a function of L*(Q)) such that supp f C Q.. Let u € HL,
solution to problem (1). Suppose that

(23) lim / |ul® dy = 0,

r—>+00

() be a

then we have
u(z) =0 for|z| > a.

Proof. We prove only the two dimensional case. For the three dimensional case, we
can prove analogously. By Lemma 2.2, we have for every r > a,

0 (1) r
u(r, 0) = ; %un(a)ﬁl(@) in L*(T,),

and hence we have

[ = 3 Vs

n=—oo

It follows from (23) that for all n € Z,

(24) hm ‘\/_H(l (kr)u,(a )‘—O.

r——+00

Combining (24) and (8) deduces that u,(a) = 0 for all n € Z. This implies u = 0 for
r>a N

PROPOSITION 2.1 For f € L*(Q) with compact support, a solution to problem (1)
which belongs to H () is unique.

Proof. Let u € H.(Q) be a solution to problem (1) with f = 0. Then we can see
from the usual interior regularity argument that u € C*°(1).
We first show

(25) Im/ g—ZudV ~0
Iy

for all r > a. Define

Co* (2 UT) = {u=1lq, | uc CF(Q)}



with Q, = {z € Q| |z| <r}. We here fix r > a. There exist u; € C*(Q2, UL,) (j =

1, 2, ...) such that
uj — u in H(Q,) (j — o0).

For every 7 € N, we have

0 = —/ (Au — K*u)u; dx
Qp

ou__ _ _
= - /FT 5% Y + /QT(VU VU5 — KPutg) de.

Letting 7 — o0 in this identity, we get

ou__ , b B
[ Pyt [ (9 Rl e = 0

Taking the imaginary part of this identity, we obtain (25).
From (25) and Lemma 2.3, we can get

ou

on

2
1
lim — + E*lul*| dy = 0.
Lm o Fr{ |u|] v =0

This implies

lim / lu|? dy = 0.
T—00 F’l‘

Hence, by Lemma 2.4, we have
u=0 for|z| > a.

By virtue of the unique continuation property, we have u =0 in 2. W

Now we present proof of Theorem 2.1.

Proof of Theorem 2.1.  Uniqueness of the solution to problem (1) follows from Propo-
sition 2.1. So we will show existence of the solution in the following.

Let g be any function of L?(€,). We shall extend g by zero on R\ ©, and denote
the extension by the same symbol g, and thus g € L*(R%). Let us construct

(26) w=g=x1,

where 1) denotes the outgoing fundamental solution of the Helmholtz equation, i.e., ¥ is
a function of R® defined by (3). Then, we have w € H?_(R?) and

—Aw—-kw=¢g onR?
in the sense of the distribution. Now, we consider the following problem:

—Av+pv = 0 in €,
(27) v = w on-,
v = 0 only,

where u € C. If Impu # 0, this problem has a unique solution v € H?(,), since

boundaries v and T', are sufficiently smooth. We choose ¢ € C*(€,) to be identically



one in a neighborhood of v and identically zero in a neighborhood of I',. We then seek u
defined on €2 under the form

(28) u=w— ¢v.

We here note that u € H2.(Q) because w € HE (R?) and ¢v € H*(Q). Then u = 0
on v, and u satisfies the outgoing radiation condition. In order to satisfy the Helmholtz
equation, the following relation between f and g must hold on §2:

29) f = —(A+Kk)u
= g+ (Ap+ K¢+ pg)v+2Ve- Vo,

and we note that (29) takes the form 0 = 0 for |z| > a. Consequently, (29) must be
considered as a condition on €2,. We shall write it in the form

(30) f=g+Kg in L} Q).

We show below that for every f € L?(€,), there exists a g € L*(€),) satisfying (30). For
this purpose, we first show K : L*(Q,) — L*(€,) is compact operator in Steps 1-3
below.

Step 1. In this step, we show that the operator ¢ — w|q, (= ¢ * ¥|q,) belongs
to L(L*(Q4), H*(Q4)), where L(L*(Q,), H*(Q,)) denotes the set of all bounded linear
operators from L?(€2,) to H*(Q,).

Take g; € L*(Q,) (j € N) such that g; — ¢ in L*(Q,). Set w; = g; 1), where g; are
assumed to be extended by zero on R? \ Q,, and suppose

wilg, — @ in H*(Q,).
Then we have

oy~ iz = [ | fpulas®) - g@)ve - v) dyl de
- /’ [9'(y)—g(y)]w(w—y)dy\2dx

= [ o) )Py [ [ 1w —y)P dyda
— 0 (j—>oo).

This implies w = wl|q,. Hence, the operator g — wl|q, is a closed operator from L*(,)
into H?(f,), and hence we can see from the closed graph theorem that the operator
g — w|q, belongs to L(L*(Q,), H*(Q4)).

Step 2. In this step, we show that the operator w — v belongs to L(H?*(€y,)) =
LIH2(9,), HA(Q,).

It follows from the trace theorem that

(31) w— wl, € LIH(Qu), H*(7)).
Further, we see from the regularity theorem and the closed graph theorem that
(32) wly — v € LUH*P(y), H(Q)).
From (31) and (32) it follows that
w—v € LH*(QW)).
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Step 3. The operator
v — (Ad + k¢ + up)v + 2Ve - Vo

is a compact operator from H?(€),) into L*(€),). This follows from the compact imbedding
of H?(€,) into H*(,).

From Steps 1-3, we can see K is a compact operator on L*(€),).

Since K is a compact operator on L*(£2,), it suffices to show I+ K is one-to-one in order
to show that the equation (30) has a unique solution g € L*(Q,) for every f € L*(Q,).
We assume that g € L*(),) satisfies

g+ Kg=0.

Using g, we construct u by (26), (27), and (28). Then u € HL_(Q) and
—(A+kKHu=0 inQ.

Thus, by Proposition 2.1, u = 0 in §2. Here we get

(33) w=¢v inQ.

Since v is the solution of (27), we have

ov
2 2 . _
) [ (Vo bl de = [ S,

where n is the outer unit normal vector to €.
On the other hand, since —Aw — k*>w = ¢ = 0 in O, we have

2w de = — | —wdy.
(35) [ (Vol - kuwl) do " dy

Now, adding (34) and (35), and because of the fact that w = v in a neighborhood on ~,
we see that the right-hand sides of (34) and (35) cancel. Further, taking the imaginary
part, we obtain

(Imu)/ lv|*dx = 0.

Qa

Thus we have v = 0 in 2, and hence, by (33), w = 0 in Q. Therefore, since
—(A+kHw=g in R

we have g = 0. This implies / 4+ K is one-to-one. M

3 DtN operator

We define the DtN operator S as follows. In the two dimensional case, for p € HY2(T,),

= HV (ka)
Sp= 2 ~hpm (ka)

11



In the three dimensional case, for ¢ € HY2(T,),

Sp= > -

Pn Iy
n=0m=—n h(l (k )

m m
Y

where

(37) o = /2”/ o(0, 6)Y(0, ¢ sin 0 dodo.

The DtN operator S is a bounded linear operator from H'/?(T,) into H~Y/2(T,) (see
Masmoudi [9], Koyama [8]).

4 Properties of the Hankel functions
LEMMA 4.1 For each x > 0, we have

(38) HO(x) ~ —@ ()" v—w),

where v € R.

Proof.  According to [1], we have

(30) Jo(z) ~ ij(Q—) (v — o0),

(10) N,() ~ —@ () w—oo)

where J, and N, are the cylindrical Bessel functions and the cylindrical Neumann func-
tions of order v, respectively. We have

w o {257}
- ola@] e R
2

We here note that

2 { (%)) {ﬁ (g)‘”} _HE) —0 v —o)
Combining (39) — (42), we can get (38). W

LEMMA 4.2 For each x > 0, we have

(1)
Hy—l(‘r) Y
43 ~— (v — 00),
W) Yo~ o)
where v € R.

12



Proof. We have

ay B0 i E () i ) e
o e i) e )

We here note that

i/ (8) }
O (R

From (44), (45), and Lemma 4.1, we can obtain (43). W

(45)

LEMMA 4.3 Let k > 0 and a > 0. Then there exists a positive constant C such that

H
) ‘k ' (ka)  [n|

<C forallneZ.
Hq(zl)(ka) a

Proof. By the recursion formulas [1]:

(47) HY' (z) = HY, (z) — ZHIEl)(x) for all v € R,
T

v v—1
we can get
' H(l)
(ag) o ko) Hinlka) mo ez

W (ka) W(ka) a

From Lemma 4.2, we can see that there exists a positive constant C' such that

(1)
A2y (ka) 2n < C forallme N U{0}.
W (ka) ka

This implies that

H(l)
(49) M < C@ for all n € N.
HY (ka) 2n

Combining (48) and (49), we can get

(1) 2
L(k‘a) n<0k_ for all n € N.

W(ka) a

Further, noting that H', (ka) (—=1)"HV (ka), we see that (46) holds. M

LEMMA 4.4 Let k > 0 and a > 0. Then there exists a positive constant C such that

(1’ 1
(50) ‘k];” (ka)  m+

<C  foralln e N U{0}.

13



Proof. By (19) and the recurrence relations [1]:

, 1
(51) hD (z) = hD, (z) — TR0 (@),
X

we can get

(52) khgy(ka) B ka_)l/Q(ka) n+l
(ka) a

1 - 1
hi) (ka) H7(1421/2

for all n € N U {0}.

We can see from (43) that there exists a positive constant C' such that

HY  (ka k
(53) %() < © forallne NU{0.
Hn+1/2(ka) 2n+1

From (52) and (53), we can get (50). W

LEMMA 4.5 Let k > 0 and a > 0. Then there exists a positive constant C such that

(1)
‘ L H,” (ka) <C forallne Z.

L+ [n| B (ka)

Proof. 1t is clear from Lemma 4.3. W

LEMMA 4.6 Let k > 0 and a > 0. Then there exists a positive constant C such that

n

<C llne N U{0}.
T Wy | SO e 0}

‘ 1 h' (ka)

Proof. 1t is clear from Lemma 4.4. W

LEMMA 4.7 For all x > 0 and for all v € R, we have

HY (z)
m @) >0
Hy'(x)
Proof.  We have the following formulas [1]:

(54) Jufl(x>Ny(33') - J,,(J;')Nyfl(x) = _i

T™r

Using (47) and (54), we can get

. Hﬁ”/(x)}_ 2 1
{ M) _mJB(x>+N3(x>>O’ "

LEMMA 4.8 For all z > 0 and for alln € N U{0}, we have

Wiy
{h%l)(x) >0

14



Proof. By using (19), we can get

(55) “o L et

and hence

WY@ g [ Helo)
m h(l)(x) —m H(l) (z) )
n n+1/2

Thus, by Lemma 4.7, we have

. hé”’(x)}
{h;”(x) >0

forallme NU{0}. W

LEMMA 4.9 For all x > 0 and for all v € R, we have
H@
v’ (2)

Proof. Since H(V(z) = J,(x) + iN,(x), we have

H,S”/(fv)} _ J(2)J,(2) + N, (2) Ny(x)

(56) Re{Hw(x) 72(x) + N2(a)

According to Watson [12], we have
8 o)

(57) J2(x) + N2(z) = —2/ Ko(2x sinh t) cosh(2vt) dt,
72 Jo

where K is the modified Bessel function of the second kind of order zero. Differentiating
(57) with z, we obtain

(58) J,(x)J,(x) + N,(z)N!(z) = 8 /OO K{(2z sinh t) sinh ¢ cosh(2vt) dt.

72 Jo

Now we note that we have the following formula ([1], [12]):

(59)  Ko(€) = / TeEeoht gt for all € > 0,

0

Differentiating (59) with &, we can get

(60) KI(¢) = — /Oo e~€ht coshipdt < 0 for all € > 0.

0

Combining (56), (58), and (60) will complete the proof of Lemma 4.9. MW

LEMMA 4.10 For all x > 0 and for alln € N U {0}, we have

Re { hf})'(x) } <0
hi (x)

15



Proof. We can see form (55) and Lemma 4.9 that

1) H(l), T
Re{h" (x>}:—i+Re{7”“/2( o m

1 1
) () 2z HY, (@)

LEMMA 4.11 For every v € R,

H,Sl)(x)} is a decreasing function on (0, 00).
Proof. We can see from the proof of Lemma 4.9 that
S |HO @ =2 (@)L 2) + NI N (2) <0,
This implies ‘Hﬁl)(x)‘ is a decreasing function on (0, co). MW
LEMMA 4.12 For every x € (0, 00) and for v, V' € R satisfying |v| < |V/|, we have
[H (2)] < |HD ()]
Proof. 1t is clear from (57) and (59). W

LEMMA 4.13 For every n € N U {0},

hg)(x)‘ is a decreasing function on (0, 0o).
Proof. 1t is clear from (19) and Lemma 4.11. W
LEMMA 4.14 For every z € (0, 0c0) and for n, n’ € N U{0} satisfyingn < n’, we have
‘hg)(x)‘ < ‘hle/) (x)‘

Proof. 1t is clear from (19) and Lemma 4.12. W

5 Existence and uniqueness of the solution to the
reduced problem

The weak problem of (2) is formulated as follows: find u € V' such that
(61) a(u, v) — k*(u, v) + s(u, v) = (f, v) forallveV,
where
a(u, v) = /ﬂa Vu-Vodr foru, ve€ H(Qy),
(u, v) = / wvdr  for u, v € L*(,),

S(U/, U) - <SU/, U)H_I/Q(FQ)XHI/Q(FQ) fOl“ u, v € Hl(Qa),
V = {UGHI(QG) |v=0 on 7}.

THEOREM 5.1 For every f € L*(Qy), problem (61) has a unique solution.
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Proof. We first prove in the two dimensional case. We define the sesquilinear form
b(-, -) as follows:

(62) b(u, v) = i |n|un(a)v,(a)  for all u,v €V,

n=—oo

where u,(a) and v,(a) are the Fourier coefficients defined by (5) of u and v, respectively.
We introduce a new inner product on V:

((u, v)) = a(u, v) + b(u, v),
and the associated norm:
] = ((u, w)'/2.

Then we see that the norm ||| - ||| is equivalent to the standard H'(€,) norm. We define
the bounded linear operator K on V' through

(Kyu, v)) = —k*(u, v) for all u,v € V.

By the compact imbedding of H'(£2,) to L*(€,), we see K is a compact operator on V.
We here note that s(u, v) can be represented as follows:

&, HY (k)
(63) s(u, v) —n;oo k T(Ll)(ka)

It follows from (62), (63), and Lemma 4.3 that there exists a positive constant C' such
that

up(a)v,(a).

(64) |s(u, v) = b(u, v)| < Cllu|2ellvll 2@,y for all u,v € V.

Further the trace operator from H'(€,) into L*(T',) is compact. Therefore we can define
the compact operator Ky on V' through

(Kau, v)) = s(u, v) — b(u, v) for all u,v € V.
We can write the problem (61) as follows:
(65) ([ + K1+ Ky)u=g,
where g € V such that
((g,v))=(f,v) forallveV.

Since K+ K> is a compact operator on V| in order to show the unique solvability of (65),
it suffices to prove that I + K; + K5 is one-to-one. Suppose that u € V satisfies

then we have
a(u, u) — k*(u, u) + s(u, u) = 0.

Taking the imaginary part of this identity, we get

%0 W (ka
0=Im{s(u, u)} = ; —kaTIm {?T((:a))} lun (a)|?.

17



It follows from Lemma 4.7 that u,(a) = 0 for all n € Z. Hence u = 0 on IT',, by the
unique continuation property, © = 0 on §2,. Therefore I + K; + K> is one-to-one.

We can analogously prove in the three dimensional case. In this case, we define b(-, -)
by

(67) b(u, v) Z Z a(n+ Du(a)vm(a) for all u,v €V,
n=0m=-n
instead of (62). Since we have
h" (ka)
68) s(u, v) —
( Z()m; h“ (ka)

from (67), (68), and Lemma 4.4, we can also get (64). Suppose that u € V satisfies (66),
then

= Im{s(u, u :oo ; —ka®Im M u™(a)|?
0= Tnfsn, ) = 3 3 kel {Mm}u()\.

Thus, by Lemma 4.8, u"(a) = 0 for all n and m. In the same argument as in the two
dimensional case, we see I + K; + K5 is one-to-one. W

uy (@)vi(a),

6 Equivalence between the original problem and its
reduced problem

LEMMA 6.1 Let p € HY*(T,). We define, for r > a,

< HD(kr )
> L Vo) i od=2,
n=—oo I1n (ka)

(69) u=
R (kr

(

= Y (ka
where @, and @' are the Fourier coefficients of ¢ defined by (36) and (37), respectively.
Then w € HL (), and furthermore the series (69) and its term by term first derivatives

converge in L*(Q8) for every b > a. In addition, u satisfies

~Au—FKu = f inQ,
u = ¢ only,

(70) du
lim r2 d——zku = 0.

iwannm(H, o) if d=3,

r——+00 r

Proof. We first prove in the two dimensional case. For N € N, we set

N H(l)(k‘ )
uy= S 2 Yy 6).
Ve 7D (ka)

For N < N’, we have

lun = By = 3 /a

N<|n|<N’

T’drlsonIQ,

TL
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and further, by Lemma 4.11, we can get

- a2) Z ’@nP'

N<|n|<N'

1
HUN - U/N’H%Q(Qz) S §(b2
Thus, since ¢ € HY?(T,),
luy = unr|[f2@py — 0 (N, N' — o),
and hence
uy — u in L*(Q)) (N — o0).

Now, we note

(71) /QZVU-Vde— m%%d —/Q TQ(AU)de

for u, v € C* (Q_g), where A is the Laplace-Beltrami operator on the unit circle of R?.
Thus, since —AY,, = n?Y,,, we have

(72) HV(UN - UN’)H%2(Q2)

ou Hun | 1
A el
d HO(k 2| HO (kr) |
- Z / {d (1 T) 2 ?1)( ") rdrpnl®.
N<|n|<N'"% " Hy’ (ka) 7 | Hy (ka)
We here have, by integration by parts
b 2 b —_—
(73)/(1 %HS)(/{T) rdr = da;H (k‘r)% T(LI)(k‘T’)T dr
= H(l)(kr)iHS)(k‘r)r b
" dr "

d2

b - b d ——
— / Hfll)(kr)ﬁHqgl)(kT)r dr — / Hfll)(kr)d—Hq(zl)(kT) dr.
a T

T a

Since H(" satisfies the Bessel equation, we have

(74) jQH(l (kr) = {éH,(f)'(kr)Jr [k?— Z—j] Hy)(kr)}.

Substituting (74) into (73), we can get

(75) /ab d 2

d—HgU(kr)
_ [H Ay ]

rdr

b

a

n?

HOGk { W+[k__]m}d
/abH HY (kr)k dr
_ [H () (kr)mkr]b

a

b b1
+/ k2r‘H7gl)(kr)‘2 dr—nQ/ ;\Hqgl)(kr)Ier.
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By (75), we get
d HY ) [
dr Hr(ll)(/m)

[
HD (kr) (H (kr) )
,
2 (ka) \ H (ka)
By using (47), we have

H(l) HS)/ 7(zl)l
;- Ha (kb) 2(/fb)kb_ (1)(lm) ra
|HY (k) ;) (ka)

dr=1+11.

HY, (ka) — & Hy (ka)

—————3{H' \(kb) — = H]! wm} ka

2 —ka (M) + n.
H (lm)

Thus, by assuming here n > 0 and by using Lemmas 4.11 and 4.12, we can get

HO (kb)H'Y , (kb) __7l‘}{gu(kb)
H (ka)| W (ka)

Il < n+k(a+b),
2

k
ynyg—ﬂ#—ﬁ)

From these estimates and the fact that Hg)l(x) = (=1)"HWM(z) (n € Z), we can get, for

alln € Z,
2
}r2dr

I
k2
< |n|+ k(a+b) + ?(b2 —a?).
Thus, because of ¢ € HY2(T,), the right-hand side of (72) tends to zero as N, N’ — oc.
Therefore we can see uy — u in H*(Q8). It is clear from the results above that u satisfies

n2
2

d HV (kr) |
dr HV (ka)

HO (kr)

n

HV (ka)

r

(70).
We can analogously prove in the three dimensional case. For N € N, we set
" R (kr
w3k A0, 0)
n=0m=-n

For N < N’, we have

2
by ~ulisey = 3= 35 [\l e ane
n=N+1m=-—n
By Lemma 4.13, we can get
1
s — oy < 20 —a?) S [ (N, N — oc).

_3

n=N+1m=—n
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This implies
uy — u in L*(Q)) (N — o0).

Now we note that (71) also holds in the three dimensional case. Thus, by using (71)
and the fact that —AY™ = n(n+ 1)Y,, we can get

v [ LiA(uy — un)] @y =) da

oy 12
d KOk [ nn+1)
2

dr BV (ka)

(76) HV(UN - U/N’)H%Q(Qg)
aU/N . 3uN/ 2

:/bar or
-2 2 [

n=N+1m=—n

WD) (kr) [
WP (ka)

b ace

We here have, by integration by parts,

/

2

d
dr

b d d—m, <
2 _ (1) (1) 2
rédr = = —hl (kr)drhn (kr)r<dr

d e
_ lhg)(kr)d—hff)(kr)ﬁ]

—h D (kr)

b

I b d—m—
_/ h (k (]W)T dr — /hle)(kr)%hg)(kr)%dr.

Since

2

(77) j—ihn (kr) = {%hf})/(lﬂr) + le — M} h;1>(kr)},

we have

@) [
d

— lhw(km)d—hg”(kr)r?]
T

+ / hd (k { Y (kr) + [/&— M] h%”(kr)}r? dr

r2

dihgn(kr)

r

r2dr

b

= / B (er) hSY () 2kr dr

b

_ [hﬁ} (kr)hD (kr)er]

a

b b
—|—/ (lm“)2 ‘hf})(/m“)r dr —n(n+1) / |hle)(/m“)|2 dr.

By (78), we get

d hOEND P nn+1) [BOEN) [
/ r*dr
dr 1D (ka) 2 i) (ka)
- b
A (kr) (B (e b A (k) |?
— ?1)( r) 0 (kr) kr?| + (/W’)2 (‘1)( r) dr=1+1TI'.
hn'(ka) \ hy’ (ka) a hy (ka)



By using (51), we have

1) 1y
oo b (kb)hSY (kb) ‘(k;b) L (hn)(ka)) L2

‘hnl) (ka hg)(ka)
o h{D(kb) PO LR S YO FIRRY QM_ nk—?h’(ll)(ka)
= s = {2 ) = S m
|18 (ka) ha (ka)
hl) kb h kb A (kb 2 W
S L A e MU e ECE G0N AR
[0 (ka)| ' (ka) fin” (k)

Thus, by using Lemmas 4.13 and 4.14, we can get

II'l < (n+1)(a+b)+ k(a® +b%),
2

' < %(b3—a3).

From these estimates, we can get

o[ d ROEND[P nn+ 1) RO END P
(79) / {d "1 (ka)  h (ka) }T "

2

< (n+1)(a+b)+k(a2+62)+%

From (76) , (79), and the condition that ¢ € H'/?(T,), we see that ||V (uy—un) || 2(s) —
0 as N, N’ — oco. Therefore we can see uy — u in H'(Q2). W

(b* —a®).

LEMMA 6.2 Let p € H*?(T,). We define u by (69). Then, for every b > a, we have

u s D (Jer
(80) Z—(T, 0) = Z k%%(@nw) in H'(QY) (d=2),
du < W (kr)

P (@)Y, (0, ¢) in H'(Q) (d=3).

Proof. From Lemma 6.1 it follows from that the infinite series of the right-hand
sides of (80) and (81) converge in L?(Q22). Hence, it is sufficient to show that their first
derivatives converge in L*(Q).

We first consider the two dimensional case. For every N € N, we define

S H<1> kr
_ oy g ) ( ) o, (a)Y(6).
n=-—o00 n )
For N < N,
IV (on — va)H%zmb)
& H<1 (kr)|* n2|d HO(kr)[” )
N<|n\<N’ a r H k ) r dTHn (ka)
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By (74), we can get

2

d2
dr?

2

H ) (kr)

n

+ [k; - Z—j] Re { (%H,@U(k )) m}

Thus, by using (47) and Lemmas 4.11 and 4.12 in a similar way to the proof of Lemma

6.1, we have
b
dr = n4/

@m/

We now have, by integration by parts,

2 972
+ [kQ— %] [HY (k)|

& HO (kr) [

dr* 1 (ka)

dr

1)
54@-—+mw>wwﬂw»

n

HV (ka)| T

bl d dr
HWY (k
|| G)
7(17“
- —HO(k Wy 22
/ dr dr (Fr) r
d = '
= H(l)k’ - 1in k -
[n<mw ]
b &? —mo—dr b d —m, < dr
B 1) am () ar / 1) @ (1) ar
/a H, (k‘r)dTQHn (kr) . + ; H, (/m“)dTHn (kr) ok
By (74), we further have
b d 2 dr
~ HY (L 2
/a dr " ( T)‘ r
d—m—17"
= |HO (kr)—HY (kr)~
ERErEHl
d —m, . dr b 2 n?| dr
+/ HD(kr) = “)(zm«)ﬁJr i H® (kr)| [kQ—ﬁ] —

d—m—d
+ / HO (kr) = Dy &

r2’

Thus, in the same way as above, we obtain

d HO (k)| d b HO (k) |* d
89) o [ LEDED Ao GO s () — o),
dr gV (ka)| T HS )(ka) r?
From (82) and (83), we can get
& HO (kr) [ d HO(kr)|? ,
/ { dr2 D(k‘ ) r2 %Hr(zl)(ka/) rdr = 0O([n[*) (In| — oo).

Therefore, since ¢ € H3?(I',), we can get (80).
We next consider the three dimensional case. For every N € N, we define

S hgzl/kr) my, m
UN—E:O Z kh(l ) nYn (07 ¢)
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For N < N,

IV (vy — UN/)H%%W)

-2 2 [

n=N+1m=-n

2 O (kr) [
dr? 1D (ka)

By (77), we can get

d ? 4 |d ? n(n+1)]? 2
(1) - (1) 2 _ (1)
‘thn (k)| = 5|5 hiD (kr) +l/<; S| [ k)]

K2 n(n+1) d
4| — — Rl Q) ()
+ [r | Req | -l (k) | il (k)

Thus, by using (51) and Lemmas 4.11 and 4.12 in a similar way to the proof of Lemma
6.1, we have

bl @2 hO (kr) | L PO (kr) [P dr
(84) / g r*dr=n / )| +0M®) (n— o0).

We now have, by integration by parts,

bl d 2
drhf})(kr) dr
b d d~m,
_ RN ¢S &)
/a {1 (kr) drhn (k) dr
- lh (kr) ] / O (k O (kr) dr.
By (77), we further have
bl d 2
/ B (kr)| dr
domo—
= | O (kr)—hi (k
o % )]
1
+/ P (k) ==hi (k) dr+/ 1D (k)| [H—"(Lj)] dr.
T
Thus, in the same way as above, we obtain
d hD (kr) [ bl D (kr) | dr
1 / n _ 4/ n - 3
(85) n(n+1) @ p (ko) n | D) 72 (n’) (n — o)
From (84) and (85), we can get
b a2 hO(kr) P nn+1) | d RO &[]
— —— dr = O(n® — 00).
/a { dr? hg)(ka) r2 dr hg)(ka) rar (n7) (n o)

Therefore, since ¢ € h*/?(T,), we can get (81). N
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THEOREM 6.1 Let f be a function belonging to L*(Q)) such that supp f C Q,, and let
u be the solution of (1) belonging to HL (). Then u|q, is the solution of (61), and u is
represented in U, as (4) and (6) in the two and three dimensional cases, respectivelg

Conwversely, let u; be the solution of (61) and let p = u;|r,. We define u € L (Q) as
follows:

(86) ulg, = wui

e H(l)(lm“)
—t—pnYn(0 if d=2,
n;oo Dira)” () f

(87) ule, =

>y

en Y0, 0) if d=3,
n=0 |m|<n hnl)( a)

RV (kr)
k

where @, and ;' are the Fourier coefficients of ¢ defined by (36) and (37), respectively.
Then u € HL (), and u is the solution of (1).

Proof. 'We prove only in the two dimensional case, since in the three dimensional
case we can also prove in exactly the same way. Let u be the solution of (1) belonging
to HL.(Q). By Lemma 2.2, we can see that u is represented in (2, as (4) in the two
dimensional case. Since, from the usual regularity argument, u € HZ_(Q), we have
ulp, € H3*(T,). Hence, by Lemma 6.2, we have

00 1
88) Lro)= 3 sz()(k)
87" = HS (lm)

for every b > a. Since —Au — k*u = f in €, by using the Green formula, we have

n(@)Ya(0)  in H'Y(Q)

(89) / (Vu - VU — k*ut) dz — / a—uﬁ dy = fodr forallveV.
Qg Qa

r, On

From (88) we can see

HY (ha) e
/ e kmun(&)/o vYn(H)adH = S(u, ’U),

Combining (89) and (90), we can see ulq, is the solution of (61).
Now, let u; be the solution of (61), and we define u € L% () by (86) and (87). Then
we will show

(91) /Qu(—AE k) da = /wax for all ¥ € C(Q).

We denote u|q, by u.. By the Green formula, we have
/ W(—AG — k) dr = / wi(— A — K7P) da + / we(— AT — K20 dx
Q Qq Qq
= —/ uza—¢ dy +/ (Vu; - Vb — Kunp) dx
I'y 87“ Qq

o0 -
+ L wgdyt [ (Vue VO~ k2ucf) do
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Here noting u; = u. on I',, we obtain
92) [ u(-A% — k) da = /Q Fdz — s(us, ¥) + /%(vue VO — k) da
We here have
93) [ (Ve VI — Kuc) de = s(us, ).
Indeed, for N € N, we define
N (k)

unN = Z n

79071}/71(9)7
W H (ka)

where ¢, is the Fourier coefficients of ¢ = u;|p,. Then, uy € C*(Q2) and we have
—AUN — kQuN =0 in Q;,

by the Green formula, we obtain

v\_/
—
W
\_/

(94) / (Vuy - Vi — k*un) do + f; kL
o, " W HO (ka)

There exists a b > a such that
supp ¥ N QY C Q.
Then we can rewrite (94) as follows:

HW' (ka)
95 / Vuy - V9 — Buyf)de+ Y k=2
(95) b (Vux - N Z av (ka)
Since u;|r, € HY?(T,), we obtain
> H(1 '(ka) —
ka—mF-—— @n¢n = —s(Uy, ¢ ’
n;w (lm) sl )
and by Lemma 6.1, we can see

uy — u, in H'(Q).

Thus, by letting N tend to infinity in (95), we can see (93) holds. From (92) and (93), we
can see (91) holds. Further it is clear that u = 0 on v and that u satisfies the outgoing
radiation condition. Therefore we conclude that u is the solution of (1). MW

We now have the following corollary to Theorem 6.1:

COROLLARY 6.1 For every f € L*(S), the unique solution u of problem (61) belongs
to H*(Q,). Further we have the following a priori estimate:

(96) [lullm2a) < Crllfllz2 (@),

where C,. is a positive constant independent of f and u.
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Proof. We see from Theorem 5.1 that problem (61) has a unique solution v € V. By
virtue of Theorem 6.1, u can be extend to {2\ {2, so as to be the solution to problem
(1) which belongs to H2 (©2). Thus we can conclude u € H*(Q,). We now define the

loc

operator G : L*(Q,) — H?*(Q,) as follows: for every f € L?(Q,),
Gf=u,

where u is the solution to problem (61) with f. Since we can readily show G to be a
closed operator, we can get, by the closed graph theorem, the a priori estimate (96). M

REMARK 6.1 We consider the exterior problem with the incoming radiation condition:

—Au—kKu = f inQ,
u = 0 onv,

lim r o <Zu+zku> = 0.

r—+00

For this problem, all the results described above hold with appropriate modifications. We
then note that the analytical representations, in €2, of the incoming solutions are:
< HO®(k

oo h(Q
FIYP0,6) i d=3
"E:Ohggn hn (k )

and the DtN operators corresponding to the incoming radiation condition are:

V' (ka) :
- 7%1@ if d=2,
n,z_oo 12 (ka)
(97) S*p =
n h<2 k
S - ((ka))gmenm it d=3.
n=0m=-n a

In addition, the fundamental solutions satisfying the incoming radiation condition are:

—%Hé”(mp if d=2,
V(@) =4 | c-iklel

it d=3.

7 Finite element approximation

We can get numerical solutions to problem (1) by applying the finite element method to
problem (61). Such a method is called the DtN method and is studied by several authors
(Goldstein [4], Masmoudi [9], Keller and Givoli [7], Harari and Hughes [6], Grote and
Keller [5], and Bao [2], for instance). We establish well-posedness of the discrete problem
obtained by applying the finite element method to problem (61) and error estimates for
solutions to the discrete problem. To do so, we follow the idea due to Goldstein [4], which
is also used in [2].
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In this section we denote the norm and the semi-norm of H™(£2,) (m € N U{0}) with
H(Q,) = L*() by || - [lma, and | - |n.q,, respectively, and further we define the norm
of H*(I',) (s > 0) as follows: for p € H*(',),

N
> (L[]l it d=2,
n=—N
lllr, =
a N n
SO (L PerP it d=3.
n=0m=—n

We consider a family {V}, | h € (0, h]} of finite dimensional subspaces of V' such that
for all 0 < h < h and for every u € V N H2(£2,),

(98) inf [u—wpli0, < Cohllull2g.,
VeV

where C, is a positive constant independent of h and u. If d = 2, such a family {V}, | h €
(0, h]} can be constructed by using the curved elements due to Zldmal [13]. (Since T, is
a circle, we need to consider the curved elements.) We briefly explain how to construct
such a family. For each h € (0, h], we consider a triangulation 7, of €, including curved
elements near the curved parts of 0€),. Let V,, be a conforming finite element space
associated with 7;,. Here every function of V}, is supposed to be a linear function on each
interior triangle element and to be a certain function introduced by Zlamal on each curved
element. Suppose that the family {7, |k € (0, ]} is regular in the sense of Ciarlet [3].
Then the family {V}, |k € (0, h]} satisfies (98).

Then the discrete problem of problem (61) associated with V}, is as follows: find uy, € V,
such that

(99) a(up, vy) — k*(un, vn) + s(up, vp) = (f, vn)  for all v, € V.

Well-posedness of problem (99) and error estimates for u — uy, for sufficiently small h are
established in the following theorem:

THEOREM 7.1 Let k be an arbitrary positive number, f an arbitrary function of L*(Q,),
and u the solution to problem (61). Then there exists an ho(k) € (0, h] such that for every
0 < h < ho(k), problem (99) has a unique solution uy, and further

(100)  |u— up|1,0, < Cr(k)A[ fllo.0.;
(101) [lu — upllo,0, < Co(k)h?(|fllo.g.

where ho(k), C1(k), and Cy(k) are independent of f, u, and uy, and further Cy(k) and
Cy(k) are independent of h.

Proof. We first assume that problem (99) has a solution uj,. A proof of the well-
posedness of problem (99) is postpone to the completion of the derivation of the error
estimates (100) and (101).

Set e, = u — uy. Then we have

(102) d(eh, Uh) =0
for all v, € V), where

(103) a(u, v) = a(u, v) — k*(u, v) + s(u, v)
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for u, v € H'(Q,). Note the following identical equation:

|€h|ina = kQH‘thg,na — s(en, en) +alen, en).
Taking the real part of this identity, we can get

|€h|iﬂa = kQH‘thg,ﬂa — Res(ep, en) + Rea(ep, e).
By virtue of Lemmas 4.9 and 4.10, we get
(104) lenli 0, < K*llenll5, + Realen, en).
To estimate the right-hand side of (104), we use the Poincaré inequality
(105) [|v]l0.0, < Cplv|10, forallveV
and the trace inequality
(106) HUHl/Q,Fa S Ot|v|l,ﬂa for all v ev.

Step 1. In this step, we show that there exists a positive constant C3(k) such that

(107) [a(en, en)| < Cs(k)hlenlr.lull2.0.,

where C5(k) is independent of h, u, and u,. We see from (102) and (103) that for all
vp € Vi,

alen, en) = alen, u—vy) — kK*(en, w — vy) + s(en, u — vp).

By the trigonometric inequality, the Schwarz inequality, and the boundedness of S :
H'(Dy) — H™V2(T),

|a(en, en)]

< lenliaulu —vali 0, + Ellenllogallu — valloa, + ISIllenlhyzr, lu = vnlhzr,.
By (105) and (106),
|a(en, en)| < Cs(k)|enli 0.l — vali0,,
where
(108) Cs(k) = C2k* + ||S||CF + 1.

From this inequality and (98), we can get (107).
Step 2. In this step, we show that there exists a positive constant Cy(k) such that

(109) [[enllo,0. < Ca(k)hlen|1,,
where Cy(k) is independent of h, u, and u,. Suppose that w € V satisfies
(110) CL(U}, U) - k2(w7 U) + S(U7 U)) = (€h7 U)

for all v € V. Then w is a weak solution of the following problem:

—Au—k*u = e in Q,,
u = 0 on v,
0
a—z = —-S*u onlTy,
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where S&* is the DtN operator corresponding to the incoming radiation condition given
by (97). As mentioned in Remark 6.1, Corollary 6.1 holds for the incoming solution w.
Hence we have w € H?({,) and

(111) [Jw]l20. < CFllenllo.cu-

Taking v = e, in (110), we obtain

HehHg,na = a(w, ey) — k*(w, ey,) + s(ep, )

= alep, w) — k%(en, w) + s(en, w),

and hence, by (102), we have for all v, € V},

HehHaQa = aen, w —vy) — k%(en, w —vp) + s(ep, w —vy).
In the same way as in Step 1, we can get
lenll5 o,

< enlio.lw — vnl10, + Kllenllogalw — vallog. + ISlenlli/zr. 1w — vnlli/2.r.
< Cs(k)len]1,0. 1w — vil1,0.,

where C3(k) is the constant given by (108). From this inequality, (98), and (111), we can
get (109) with Cy(k) = C3(k)C:C,.
Combining (104), (107), and (109), we obtain

lenlio, < Cs(k)R?|en|ra, + Cs(k)h|lull2.q.,

where Cs(k) = k*(Cy(k))2. Thus, for every h € (0, h| satisfying

~~

1—Cs(k)h? >

’

N | —

which is equivalent to

0<h< ,
2Cs (k)
we have
Cs(k
12) e, < D pfull,.

Let here ho(k) = min(1/4/2Cs(k), h). We can see from (112) and (96) that for every
0 < h < ho(k), we have (100) with C(k) = C3(k)C, /2. Further, combining (109) and
(100), we obtain (101) with Cy(k) = C(k)Cy(k).

We next show the well-posedness of problem (99). For this purpose, it is sufficient
to show uniqueness of the solution to problem (99) since V}, is finite dimensional. Hence
assume that u, € V}, is a solution to problem (99) with f = 0. Since the solution u to
problem (61) with f = 0 is identically zero, it follows from (100) (or (101)) that u, = 0.
Thus we can conclude that problem (99) is well-posed. W

REMARK 7.1 We can see from the proof of Theorem 7.1 that ho(k) is a decreasing
function of k£ on (0, co) and C}(k) and Cy(k) are increasing functions of k£ on (0, 00).
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7.1 Truncation of the DtN operator

Practically we can not compute the problem (99) because the sesquilinear form s is analyt-
ically represented by the infinite series. Hence, in the practical computations of numerical
solutions, we have to truncate this infinite series. We analyze the effect of this truncation

on the error estimates. To this end, we introduce the following sesquilinear form: for
N € N,

N HM (ka) — ,
> —kgwun(a)vn(a) if d=2,
n=—N n (ka)
s™(u, v) =

up(a)om(a) if d=3.

We here consider the following problem: find u} € V}, such that
(113) a(up , vn) — k*(upy , vp) + s~ (upy, vi) = (f, vp)  for all vy, € Vj,.

We show that this problem is well-posed for h sufficiently small and for N sufficiently
large, and further we establish error estimates for u — u} when h is sufficiently small and
N is sufficiently large. That is, we prove the following theorem:

THEOREM 7.2 Let k be an arbitrary positive number, f an arbitrary function of L*(Qy),
and w the solution to problem (61). Then there exist a vo(k) > 0 such that for every
(h, N) € (0, h] x N satisfying h+ N—' < ~o(k), problem (113) has a unique solution ul,
and further

(114)  Ju =y ha, < Ci(k)(h+ N7 fllog.,
(115) [lu = uy og, < Ca(k)(h + N71)2[| fllo..

where vo(k), C1(k), and Cy(k) are independent of f, u, and ul, and further Cy(k) and
Cy(k) are independent of h and N.

To prove Theorem 7.2, we here introduce two sesquilinear forms on H*(2,):

a¥(u,v) = alu, v) —E*(u, v) + s (u, v),
HY (ka) |
> - a#un(a)vn(a) if d=2,
|n|>N n (ka)
rV(u, v) =
n h' (ka)
—ka* 2y (a)vm(a) if d=3.

Note here that we have
s(u, v) = s (u, v) +r™(u, v) for u, ve H'(Q).

Proof. As in the proof of Theorem 7.1, we first assume that problem (113) has a
solution uy .
Set el = u — uj)’. Then we have

(116) dN(ehN, vp) + TN(u, vp) =0
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for all vy, € V},. Note the following identical equation:

|€hN|%,Qa = k*[lep || D —sN(ep, en) +a(ey, en).

Taking the real part of this identity, we can get
N N _N
len ’%Qa :k2H€h HOQ —Res" (eha eh>+Rea (en ey ).
By virtue of Lemmas 4.9 and 4.10, we get

(117) |€hN|%,Qa < K?|ley HOQ +Rea(ey), e)).

We here introduce the set of all polynomials of degree [ in the variable £ with non-
negative coefficients:

!
Pl*:{Zajkj]@l>0,aj20(0§j§l—1)}-
=0

Step 1. In this step, we show that there exist positive constants Cs(k), Cy, and Cj
such that for an arbitrary € > 0,

04

Cs(k
(118) (e, )] < el B + (L4 S 4 o) s,
where constants Cs(k), Cy, and Cs are independent of h, N, u, u}, and ¢, and further C,
and Cj are independent of k. Here C3(k) belongs to P, as a function of k. By (116), we

have for all v, € V},,

en s u—uvp) + 1 (u, uf — )

~N(N N) hN
N
h

a (e, , €, N(

= a

= dN(e ,u—vh)—l—rN(u,u—vh)—rN(u, ehN).

Thus, by using the trigonometric inequality, the Schwarz inequality, and Lemmas 4.5 and
4.6, we get

@ (e, e
< ep 10, e — vhlio, + £ e oo lw — vallog. + Cllen ll1/z,r. le — valli2,r,
N (u, w— )| + 7Y (u, )]
Further, by (105) and (106),
(119) [a™ (ey’, en)| < Co(k)ler 1001t — vilia, + |r™ (w, w = vp)| + 7Y (u, )],

where Cg(k) € P5". Let us here estimate the second term on the right-hand side of (119).
If d =2, by Lemma 4.5, the Schwarz inequality, and the trace theorem,

(120) [r¥(u, w —wp)l < C 3 [nllun(a)l/(u = vn)n(a)l
[n|>N
< ON7ullspar, lu = vnllyor,
< ONHullzaullu = vl
where (u—wvy),(a) are the Fourier coefficients of u—vj,. If d = 3, we analogously get (120)

by using Lemma 4.6 instead of Lemma 4.5. Further, for the third term, we can similarly
estimate as follows:

(121) [ (u, ey)| < CN"Hullzq, ey e,
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Combining (119), (120), (121), and (98), we achieve the following:

@ (en', en)l

< Cr(k)hley [uaullullze, + CsN7Hey La, [ullz0, + Coh N~ ully g,

where C;(k) € Py". Applying the arithmetic-geometric mean inequality to the first and
second terms on the right-hand side of the above inequality, we have, for an arbitrary
e >0,

Clo(k)

~ 9
(e, e 2 S, + TR g,

2
15 011 _ _
+oled o, + N[l o, + CohNlul g,

where Cyo(k) € P;7. This implies (118).
Step 2. In this step, we show that there exist positive constants C12(k) and C3 such
that

(122) Jlep lloo, < Cra(k)(h + N7 Yep 1.0, + Cis(AN~' + N72)|Jull2.0.,

where C15(k) and Ci3 are independent of h, N, u, and u?, and further C}3 is independent
of k. Here Cj5(k) belongs to P; as a function of k. Suppose that w € V satisfies

(123) a(w, v) — k*(w, v) + s(v, w) = (e}, v)

for all v € V. Then w is the incoming solution. As mentioned in the proof of Theorem
7.1, we have w € H*(Q),) and

(124) lwllz0, < Clley llo.o.-
Taking v = e} in (123), we obtain
(125) [lex 5.0, = alw, ei) = K*(w, ey) + s(e}), w).

Note here that (116) can be rewritten as follows:

(126) 0 = a(vn, €5 ) — k*(vn, e ) + sN(el, vn) + 1N (u, vy).

Subtracting (126) from (125) gives

len 50, = alw—vn, ep) = k*(w —vn, ) + s (e}, w— )

+rN(el, w) — N (u, vp,)

= alw—vp, en) — kK (w —wvp, ey ) + sN(el, w—vy)

+rN(el, w) + rN(u, w —vp) — N (u, w).

By the trigonometric inequality, the Schwarz inequality, and Lemmas 4.5 and 4.6,

len 115 .
= |w— e e, + K llw — vllog.llen o, + Cllw — UhHl/zFaH@Ml/zFa
+r(er', w)| + 17 (u, w — w)| + [ (u, w)].
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By (105) and (106),
(127) len 5.0, < Cua(k)|w — vnlig.ler 1o,
+HrN (e, w)| + |7 (u, w — vp)| + |7 (u, w)],

where C14(k) € P5". We can here estimate the last three terms on th right-hand side of
(127) as follows:

(128) [V (e, w)] CN ey 2. lwlls/r,

CN—1|6hN|1yﬂa ||wH2yﬂa7

IAIN

(129) [r™(u, w —vp)] < CN"Hullspor, lw = villy2r.
<

CN Y ull20.|w — vnl10.,

(130) | (u, w)] CN~?|Jull32,r, w3 /2.1,

<
< ON72||ullp.0.]w]l2.0.-
Combining (127)-(130), we get

leNl3o, < {Cu®)leN o, + CN7Yullzn,}lw —vilig,

+{CN el [, + ON2|lull20, } [[w]l2e..

Using here (98) and (124), we get

len 130, < {Custk)len o, + CN " ullag, } hlle o,
+{CNeN 1, + ON72|ull20, } lle) o,

where Cy5(k) € Py, and further dividing by |e7||o.q,, we arrive at (122).
From (122), we can readily deduce

(131) lle 5.0, < Cro(R)(h+ N7[ey [f o, + C(ANT! + N72)2|Jull3 g,
where Cy6(k) € P;. Combining (117), (118), and (131), we get
(1 - <~ Culb)(h+ N} el g, < Cusl, )0+ N2l

and further, by taking € = 1/2,
1
{5 - Cubh+ N2 e g, < Cuo)(h+ N7 ul g,

where Ci7(k) € Py and Cig(k, €) and Cyo(k) € P;f. For every {h, N} € (0, h] x N
satisfying

1 1
= — EY(h+N"1)?> =
5~ Cuk)(h+N7)" = 7,
which is equivalent to
1
h+ N7' < ——— = y(k),
4C7(k)
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we have

(132) ley, |10, < Cao(R)(h + N7 [[ull20,,

where Cy(k) € Py, From (132) and (96), we get (114). Further, combining (122), (114),
and (96), we obtain (115).

We can now deduce from (114) (or (115)) the well-posedness of problem (113) in the

same argument as in the proof of Theorem 7.1. M

REMARK 7.2 We can see from the proof of Theorem 7.2 that vo(k) is a decreasing
function of k on (0, co) and C1(k) and Cy(k) are increasing functions of k on (0, 00).
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