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Abstract

The DtN finite element method for solving the exterior Helmholtz problem is
mathematically analyzed. The reduced problem with DtN artificial boundary con-
dition is shown to be equivalent to the original exterior problem. Error estimates
for solutions obtained by the DtN finite element method are established.
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1 Introduction

We consider the exterior Helmholtz problem with the outgoing radiation condition:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δu− k2u = f in Ω,

u = 0 on γ,

lim
r−→+∞ r

d−1
2

(
du

dr
− iku

)
= 0.

(1)

Here k, called wave number, is a positive constant, Ω is an unbounded domain of Rd

(d = 2 or 3) with sufficiently smooth boundary γ, and r = |x| for x ∈ Rd. We assume
that O = Rd \ Ω is a bounded open set and that f has a compact support.

When numerically solving problem (1), one often introduces an artificial boundary in
order to reduce the computational domain to a bounded domain and imposes an artificial
boundary condition (ABC) on the artificial boundary. Imposing the Drichlet-to-Neumann
(DtN) ABC, we can reduce problem (1) equivalently to a problem on the bounded domain
between the boundary γ and the artificial boundary. The DtN ABC is given in the
following form: on the artificial boundary Γa,

∂u

∂n
= −Su,

where n is the unit normal vector on Γa being toward infinity and S is the DtN operator
for the Helmholtz equation with the outgoing radiation condition. We choose the artificial
boundary Γa as follows: Γa = {x ∈ Rd | |x| = a}, where a is a positive number such that
O∪ supp f ⊂ {x ∈ Rd | |x| < a}. Then the bounded computational domain is defined by
Ωa = {x ∈ Ω | |x| < a} (see Fig. 1), and further the reduced problem is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δu − k2u = f in Ωa,
u = 0 on γ,

∂u

∂n
= −Su on Γa.

(2)

We discretize problem (2) by the finite element method in order to compute numerical
solutions. The obtained discrete problem can not be computed because the DtN operator
is analytically represented with an infinite series. Hence this infinite series has to be
truncated in practice.

Our main goals are to show that problem (2) is equivalent to problem (1) and to
establish error estimates for solutions of the discrete problems with and without the
truncation of the DtN operator.

The remainder of this report is organized as follows. In Section 2, we show well-
posedness of problem (1). In Section 3, we define the DtN operator by using the Hankel
functions, properties of which are studied in Section 4 and are used in the following
sections. In Section 5, we show well-posedness of problem (2). In Section 6, we show the
equivalence between problems (1) and (2). In Section 7, we establish the error estimates
mentioned above.

2 Uniqueness and existence of the solution to the

exterior Helmholtz problem

We define, for every domain Ω ⊂ Rd,

L2
loc(Ω) = {u | u ∈ L2(B) for all bounded open set B ⊂ Ω},
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Figure 1: Artificial boundary Γa and computational domain Ωa.

Hm
loc(Ω) = {u | u ∈ Hm(B) for all bounded open set B ⊂ Ω} (m ∈ N ).

Theorem 2.1 For every compactly supported f ∈ L2(Ω), problem (1) has a unique
solution in H2

loc(Ω).

We prove Theorem 2.1 by following Phillips [10] and Sanchez Hubert and Sanchez
Palencia [11]. To do so, we present several lemmas and a proposition in the following.

We here denote by ψ the fundamental solution of the Helmholtz equation which sat-
isfies the outgoing radiation condition:

ψ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i

4
H

(1)
0 (k|x|) if d = 2,

1

4π

eik|x|

|x| if d = 3,
(3)

where H
(1)
0 is the cylindrical Hankel function of the first kind of order zero.

Lemma 2.1 Let f be a function of L2(Rd) with compact support. Define

u = ψ ∗ f.

Then we have u ∈ L2
loc(R

d) and

−Δu− k2u = f in Rd

in the sense of the distribution.

Proof. We first consider the case of d = 3. Let B be a bounded measurable set of
Rd. Set K = supp f . Noting that ψ ∈ L2

loc(R
3), we have∫

B
|u(x)|2 dx =

∫
B
|
∫
R3 f(y)ψ(x− y) dy|2 dx

=
∫

B
|
∫

K
f(y)ψ(x− y) dy|2 dx

≤ ‖f‖2
L2(K)

∫
B

∫
K
|ψ(x− y)|2 dydx.

There exists an R > 0 such that B, K ⊂ UR, where UR = {x ∈ R3 | |x| < R}. For every
x ∈ B and for every y ∈ K, we have |x− y| ≤ |x| + |y| < 2R. Hence we have∫

B

∫
K
|ψ(x− y)|2 dydx ≤ (measB)‖ψ‖2

L2(U2R).
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Therefore we have∫
B
|u(x)|2 dx < +∞.

In the case of d = 2, we can prove in exactly the same way as above, since ψ ∈ L2
loc(R

2),
which follows from the following asymptotic behavior:

H
(1)
0 (kr) ∼ i

2

π
log r

for r −→ 0 (see Abramowitz and Stegun [1]).

Lemma 2.2 Let f be a function of L2(Ω) such that supp f ⊂ Ωa. Let u ∈ H1
loc(Ω) be

a solution to problem (1). Then u belongs to C∞(Ω′
a) with Ω′

a =
{
x ∈ Rd | |x| > a

}
and

can be analytically represented as follows. In the two dimensional case,

u(r, θ) =
∞∑

n=−∞

H(1)
n (kr)

H
(1)
n (ka)

un(a)Yn(θ),(4)

where r, θ are the polar coordinates, H(1)
n are the cylindrical Hankel functions of the first

kind of order n, Yn are the spherical harmonics defined by

Yn(θ) =
einθ

√
2π
,

and un(r) (r ≥ a) are the Fourier coefficients defined by

un(r) =
∫ 2π

0
u(r, θ)Yn(θ) dθ.(5)

In the three dimensional case,

u(r, θ, φ) =
∞∑

n=0

n∑
m=−n

h(1)
n (kr)

h
(1)
n (ka)

um
n (a)Y m

n (θ, φ),(6)

where r, θ, φ are the spherical coordinates, h(1)
n are the spherical Hankel functions of the

first kind of order n, Y m
n are the spherical harmonics defined by

Y m
n (θ, φ) =

√√√√(2n+ 1)

4π

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimφ,

where Pm
n are the associated Legendre functions, and um

n (r) (r ≥ a) are the Fourier
coefficients defined by

um
n (r) =

∫ 2π

0

∫ π

0
u(r, θ, φ)Y m

n (θ, φ) sin θ dθdφ.

Proof. By the usual interior regularity theory, we have u ∈ C∞(Ω′
a).

We next show (4). For every r > a, we have

u(r, θ) =
∞∑

n=−∞
un(r)Yn(θ) in L2(Γr),
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where Γr =
{
x ∈ Rd | |x| = r

}
. Then the Fourier coefficients un ∈ C∞((a, ∞)). Since

−∂
2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
− k2u = 0 in Ω′

a,

we have, for r > a,

0 =
∫ 2π

0

(
−∂

2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
− k2u

)
e−inθ

√
2π

dθ

= −u′′n(r) − 1

r
u′n(r) +

(
n2

r2
− k2

)
un(r).

Hence, un can be represented as follows:

un(r) = AnH
(1)
n (kr) +BnH

(2)
n (kr),(7)

where An and Bn are constants and H(2)
n are the cylindrical Hankel functions of the second

kind of order n. We here note the asymptotic behavior, as r tends to infinity, of the Hankel
functions of order ν ∈ R:

H(j)
ν (kr) =

√
2

πkr
e±i(kr−π

2
ν−π

4
) +O(r−3/2),(8)

with sign + and − for j = 1 and 2, respectively [1], and hence, by setting ν = n + 1 in
(8), we also have

H
(j)
n+1(kr) = ∓i

√
2

πkr
e±i(kr−π

2
n−π

4
) +O(r−3/2).(9)

We here have, for j = 1, 2,(
d

dr
− ik

)
H(j)

n (kr) =
n

r
H(j)

n (kr) − kH
(j)
n+1(kr) − ikH (j)

n (kr)(10)

because we have the following recurrence relations [1]:

H(j)′
n (x) =

n

x
H(j)

n (x) −H
(j)
n+1(x).

Combining (8) with ν = n, (9), and (10), we can get(
d

dr
− ik

)
H(1)

n (kr) = O(r−3/2),(11)

(
d

dr
− ik

)
H(2)

n (kr) = −2i

√
2k

πr
e−i(kr−π

2
n−π

4
) +O(r−3/2).(12)

Since u satisfies the outgoing radiation condition, we have∥∥∥∥∥∂u∂r − iku

∥∥∥∥∥
2

L2(Γr)

=
∫ 2π

0

∣∣∣∣∣∂u∂r − iku

∣∣∣∣∣
2

r dθ −→ 0 (r −→ ∞).

This implies that for all n ∈ Z,

√
r(u′n(r) − ikun(r)) −→ 0 (r −→ ∞)(13)
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because∥∥∥∥∥∂u∂r − iku

∥∥∥∥∥
2

L2(Γr)

=
∞∑

n=−∞

∣∣∣√r(u′n(r) − ikun(r))
∣∣∣2 .

From (7), (11), (12), and (13), we can deduce

Bn = 0 for all n ∈ Z.

We next show

An =
1

H
(1)
n (ka)

un(a).(14)

Since u ∈ H1
loc(Ω

′
a), we have

u(r, θ) −→ u(a, θ) in L2(0, 2π) (r −→ a + 0).(15)

This can be shown by using the trace theorem and the fact that C∞(Ωb
a) is dense in

H1(Ωb
a) for every b > a, where

Ωb
a = {x ∈ Rd | a < |x| < b},(16)

C∞(Ωb
a) =

{
u = ũ|Ωb

a
| ũ ∈ C∞(Rd)

}
.

It is easily seen from (15) that

un(r) −→ un(a) (r −→ a + 0).(17)

On the other hand, we have

un(r) = AnH
(1)
n (kr) −→ AnH

(1)
n (ka) (r −→ a+ 0).(18)

From (17) and (18), we have

un(a) = AnH
(1)
n (ka),

which implies (14). Therefore we get (4).
Next we consider the case of d = 3. Then u (∈ C∞(Ω′

a)) can be represented, for every
r > a, as follows:

u(r, θ, φ) =
∞∑

n=0

n∑
m=−n

um
n (r)Y m

n (θ, φ) in L2(Γr).

Then Fourier coefficients um
n satisfy

−d
2um

n

dr2
(r) − 2

r

dum
n

dr
(r) +

(
n(n+ 1)

r2
− k2

)
um

n (r) = 0,

and hence

um
n (r) = Am

n h
(1)
n (kr) +Bm

n h
(2)
n (kr),

where h(2)
n are the spherical Hankel functions of the second kind of order n. From (8) and

h(j)
n (x) =

√
π

2x
H

(j)
n+1/2(x)(19)
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(j = 1, 2 and n ∈ N ∪ {0}), we can get the asymptotic behavior of h(j)
n :

h(j)
n (kr) =

(∓i)n+1

kr
e±ikr +O(r−2) (r −→ +∞),(20)

with sign + and − for j = 1 and 2, respectively. We further have the following recurrence
relations [1]:

h(j)′
n (x) =

n

x
h(j)

n (x) − h
(j)
n+1(x) (j = 1, 2).(21)

Using (20) and (21), we can show

Am
n =

1

h
(1)
n (ka)

um
n (a), Bm

n = 0

in the same way as in the case of d = 2. Thus we can get (6).

Lemma 2.3 Let f be a function of L2(Ω) such that supp f ⊂ Ωa. Let u ∈ H1
loc(Ω) be a

solution to problem (1). Then, there exists a Φ ≥ 0 such that

Φ =
∫
Γr

∂u

∂n
u dγ for all r > a,

and further

Φ = lim
r−→∞

1

2k

∫
Γr

⎡⎣∣∣∣∣∣∂u∂n
∣∣∣∣∣
2

+ k2|u|2
⎤⎦ dγ,(22)

where n is the unit normal vector being toward infinity.

Proof. Since u ∈ C∞(Ω′
a), by the Green formula, we have, for r′ > r > a,

0 = −
∫
Ωr′

r

(Δu+ k2u)u dx

=
∫
Γr

∂u

∂n
u dγ −

∫
Γr′

∂u

∂n
u dγ +

∫
Ωr′

r

(|∇u|2 − k2|u|2) dx,

where Ωr′
r is the annular domain defined by (16). Taking the imaginary part of this

identity, we get

Im
∫
Γr

∂u

∂n
u dγ = Im

∫
Γr′

∂u

∂n
u dγ ≡ Φ.

Here we note that for r > a,

∫
Γr

∣∣∣∣∣∂u∂n − iku

∣∣∣∣∣
2

dγ =
∫
Γr

(
∂u

∂n
− iku

)(
∂u

∂n
+ iku

)
dγ

=
∫
Γr

⎡⎣∣∣∣∣∣∂u∂n
∣∣∣∣∣
2

− iku
∂u

∂n
+ ik

∂u

∂n
u+ k2|u|2

⎤⎦ dγ
=

∫
Γr

⎡⎣∣∣∣∣∣∂u∂n
∣∣∣∣∣
2

+ k2|u|2
⎤⎦ dγ + ik

∫
Γr

(
∂u

∂n
u− u

∂u

∂n

)
dγ.

7



From this identity, we get

Im
∫
Γr

∂u

∂n
u dγ ≡ 1

2i

∫
Γr

(
∂u

∂n
u− u

∂u

∂n

)
dγ

=
1

2k

⎧⎨⎩
∫
Γr

⎡⎣∣∣∣∣∣∂u∂n
∣∣∣∣∣
2

+ k2|u|2
⎤⎦ dγ − ∫

Γr

∣∣∣∣∣∂u∂n − iku

∣∣∣∣∣
2

dγ

⎫⎬⎭ .
Letting r −→ +∞ in this identity, we obtain (22) since u satisfies the outgoing radiation
condition.

Lemma 2.4 Let f be a function of L2(Ω) such that supp f ⊂ Ωa. Let u ∈ H1
loc(Ω) be a

solution to problem (1). Suppose that

lim
r−→+∞

∫
Γr

|u|2 dγ = 0,(23)

then we have

u(x) ≡ 0 for |x| ≥ a.

Proof. We prove only the two dimensional case. For the three dimensional case, we
can prove analogously. By Lemma 2.2, we have for every r ≥ a,

u(r, θ) =
∞∑

n=−∞

H(1)
n (kr)

H
(1)
n (ka)

un(a)Yn(θ) in L2(Γr),

and hence we have∫
Γr

|u|2 dγ =
∞∑

n=−∞

∣∣∣∣∣√rH
(1)
n (kr)

H
(1)
n (ka)

un(a)

∣∣∣∣∣
2

.

It follows from (23) that for all n ∈ Z,

lim
r−→+∞

∣∣∣√rH(1)
n (kr)un(a)

∣∣∣ = 0.(24)

Combining (24) and (8) deduces that un(a) = 0 for all n ∈ Z. This implies u ≡ 0 for
r ≥ a.

Proposition 2.1 For f ∈ L2(Ω) with compact support, a solution to problem (1)
which belongs to H1

loc(Ω) is unique.

Proof. Let u ∈ H1
loc(Ω) be a solution to problem (1) with f = 0. Then we can see

from the usual interior regularity argument that u ∈ C∞(Ω).
We first show

Im
∫
Γr

∂u

∂n
u dγ = 0(25)

for all r > a. Define

C∞
0 (Ωr ∪ Γr) = {u = ũ|Ωr | ũ ∈ C∞

0 (Ω)}
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with Ωr = {x ∈ Ω | |x| < r}. We here fix r > a. There exist uj ∈ C∞
0 (Ωr ∪ Γr) (j =

1, 2, . . .) such that

uj −→ u in H1(Ωr) (j −→ ∞).

For every j ∈ N , we have

0 = −
∫
Ωr

(Δu− k2u)uj dx

= −
∫
Γr

∂u

∂n
uj dγ +

∫
Ωr

(∇u · ∇uj − k2uuj) dx.

Letting j −→ ∞ in this identity, we get

−
∫
Γr

∂u

∂n
u dγ +

∫
Ωr

(|∇u|2 − k2|u|2) dx = 0.

Taking the imaginary part of this identity, we obtain (25).
From (25) and Lemma 2.3, we can get

lim
r−→∞

1

2k

∫
Γr

⎡⎣∣∣∣∣∣∂u∂n
∣∣∣∣∣
2

+ k2|u|2
⎤⎦ dγ = 0.

This implies

lim
r−→∞

∫
Γr

|u|2 dγ = 0.

Hence, by Lemma 2.4, we have

u ≡ 0 for |x| ≥ a.

By virtue of the unique continuation property, we have u ≡ 0 in Ω.
Now we present proof of Theorem 2.1.
Proof of Theorem 2.1. Uniqueness of the solution to problem (1) follows from Propo-

sition 2.1. So we will show existence of the solution in the following.
Let g be any function of L2(Ωa). We shall extend g by zero on Rd \ Ωa and denote

the extension by the same symbol g, and thus g ∈ L2(Rd). Let us construct

w = g ∗ ψ,(26)

where ψ denotes the outgoing fundamental solution of the Helmholtz equation, i.e., ψ is
a function of Rd defined by (3). Then, we have w ∈ H2

loc(R
d) and

−Δw − k2w = g on Rd

in the sense of the distribution. Now, we consider the following problem:⎧⎪⎨⎪⎩
−Δv + μv = 0 in Ωa,

v = w on γ,
v = 0 on Γa,

(27)

where μ ∈ C. If Imμ �= 0, this problem has a unique solution v ∈ H2(Ωa), since
boundaries γ and Γa are sufficiently smooth. We choose φ ∈ C∞(Ωa) to be identically
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one in a neighborhood of γ and identically zero in a neighborhood of Γa. We then seek u
defined on Ω under the form

u = w − φv.(28)

We here note that u ∈ H2
loc(Ω) because w ∈ H2

loc(R
d) and φv ∈ H2(Ω). Then u = 0

on γ, and u satisfies the outgoing radiation condition. In order to satisfy the Helmholtz
equation, the following relation between f and g must hold on Ω:

f = −(Δ + k2)u(29)

= g + (Δφ+ k2φ+ μφ)v + 2∇φ · ∇v,

and we note that (29) takes the form 0 = 0 for |x| > a. Consequently, (29) must be
considered as a condition on Ωa. We shall write it in the form

f = g +Kg in L2(Ωa).(30)

We show below that for every f ∈ L2(Ωa), there exists a g ∈ L2(Ωa) satisfying (30). For
this purpose, we first show K : L2(Ωa) −→ L2(Ωa) is compact operator in Steps 1–3
below.

Step 1. In this step, we show that the operator g −→ w|Ωa(≡ g ∗ ψ|Ωa) belongs
to L(L2(Ωa), H

2(Ωa)), where L(L2(Ωa), H
2(Ωa)) denotes the set of all bounded linear

operators from L2(Ωa) to H2(Ωa).
Take gj ∈ L2(Ωa) (j ∈ N) such that gj −→ g in L2(Ωa). Set wj = gj ∗ψ, where gj are

assumed to be extended by zero on Rd \ Ωa, and suppose

wj|Ωa −→ w̃ in H2(Ωa).

Then we have

‖wj − w‖L2(Ωa) =
∫
Ωa

|
∫
Rd[gj(y) − g(y)]ψ(x− y) dy|2 dx

=
∫
Ωa

|
∫
Ωa

[gj(y) − g(y)]ψ(x− y) dy|2 dx

=
∫
Ωa

|gj(y) − g(y)|2 dy
∫
Ωa

∫
Ωa

|ψ(x− y)|2 dydx

−→ 0 (j −→ ∞).

This implies w̃ = w|Ωa. Hence, the operator g −→ w|Ωa is a closed operator from L2(Ωa)
into H2(Ωa), and hence we can see from the closed graph theorem that the operator
g −→ w|Ωa belongs to L(L2(Ωa), H

2(Ωa)).
Step 2. In this step, we show that the operator w −→ v belongs to L(H2(Ωa)) ≡

L(H2(Ωa), H
2(Ωa)).

It follows from the trace theorem that

w −→ w|γ ∈ L(H2(Ωa), H
3/2(γ)).(31)

Further, we see from the regularity theorem and the closed graph theorem that

w|γ −→ v ∈ L(H3/2(γ), H2(Ωa)).(32)

From (31) and (32) it follows that

w −→ v ∈ L(H2(Ωa)).
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Step 3. The operator

v −→ (Δφ + k2φ+ μφ)v + 2∇φ · ∇v

is a compact operator fromH2(Ωa) into L2(Ωa). This follows from the compact imbedding
of H2(Ωa) into H1(Ωa).

From Steps 1–3, we can see K is a compact operator on L2(Ωa).
SinceK is a compact operator on L2(Ωa), it suffices to show I+K is one-to-one in order

to show that the equation (30) has a unique solution g ∈ L2(Ωa) for every f ∈ L2(Ωa).
We assume that g ∈ L2(Ωa) satisfies

g +Kg = 0.

Using g, we construct u by (26), (27), and (28). Then u ∈ H1
loc(Ω) and

−(Δ + k2)u = 0 in Ω.

Thus, by Proposition 2.1, u = 0 in Ω. Here we get

w = φv in Ω.(33)

Since v is the solution of (27), we have∫
Ωa

(|∇v|2 + μ|v|2) dx =
∫

γ

∂v

∂n
v dγ,(34)

where n is the outer unit normal vector to Ωa.
On the other hand, since −Δw − k2w = g ≡ 0 in O, we have∫

O
(|∇w|2 − k2|w|2) dx = −

∫
γ

∂w

∂n
w dγ.(35)

Now, adding (34) and (35), and because of the fact that w = v in a neighborhood on γ,
we see that the right-hand sides of (34) and (35) cancel. Further, taking the imaginary
part, we obtain

(Imμ)
∫
Ωa

|v|2 dx = 0.

Thus we have v = 0 in Ωa, and hence, by (33), w = 0 in Ω. Therefore, since

−(Δ + k2)w = g in Rd,

we have g = 0. This implies I +K is one-to-one.

3 DtN operator

We define the DtN operator S as follows. In the two dimensional case, for ϕ ∈ H1/2(Γa),

Sϕ =
∞∑

n=−∞
−kH

(1)′
n (ka)

H
(1)
n (ka)

ϕnYn,

where

ϕn =
∫ 2π

0
ϕ(θ)Yn(θ) dθ.(36)

11



In the three dimensional case, for ϕ ∈ H1/2(Γa),

Sϕ =
∞∑

n=0

n∑
m=−n

−kh
(1)′
n (ka)

h
(1)
n (ka)

ϕm
n Y

m
n ,

where

ϕm
n =

∫ 2π

0

∫ π

0
ϕ(θ, φ)Y m

n (θ, φ) sin θ dθdφ.(37)

The DtN operator S is a bounded linear operator from H1/2(Γa) into H−1/2(Γa) (see
Masmoudi [9], Koyama [8]).

4 Properties of the Hankel functions

Lemma 4.1 For each x > 0, we have

H(1)
ν (x) ∼ −i

√
2

πν

(
ex

2ν

)−ν

(ν −→ ∞),(38)

where ν ∈ R.

Proof. According to [1], we have

Jν(x) ∼ 1√
2πν

(
ex

2ν

)ν

(ν −→ ∞),(39)

Nν(x) ∼ −
√

2

πν

(
ex

2ν

)−ν

(ν −→ ∞),(40)

where Jν and Nν are the cylindrical Bessel functions and the cylindrical Neumann func-
tions of order ν, respectively. We have

H(1)
ν (x)

⎧⎨⎩−i
√

2

πν

(
ex

2ν

)−ν
⎫⎬⎭

−1

(41)

= Jν(x)

{
1√
2πν

(
ex

2ν

)ν
}−1 {

1√
2πν

(
ex

2ν

)ν
}⎧⎨⎩−i

√
2

πν

(
ex

2ν

)−ν
⎫⎬⎭

−1

+Nν(x)

⎧⎨⎩−
√

2

πν

(
ex

2ν

)−ν
⎫⎬⎭

−1

.

We here note that{
1√
2πν

(
ex

2ν

)ν
}⎧⎨⎩−i

√
2

πν

(
ex

2ν

)−ν
⎫⎬⎭

−1

=
i

2

(
ex

2ν

)2ν

−→ 0 (ν −→ ∞).(42)

Combining (39) – (42), we can get (38).

Lemma 4.2 For each x > 0, we have

H
(1)
ν−1(x)

H
(1)
ν (x)

∼ x

2ν
(ν −→ ∞),(43)

where ν ∈ R.
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Proof. We have

H
(1)
ν−1(x)

H
(1)
ν (x)

2ν

x
=

H
(1)
ν−1(x)

−i
√

2
π(ν−1)

(
ex

2(ν−1)

)−(ν−1)

−i
√

2
πν

(
ex
2ν

)−ν

H
(1)
ν (x)

−i
√

2
π(ν−1)

(
ex

2(ν−1)

)−(ν−1)

−i
√

2
πν

(
ex
2ν

)−ν

2ν

x
.(44)

We here note that

−i
√

2
π(ν−1)

(
ex

2(ν−1)

)−(ν−1)

−i
√

2
πν

(
ex
2ν

)−ν

2ν

x
(45)

=
(
1 +

1

ν − 1

)3/2
{(

1 − 1

ν

)−ν
}−1

e −→ 1 (ν −→ ∞).

From (44), (45), and Lemma 4.1, we can obtain (43).

Lemma 4.3 Let k > 0 and a > 0. Then there exists a positive constant C such that∣∣∣∣∣kH
(1)′
n (ka)

H
(1)
n (ka)

+
|n|
a

∣∣∣∣∣ ≤ C for all n ∈ Z.(46)

Proof. By the recursion formulas [1]:

H(1)′
ν (x) = H

(1)
ν−1(x) −

ν

x
H(1)

ν (x) for all ν ∈ R,(47)

we can get

k
H(1)′

n (ka)

H
(1)
n (ka)

= k
H

(1)
n−1(ka)

H
(1)
n (ka)

− n

a
for all n ∈ Z.(48)

From Lemma 4.2, we can see that there exists a positive constant C such that∣∣∣∣∣∣H
(1)
n−1(ka)

H
(1)
n (ka)

2n

ka

∣∣∣∣∣∣ ≤ C for all n ∈ N ∪ {0}.

This implies that∣∣∣∣∣∣H
(1)
n−1(ka)

H
(1)
n (ka)

∣∣∣∣∣∣ ≤ C
ka

2n
for all n ∈ N .(49)

Combining (48) and (49), we can get∣∣∣∣∣kH
(1)′
n (ka)

H
(1)
n (ka)

+
n

a

∣∣∣∣∣ ≤ C
k2a

2n
for all n ∈ N .

Further, noting that H
(1)
−n(ka) = (−1)nH(1)

n (ka), we see that (46) holds.

Lemma 4.4 Let k > 0 and a > 0. Then there exists a positive constant C such that∣∣∣∣∣kh
(1)′
n (ka)

h
(1)
n (ka)

+
n+ 1

a

∣∣∣∣∣ ≤ C for all n ∈ N ∪ {0}.(50)
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Proof. By (19) and the recurrence relations [1]:

h(1)′
n (x) = h

(1)
n−1(x) −

n+ 1

x
h(1)

n (x),(51)

we can get

k
h(1)′

n (ka)

h
(1)
n (ka)

= k
H

(1)
n−1/2(ka)

H
(1)
n+1/2(ka)

− n+ 1

a
for all n ∈ N ∪ {0}.(52)

We can see from (43) that there exists a positive constant C such that∣∣∣∣∣∣
H

(1)
n−1/2(ka)

H
(1)
n+1/2(ka)

∣∣∣∣∣∣ ≤ C
ka

2n+ 1
for all n ∈ N ∪ {0}.(53)

From (52) and (53), we can get (50).

Lemma 4.5 Let k > 0 and a > 0. Then there exists a positive constant C such that∣∣∣∣∣ 1

1 + |n|
H(1)′

n (ka)

H
(1)
n (ka)

∣∣∣∣∣ ≤ C for all n ∈ Z.

Proof. It is clear from Lemma 4.3.

Lemma 4.6 Let k > 0 and a > 0. Then there exists a positive constant C such that∣∣∣∣∣ 1

1 + n

h(1)′
n (ka)

h
(1)
n (ka)

∣∣∣∣∣ ≤ C for all n ∈ N ∪ {0}.

Proof. It is clear from Lemma 4.4.

Lemma 4.7 For all x > 0 and for all ν ∈ R, we have

Im

{
H(1)′

ν (x)

H
(1)
ν (x)

}
> 0.

Proof. We have the following formulas [1]:

Jν−1(x)Nν(x) − Jν(x)Nν−1(x) = − 2

πx
(54)

Using (47) and (54), we can get

Im

{
H(1)′

ν (x)

H
(1)
ν (x)

}
=

2

πx

1

J2
ν (x) +N2

ν (x)
> 0.

Lemma 4.8 For all x > 0 and for all n ∈ N ∪ {0}, we have

Im

{
h(1)′

n (x)

h
(1)
n (x)

}
> 0.
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Proof. By using (19), we can get

h(1)′
n (x)

h
(1)
n (x)

= − 1

2x
+
H

(1)′
n+1/2(x)

H
(1)
n+1/2(x)

,(55)

and hence

Im

{
h(1)′

n (x)

h
(1)
n (x)

}
= Im

⎧⎨⎩H
(1)′
n+1/2(x)

H
(1)
n+1/2(x)

⎫⎬⎭ .
Thus, by Lemma 4.7, we have

Im

{
h(1)′

n (x)

h
(1)
n (x)

}
> 0

for all n ∈ N ∪ {0}.

Lemma 4.9 For all x > 0 and for all ν ∈ R, we have

Re

{
H(1)′

ν (x)

H
(1)
ν (x)

}
< 0.

Proof. Since H(1)
ν (x) = Jν(x) + iNν(x), we have

Re

{
H(1)′

ν (x)

H
(1)
ν (x)

}
=
Jν(x)J

′
ν(x) +Nν(x)N

′
ν(x)

J2
ν (x) +N2

ν (x)
.(56)

According to Watson [12], we have

J2
ν (x) +N2

ν (x) =
8

π2

∫ ∞

0
K0(2x sinh t) cosh(2νt) dt,(57)

where K0 is the modified Bessel function of the second kind of order zero. Differentiating
(57) with x, we obtain

Jν(x)J
′
ν(x) +Nν(x)N

′
ν(x) =

8

π2

∫ ∞

0
K ′

0(2x sinh t) sinh t cosh(2νt) dt.(58)

Now we note that we have the following formula ([1], [12]):

K0(ξ) =
∫ ∞

0
e−ξ cosh t dt for all ξ > 0.(59)

Differentiating (59) with ξ, we can get

K ′
0(ξ) = −

∫ ∞

0
e−ξ cosh t cosh t dt < 0 for all ξ > 0.(60)

Combining (56), (58), and (60) will complete the proof of Lemma 4.9.

Lemma 4.10 For all x > 0 and for all n ∈ N ∪ {0}, we have

Re

{
h(1)′

n (x)

h
(1)
n (x)

}
< 0.
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Proof. We can see form (55) and Lemma 4.9 that

Re

{
h(1)′

n (x)

h
(1)
n (x)

}
= − 1

2x
+ Re

⎧⎨⎩H
(1)′
n+1/2(x)

H
(1)
n+1/2(x)

⎫⎬⎭ < 0.

Lemma 4.11 For every ν ∈ R,
∣∣∣H(1)

ν (x)
∣∣∣ is a decreasing function on (0, ∞).

Proof. We can see from the proof of Lemma 4.9 that

d

dx

∣∣∣H(1)
ν (x)

∣∣∣2 = 2 (Jν(x)J
′
ν(x) +Nν(x)N

′
ν(x)) < 0.

This implies
∣∣∣H(1)

ν (x)
∣∣∣ is a decreasing function on (0, ∞).

Lemma 4.12 For every x ∈ (0, ∞) and for ν, ν ′ ∈ R satisfying |ν| < |ν ′|, we have∣∣∣H(1)
ν (x)

∣∣∣ < ∣∣∣H(1)
ν′ (x)

∣∣∣ .
Proof. It is clear from (57) and (59).

Lemma 4.13 For every n ∈ N ∪ {0},
∣∣∣h(1)

n (x)
∣∣∣ is a decreasing function on (0, ∞).

Proof. It is clear from (19) and Lemma 4.11.

Lemma 4.14 For every x ∈ (0, ∞) and for n, n′ ∈ N ∪{0} satisfying n < n′, we have∣∣∣h(1)
n (x)

∣∣∣ < ∣∣∣h(1)
n′ (x)

∣∣∣ .
Proof. It is clear from (19) and Lemma 4.12.

5 Existence and uniqueness of the solution to the

reduced problem

The weak problem of (2) is formulated as follows: find u ∈ V such that

a(u, v) − k2(u, v) + s(u, v) = (f, v) for all v ∈ V,(61)

where

a(u, v) =
∫

Ωa

∇u · ∇v dx for u, v ∈ H1(Ωa),

(u, v) =
∫

Ωa

uv dx for u, v ∈ L2(Ωa),

s(u, v) = 〈Su, v〉H−1/2(Γa)×H1/2(Γa) for u, v ∈ H1(Ωa),

V =
{
v ∈ H1(Ωa) | v = 0 on γ

}
.

Theorem 5.1 For every f ∈ L2(Ωa), problem (61) has a unique solution.
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Proof. We first prove in the two dimensional case. We define the sesquilinear form
b(·, ·) as follows:

b(u, v) =
∞∑

n=−∞
|n|un(a)vn(a) for all u, v ∈ V,(62)

where un(a) and vn(a) are the Fourier coefficients defined by (5) of u and v, respectively.
We introduce a new inner product on V :

((u, v)) = a(u, v) + b(u, v),

and the associated norm:

|||u||| = ((u, u))1/2.

Then we see that the norm ||| · ||| is equivalent to the standard H1(Ωa) norm. We define
the bounded linear operator K1 on V through

((K1u, v)) = −k2(u, v) for all u, v ∈ V.

By the compact imbedding of H1(Ωa) to L2(Ωa), we see K1 is a compact operator on V .
We here note that s(u, v) can be represented as follows:

s(u, v) =
∞∑

n=−∞
−kaH

(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a).(63)

It follows from (62), (63), and Lemma 4.3 that there exists a positive constant C such
that

|s(u, v) − b(u, v)| ≤ C‖u‖L2(Γa)‖v‖L2(Γa) for all u, v ∈ V.(64)

Further the trace operator from H1(Ωa) into L2(Γa) is compact. Therefore we can define
the compact operator K2 on V through

((K2u, v)) = s(u, v) − b(u, v) for all u, v ∈ V.

We can write the problem (61) as follows:

(I +K1 +K2)u = g,(65)

where g ∈ V such that

((g, v)) = (f, v) for all v ∈ V.

Since K1 +K2 is a compact operator on V , in order to show the unique solvability of (65),
it suffices to prove that I +K1 +K2 is one-to-one. Suppose that u ∈ V satisfies

(I +K1 +K2)u = 0,(66)

then we have

a(u, u) − k2(u, u) + s(u, u) = 0.

Taking the imaginary part of this identity, we get

0 = Im{s(u, u)} =
∞∑

n=−∞
−ka Im

{
H(1)′

n (ka)

H
(1)
n (ka)

}
|un(a)|2.
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It follows from Lemma 4.7 that un(a) = 0 for all n ∈ Z. Hence u ≡ 0 on Γa, by the
unique continuation property, u ≡ 0 on Ωa. Therefore I +K1 +K2 is one-to-one.

We can analogously prove in the three dimensional case. In this case, we define b(·, ·)
by

b(u, v) =
∞∑

n=0

n∑
m=−n

a(n + 1)um
n (a)vm

n (a) for all u, v ∈ V,(67)

instead of (62). Since we have

s(u, v) =
∞∑

n=0

n∑
m=−n

−ka2h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a),(68)

from (67), (68), and Lemma 4.4, we can also get (64). Suppose that u ∈ V satisfies (66),
then

0 = Im{s(u, u)} =
∞∑

n=0

n∑
m=−n

−ka2 Im

{
h(1)′

n (ka)

h
(1)
n (ka)

}
|um

n (a)|2.

Thus, by Lemma 4.8, um
n (a) = 0 for all n and m. In the same argument as in the two

dimensional case, we see I +K1 +K2 is one-to-one.

6 Equivalence between the original problem and its

reduced problem

Lemma 6.1 Let ϕ ∈ H1/2(Γa). We define, for r ≥ a,

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

H(1)
n (kr)

H
(1)
n (ka)

ϕnYn(θ) if d = 2,

∞∑
n=0

n∑
m=−n

h(1)
n (kr)

h
(1)
n (ka)

ϕm
n Y

m
n (θ, φ) if d = 3,

(69)

where ϕn and ϕm
n are the Fourier coefficients of ϕ defined by (36) and (37), respectively.

Then u ∈ H1
loc(Ω

′
a), and furthermore the series (69) and its term by term first derivatives

converge in L2(Ωb
a) for every b > a. In addition, u satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δu− k2u = f in Ω′
a,

u = ϕ on Γa,

lim
r−→+∞ r

d−1
2

(
du

dr
− iku

)
= 0.

(70)

Proof. We first prove in the two dimensional case. For N ∈ N , we set

uN =
N∑

n=−N

H(1)
n (kr)

H
(1)
n (ka)

ϕnYn(θ).

For N < N ′, we have

‖uN − uN ′‖2
L2(Ωb

a) =
∑

N<|n|≤N ′

∫ b

a

∣∣∣∣∣H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2

r dr|ϕn|2,
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and further, by Lemma 4.11, we can get

‖uN − uN ′‖2
L2(Ωb

a) ≤
1

2
(b2 − a2)

∑
N<|n|≤N ′

|ϕn|2.

Thus, since ϕ ∈ H1/2(Γa),

‖uN − uN ′‖2
L2(Ωb

a) −→ 0 (N, N ′ −→ ∞),

and hence

uN −→ u in L2(Ωb
a) (N −→ ∞).

Now, we note∫
Ωb

a

∇u · ∇v dx =
∫
Ωb

a

∂u

∂r

∂v

∂r
dx−

∫
Ωb

a

1

r2
(Λu)v dx(71)

for u, v ∈ C∞(Ωb
a), where Λ is the Laplace-Beltrami operator on the unit circle of R2.

Thus, since −ΛYn = n2Yn, we have

‖∇(uN − uN ′)‖2
L2(Ωb

a)(72)

=
∫
Ωb

a

∣∣∣∣∣∂uN

∂r
− ∂uN ′

∂r

∣∣∣∣∣
2

dx−
∫
Ωb

a

1

r2
[Λ(uN − uN ′)] (uN − uN ′) dx

=
∑

N<|n|≤N ′

∫ b

a

⎧⎨⎩
∣∣∣∣∣ ddr H

(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2

+
n2

r2

∣∣∣∣∣H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r dr|ϕn|2.

We here have, by integration by parts,∫ b

a

∣∣∣∣∣ ddrH(1)
n (kr)

∣∣∣∣∣
2

r dr =
∫ b

a

d

dr
H(1)

n (kr)
d

dr
H

(1)
n (kr)r dr(73)

=

[
H(1)

n (kr)
d

dr
H

(1)
n (kr)r

]b

a

−
∫ b

a
H(1)

n (kr)
d2

dr2
H

(1)
n (kr)r dr −

∫ b

a
H(1)

n (kr)
d

dr
H

(1)
n (kr) dr.

Since H(1)
n satisfies the Bessel equation, we have

d2

dr2
H(1)

n (kr) = −
{
k

r
H(1)′

n (kr) +

[
k2 − n2

r2

]
H(1)

n (kr)

}
.(74)

Substituting (74) into (73), we can get∫ b

a

∣∣∣∣∣ ddrH(1)
n (kr)

∣∣∣∣∣
2

r dr(75)

=

[
H(1)

n (kr)
d

dr
H

(1)
n (kr)r

]b

a

+
∫ b

a
H(1)

n (kr)

{
k

r
H

(1)′
n (kr) +

[
k2 − n2

r2

]
H

(1)
n (kr)

}
r dr

−
∫ b

a
H(1)

n (kr)H
(1)′
n (kr)k dr

=
[
H(1)

n (kr)H
(1)′
n (kr)kr

]b

a

+
∫ b

a
k2r

∣∣∣H(1)
n (kr)

∣∣∣2 dr − n2
∫ b

a

1

r
|H(1)

n (kr)|2 dr.
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By (75), we get

∫ b

a

⎧⎨⎩
∣∣∣∣∣ ddr H

(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2

+
n2

r2

∣∣∣∣∣H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r dr

=

⎡⎢⎣H(1)
n (kr)

H
(1)
n (ka)

⎛⎝H(1)′
n (kr)

H
(1)
n (ka)

⎞⎠kr
⎤⎥⎦

b

a

+
∫ b

a
k2r

∣∣∣∣∣H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2

dr ≡ I + II.

By using (47), we have

I =
H(1)

n (kb)H
(1)′
n (kb)∣∣∣H(1)

n (ka)
∣∣∣2 kb−

⎛⎝H(1)′
n (ka)

H
(1)
n (ka)

⎞⎠ka
= kb

H(1)
n (kb)∣∣∣H(1)

n (ka)
∣∣∣2
{
H

(1)
n−1(kb) −

n

kb
H

(1)
n (kb)

}
− ka

H
(1)
n−1(ka) − n

ka
H

(1)
n (ka)

H
(1)
n (ka)

= kb
H(1)

n (kb)H
(1)
n−1(kb)∣∣∣H(1)

n (ka)
∣∣∣2 − n

∣∣∣∣∣H
(1)
n (kb)

H
(1)
n (ka)

∣∣∣∣∣
2

− ka

⎛⎝H(1)
n−1(ka)

H
(1)
n (ka)

⎞⎠ + n.

Thus, by assuming here n > 0 and by using Lemmas 4.11 and 4.12, we can get

|I| ≤ n + k(a+ b),

|II| ≤ k2

2
(b2 − a2).

From these estimates and the fact that H
(1)
−n(x) = (−1)nH(1)

n (x) (n ∈ Z), we can get, for
all n ∈ Z,

∫ b

a

⎧⎨⎩
∣∣∣∣∣ ddr H

(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2

+
n2

r2

∣∣∣∣∣H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r2 dr

≤ |n| + k(a+ b) +
k2

2
(b2 − a2).

Thus, because of ϕ ∈ H1/2(Γa), the right-hand side of (72) tends to zero as N, N ′ −→ ∞.
Therefore we can see uN −→ u in H1(Ωb

a). It is clear from the results above that u satisfies
(70).

We can analogously prove in the three dimensional case. For N ∈ N , we set

uN =
N∑

n=0

n∑
m=−n

h(1)
n (kr)

h
(1)
n (ka)

ϕm
n Y

m
n (θ, φ).

For N < N ′, we have

‖uN − uN ′‖2
L2(Ωb

a) =
N ′∑

n=N+1

n∑
m=−n

∫ b

a

∣∣∣∣∣h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

r2 dr|ϕm
n |2.

By Lemma 4.13, we can get

‖uN − uN ′‖2
L2(Ωb

a) ≤
1

3
(b3 − a3)

N ′∑
n=N+1

n∑
m=−n

|ϕm
n |2 −→ 0 (N, N ′ −→ ∞).
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This implies

uN −→ u in L2(Ωb
a) (N −→ ∞).

Now we note that (71) also holds in the three dimensional case. Thus, by using (71)
and the fact that −ΛY m

n = n(n+ 1)Y m
n , we can get

‖∇(uN − uN ′)‖2
L2(Ωb

a)(76)

=
∫
Ωb

a

∣∣∣∣∣∂uN

∂r
− ∂uN ′

∂r

∣∣∣∣∣
2

dx−
∫
Ωb

a

1

r2
[Λ(uN − uN ′)] (uN − uN ′) dx

=
N ′∑

n=N+1

n∑
m=−n

∫ b

a

⎧⎨⎩
∣∣∣∣∣ ddr h

(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

+
n(n + 1)

r2

∣∣∣∣∣h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r2 dr|ϕm

n |2.

We here have, by integration by parts,∫ b

a

∣∣∣∣∣ ddrh(1)
n (kr)

∣∣∣∣∣
2

r2 dr =
∫ b

a

d

dr
h(1)

n (kr)
d

dr
h

(1)
n (kr)r2 dr

=

[
h(1)

n (kr)
d

dr
h

(1)
n (kr)r2

]b

a

−
∫ b

a
h(1)

n (kr)
d2

dr2
h

(1)
n (kr)r2 dr −

∫ b

a
h(1)

n (kr)
d

dr
h

(1)
n (kr)2r dr.

Since

d2

dr2
h(1)

n (kr) = −
{

2k

r
h(1)′

n (kr) +

[
k2 − n(n+ 1)

r2

]
h(1)

n (kr)

}
,(77)

we have∫ b

a

∣∣∣∣∣ ddrh(1)
n (kr)

∣∣∣∣∣
2

r2 dr(78)

=

[
h(1)

n (kr)
d

dr
h

(1)
n (kr)r2

]b

a

+
∫ b

a
h(1)

n (kr)

{
2k

r
h

(1)′
n (kr) +

[
k2 − n(n+ 1)

r2

]
h

(1)
n (kr)

}
r2 dr

−
∫ b

a
h(1)

n (kr)h
(1)′
n (kr)2kr dr

=
[
h(1)

n (kr)h
(1)′
n (kr)kr2

]b

a

+
∫ b

a
(kr)2

∣∣∣h(1)
n (kr)

∣∣∣2 dr − n(n+ 1)
∫ b

a
|h(1)

n (kr)|2 dr.

By (78), we get

∫ b

a

⎧⎨⎩
∣∣∣∣∣ ddr h

(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

+
n(n + 1)

r2

∣∣∣∣∣h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r2 dr

=

⎡⎢⎣h(1)
n (kr)

h
(1)
n (ka)

⎛⎝h(1)′
n (kr)

h
(1)
n (ka)

⎞⎠kr2

⎤⎥⎦
b

a

+
∫ b

a
(kr)2

∣∣∣∣∣h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

dr ≡ I ′ + II ′.
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By using (51), we have

I ′ =
h(1)

n (kb)h
(1)′
n (kb)∣∣∣h(1)

n (ka)
∣∣∣2 kb2 −

⎛⎝h(1)′
n (ka)

h
(1)
n (ka)

⎞⎠ka2

= kb2
h(1)

n (kb)∣∣∣h(1)
n (ka)

∣∣∣2
{
h

(1)
n−1(kb) −

n+ 1

kb
h

(1)
n (kb)

}
− ka2h

(1)
n−1(ka) − n+1

ka
h

(1)
n (ka)

h
(1)
n (ka)

= kb2
h(1)

n (kb)h
(1)
n−1(kb)∣∣∣h(1)

n (ka)
∣∣∣2 − (n + 1)b

∣∣∣∣∣h
(1)
n (kb)

h
(1)
n (ka)

∣∣∣∣∣
2

− ka2

⎛⎝h(1)
n−1(ka)

h
(1)
n (ka)

⎞⎠ + a(n + 1).

Thus, by using Lemmas 4.13 and 4.14, we can get

|I ′| ≤ (n+ 1)(a+ b) + k(a2 + b2),

|II ′| ≤ k2

3
(b3 − a3).

From these estimates, we can get

∫ b

a

⎧⎨⎩
∣∣∣∣∣ ddr h

(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

+
n(n + 1)

r2

∣∣∣∣∣h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r2 dr(79)

≤ (n + 1)(a+ b) + k(a2 + b2) +
k2

3
(b3 − a3).

From (76) , (79), and the condition that ϕ ∈ H1/2(Γa), we see that ‖∇(uN−uN ′)‖L2(Ωb
a) −→

0 as N, N ′ −→ ∞. Therefore we can see uN −→ u in H1(Ωb
a).

Lemma 6.2 Let ϕ ∈ H3/2(Γa). We define u by (69). Then, for every b > a, we have

∂u

∂r
(r, θ) =

∞∑
n=−∞

k
H(1)′

n (kr)

H
(1)
n (ka)

ϕn(a)Yn(θ) in H1(Ωb
a) (d = 2),(80)

∂u

∂r
(r, θ, φ) =

∞∑
n=0

n∑
m=−n

k
h(1)′

n (kr)

h
(1)
n (ka)

ϕm
n (a)Y m

n (θ, φ) in H1(Ωb
a) (d = 3).(81)

Proof. From Lemma 6.1 it follows from that the infinite series of the right-hand
sides of (80) and (81) converge in L2(Ωb

a). Hence, it is sufficient to show that their first
derivatives converge in L2(Ωb

a).
We first consider the two dimensional case. For every N ∈ N , we define

vN =
∞∑

n=−∞
k
H(1)′

n (kr)

H
(1)
n (ka)

ϕn(a)Yn(θ).

For N < N ′,

‖∇(vN − vN ′)‖2
L2(Ωb

a)

=
∑

N<|n|≤N ′

∫ b

a

⎧⎨⎩
∣∣∣∣∣ d

2

dr2

H(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2

+
n2

r2

∣∣∣∣∣ ddr H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r dr|ϕn|2.
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By (74), we can get∣∣∣∣∣ d
2

dr2
H(1)

n (kr)

∣∣∣∣∣
2

=
1

r2

∣∣∣∣∣ ddrH(1)
n (kr)

∣∣∣∣∣
2

+

[
k2 − n2

r2

]2 ∣∣∣H(1)
n (kr)

∣∣∣2
+2

[
k2

r
− n2

r3

]
Re

{(
d

dr
H(1)

n (kr)

)
H

(1)
n (kr)

}
.

Thus, by using (47) and Lemmas 4.11 and 4.12 in a similar way to the proof of Lemma
6.1, we have

∫ b

a

∣∣∣∣∣ d
2

dr2

H(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2

r dr = n4
∫ b

a

∣∣∣∣∣H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2
dr

r3
+O(|n|3) (|n| −→ ∞).(82)

We now have, by integration by parts,∫ b

a

∣∣∣∣∣ ddrH(1)
n (kr)

∣∣∣∣∣
2
dr

r

=
∫ b

a

d

dr
H(1)

n (kr)
d

dr
H

(1)
n (kr)

dr

r

=

[
H(1)

n (kr)
d

dr
H

(1)
n (kr)

1

r

]b

a

−
∫ b

a
H(1)

n (kr)
d2

dr2
H

(1)
n (kr)

dr

r
+
∫ b

a
H(1)

n (kr)
d

dr
H

(1)
n (kr)

dr

r2
.

By (74), we further have

∫ b

a

∣∣∣∣∣ ddrH(1)
n (kr)

∣∣∣∣∣
2
dr

r

=

[
H(1)

n (kr)
d

dr
H

(1)
n (kr)

1

r

]b

a

+
∫ b

a
H(1)

n (kr)
d

dr
H

(1)
n (kr)

dr

r2
+
∫ b

a

∣∣∣H(1)
n (kr)

∣∣∣2 [k2 − n2

r2

]
dr

r

+
∫ b

a
H(1)

n (kr)
d

dr
H

(1)
n (kr)

dr

r2
.

Thus, in the same way as above, we obtain

n2
∫ b

a

∣∣∣∣∣ ddr H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2
dr

r
= −n4

∫ b

a

∣∣∣∣∣H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2
dr

r3
+O(|n|3) (|n| −→ ∞).(83)

From (82) and (83), we can get

∫ b

a

⎧⎨⎩
∣∣∣∣∣ d

2

dr2

H(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2

+
n2

r2

∣∣∣∣∣ ddr H
(1)
n (kr)

H
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r dr = O(|n|3) (|n| −→ ∞).

Therefore, since ϕ ∈ H3/2(Γa), we can get (80).
We next consider the three dimensional case. For every N ∈ N , we define

vN =
N∑

n=0

n∑
m=−n

k
h(1)′

n (kr)

h
(1)
n (ka)

ϕm
n Y

m
n (θ, φ).
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For N < N ′,

‖∇(vN − vN ′)‖2
L2(Ωb

a)

=
N ′∑

n=N+1

n∑
m=−n

∫ b

a

⎧⎨⎩
∣∣∣∣∣ d

2

dr2

h(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

+
n(n+ 1)

r2

∣∣∣∣∣ ddr h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r2 dr|ϕm

n |2.

By (77), we can get∣∣∣∣∣ d
2

dr2
h(1)

n (kr)

∣∣∣∣∣
2

=
4

r2

∣∣∣∣∣ ddrh(1)
n (kr)

∣∣∣∣∣
2

+

[
k2 − n(n + 1)

r2

]2 ∣∣∣h(1)
n (kr)

∣∣∣2
+4

[
k2

r
− n(n + 1)

r3

]
Re

{(
d

dr
h(1)

n (kr)

)
h

(1)
n (kr)

}
.

Thus, by using (51) and Lemmas 4.11 and 4.12 in a similar way to the proof of Lemma
6.1, we have

∫ b

a

∣∣∣∣∣ d
2

dr2

h(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

r2 dr = n4
∫ b

a

∣∣∣∣∣h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2
dr

r2
+O(n3) (n −→ ∞).(84)

We now have, by integration by parts,

∫ b

a

∣∣∣∣∣ ddrh(1)
n (kr)

∣∣∣∣∣
2

dr

=
∫ b

a

d

dr
h(1)

n (kr)
d

dr
h

(1)
n (kr) dr

=

[
h(1)

n (kr)
d

dr
h

(1)
n (kr)

]b

a

−
∫ b

a
h(1)

n (kr)
d2

dr2
h

(1)
n (kr) dr.

By (77), we further have

∫ b

a

∣∣∣∣∣ ddrh(1)
n (kr)

∣∣∣∣∣
2

dr

=

[
h(1)

n (kr)
d

dr
h

(1)
n (kr)

]b

a

+
∫ b

a
h(1)

n (kr)
d

dr
h

(1)
n (kr)

2

r
dr +

∫ b

a

∣∣∣h(1)
n (kr)

∣∣∣2 [k2 − n(n+ 1)

r2

]
dr.

Thus, in the same way as above, we obtain

n(n+ 1)
∫ b

a

∣∣∣∣∣ ddr h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

dr = −n4
∫ b

a

∣∣∣∣∣h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2
dr

r2
+O(n3) (n −→ ∞).(85)

From (84) and (85), we can get

∫ b

a

⎧⎨⎩
∣∣∣∣∣ d

2

dr2

h(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2

+
n(n+ 1)

r2

∣∣∣∣∣ ddr h
(1)
n (kr)

h
(1)
n (ka)

∣∣∣∣∣
2
⎫⎬⎭ r2 dr = O(n3) (n −→ ∞).

Therefore, since ϕ ∈ h3/2(Γa), we can get (81).
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Theorem 6.1 Let f be a function belonging to L2(Ω) such that supp f ⊂ Ωa, and let
u be the solution of (1) belonging to H1

loc(Ω). Then u|Ωa is the solution of (61), and u is
represented in Ω′

a as (4) and (6) in the two and three dimensional cases, respectively.
Conversely, let ui be the solution of (61) and let ϕ = ui|Γa. We define u ∈ L2

loc(Ω) as
follows:

u|Ωa = ui,(86)

u|Ω′
a

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

H(1)
n (kr)

H
(1)
n (ka)

ϕnYn(θ) if d = 2,

∞∑
n=0

∑
|m|≤n

h(1)
n (kr)

h
(1)
n (ka)

ϕm
n Y

m
n (θ, φ) if d = 3,

(87)

where ϕn and ϕm
n are the Fourier coefficients of ϕ defined by (36) and (37), respectively.

Then u ∈ H1
loc(Ω), and u is the solution of (1).

Proof. We prove only in the two dimensional case, since in the three dimensional
case we can also prove in exactly the same way. Let u be the solution of (1) belonging
to H1

loc(Ω). By Lemma 2.2, we can see that u is represented in Ω′
a as (4) in the two

dimensional case. Since, from the usual regularity argument, u ∈ H2
loc(Ω), we have

u|Γa ∈ H3/2(Γa). Hence, by Lemma 6.2, we have

∂u

∂r
(r, θ) =

∞∑
n=−∞

k
H(1)′

n (kr)

H
(1)
n (ka)

un(a)Yn(θ) in H1(Ωb
a)(88)

for every b > a. Since −Δu− k2u = f in Ωa, by using the Green formula, we have∫
Ωa

(∇u · ∇v − k2uv) dx−
∫
Γa

∂u

∂n
v dγ =

∫
Ωa

fv dx for all v ∈ V.(89)

From (88) we can see

−
∫
Γa

∂u

∂n
v dγ =

∞∑
n=−∞

−kH
(1)′
n (ka)

H
(1)
n (ka)

un(a)
∫ 2π

0
vYn(θ)a dθ = s(u, v).(90)

Combining (89) and (90), we can see u|Ωa is the solution of (61).
Now, let ui be the solution of (61), and we define u ∈ L2

loc(Ω) by (86) and (87). Then
we will show∫

Ω
u(−Δψ − k2ψ) dx =

∫
Ω
fψ dx for all ψ ∈ C∞

0 (Ω).(91)

We denote u|Ω′
a

by ue. By the Green formula, we have∫
Ω
u(−Δψ − k2ψ) dx =

∫
Ωa

ui(−Δψ − k2ψ) dx+
∫
Ω′

a

ue(−Δψ − k2ψ) dx

= −
∫
Γa

ui
∂ψ

∂r
dγ +

∫
Ωa

(∇ui · ∇ψ − k2uiψ) dx

+
∫
Γa

ue
∂ψ

∂r
dγ +

∫
Ω′

a

(∇ue · ∇ψ − k2ueψ) dx.
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Here noting ui = ue on Γa, we obtain∫
Ω
u(−Δψ − k2ψ) dx =

∫
Ωa

fψ dx− s(ui, ψ) +
∫
Ω′

a

(∇ue · ∇ψ − k2ueψ) dx.(92)

We here have∫
Ω′

a

(∇ue · ∇ψ − k2ueψ) dx = s(ui, ψ).(93)

Indeed, for N ∈ N , we define

uN =
N∑

n=−N

H(1)
n (kr)

H
(1)
n (ka)

ϕnYn(θ),

where ϕn is the Fourier coefficients of ϕ ≡ ui|Γa . Then, uN ∈ C∞(Ω′
a) and we have

−ΔuN − k2uN = 0 in Ω′
a,

by the Green formula, we obtain

∫
Ω′

a

(∇uN · ∇ψ − k2uNψ) dx+
N∑

n=−N

k
H(1)′

n (ka)

H
(1)
n (ka)

ϕn

∫
Γa

Yn(θ)ψ dγ = 0.(94)

There exists a b > a such that

suppψ ∩ Ω′
a ⊂ Ωb

a.

Then we can rewrite (94) as follows:

∫
Ωb

a

(∇uN · ∇ψ − k2uNψ) dx+
N∑

n=−N

k
H(1)′

n (ka)

H
(1)
n (ka)

ϕn

∫
Γa

Yn(θ)ψ dγ = 0.(95)

Since ui|Γa ∈ H1/2(Γa), we obtain

∞∑
n=−∞

ka
H(1)′

n (ka)

H
(1)
n (ka)

ϕnψn = −s(ui, ψ),

and by Lemma 6.1, we can see

uN −→ ue in H1(Ωb
a).

Thus, by letting N tend to infinity in (95), we can see (93) holds. From (92) and (93), we
can see (91) holds. Further it is clear that u = 0 on γ and that u satisfies the outgoing
radiation condition. Therefore we conclude that u is the solution of (1).

We now have the following corollary to Theorem 6.1:

Corollary 6.1 For every f ∈ L2(Ωa), the unique solution u of problem (61) belongs
to H2(Ωa). Further we have the following a priori estimate:

‖u‖H2(Ωa) ≤ Cr‖f‖L2(Ωa),(96)

where Cr is a positive constant independent of f and u.
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Proof. We see from Theorem 5.1 that problem (61) has a unique solution u ∈ V . By
virtue of Theorem 6.1, u can be extend to Ω \ Ωa so as to be the solution to problem
(1) which belongs to H2

loc(Ω). Thus we can conclude u ∈ H2(Ωa). We now define the
operator G : L2(Ωa) −→ H2(Ωa) as follows: for every f ∈ L2(Ωa),

Gf = u,

where u is the solution to problem (61) with f . Since we can readily show G to be a
closed operator, we can get, by the closed graph theorem, the a priori estimate (96).

Remark 6.1 We consider the exterior problem with the incoming radiation condition:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δu− k2u = f in Ω,

u = 0 on γ,

lim
r−→+∞ r

d−1
2

(
du

dr
+ iku

)
= 0.

For this problem, all the results described above hold with appropriate modifications. We
then note that the analytical representations, in Ω′

a, of the incoming solutions are:

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

H(2)
n (kr)

H
(2)
n (ka)

ϕnYn(θ) if d = 2,

∞∑
n=0

∑
|m|≤n

h(2)
n (kr)

h
(2)
n (ka)

ϕm
n Y

m
n (θ, φ) if d = 3,

and the DtN operators corresponding to the incoming radiation condition are:

S∗ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

−kH
(2)′
n (ka)

H
(2)
n (ka)

ϕnYn if d = 2,

∞∑
n=0

n∑
m=−n

−kh
(2)′
n (ka)

h
(2)
n (ka)

ϕm
n Y

m
n if d = 3.

(97)

In addition, the fundamental solutions satisfying the incoming radiation condition are:

ψ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− i

4
H

(2)
0 (k|x|) if d = 2,

1

4π

e−ik|x|

|x| if d = 3.

7 Finite element approximation

We can get numerical solutions to problem (1) by applying the finite element method to
problem (61). Such a method is called the DtN method and is studied by several authors
(Goldstein [4], Masmoudi [9], Keller and Givoli [7], Harari and Hughes [6], Grote and
Keller [5], and Bao [2], for instance). We establish well-posedness of the discrete problem
obtained by applying the finite element method to problem (61) and error estimates for
solutions to the discrete problem. To do so, we follow the idea due to Goldstein [4], which
is also used in [2].
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In this section we denote the norm and the semi-norm of Hm(Ωa) (m ∈ N ∪{0}) with
H0(Ωa) = L2(Ωa) by ‖ · ‖m,Ωa and | · |m,Ωa, respectively, and further we define the norm
of Hs(Γa) (s > 0) as follows: for ϕ ∈ Hs(Γa),

‖ϕ‖2
s,Γa

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=−N

(1 + |n|2s)|ϕn|2 if d = 2,

N∑
n=0

n∑
m=−n

(1 + |n|2s)|ϕm
n |2 if d = 3.

We consider a family {Vh | h ∈ (0, h̄]} of finite dimensional subspaces of V such that
for all 0 < h ≤ h̄ and for every u ∈ V ∩H2(Ωa),

inf
vh∈Vh

|u− vh|1,Ωa ≤ Cah‖u‖2,Ωa,(98)

where Ca is a positive constant independent of h and u. If d = 2, such a family {Vh | h ∈
(0, h̄]} can be constructed by using the curved elements due to Zlámal [13]. (Since Γa is
a circle, we need to consider the curved elements.) We briefly explain how to construct
such a family. For each h ∈ (0, h̄], we consider a triangulation Th of Ωa including curved
elements near the curved parts of ∂Ωa. Let Vh be a conforming finite element space
associated with Th. Here every function of Vh is supposed to be a linear function on each
interior triangle element and to be a certain function introduced by Zlámal on each curved
element. Suppose that the family {Th | h ∈ (0, h̄]} is regular in the sense of Ciarlet [3].
Then the family {Vh | h ∈ (0, h̄]} satisfies (98).

Then the discrete problem of problem (61) associated with Vh is as follows: find uh ∈ Vh

such that

a(uh, vh) − k2(uh, vh) + s(uh, vh) = (f, vh) for all vh ∈ Vh.(99)

Well-posedness of problem (99) and error estimates for u− uh for sufficiently small h are
established in the following theorem:

Theorem 7.1 Let k be an arbitrary positive number, f an arbitrary function of L2(Ωa),
and u the solution to problem (61). Then there exists an h0(k) ∈ (0, h̄] such that for every
0 < h ≤ h0(k), problem (99) has a unique solution uh, and further

|u− uh|1,Ωa ≤ C1(k)h‖f‖0,Ωa,(100)

‖u− uh‖0,Ωa ≤ C2(k)h
2‖f‖0,Ωa,(101)

where h0(k), C1(k), and C2(k) are independent of f , u, and uh, and further C1(k) and
C2(k) are independent of h.

Proof. We first assume that problem (99) has a solution uh. A proof of the well-
posedness of problem (99) is postpone to the completion of the derivation of the error
estimates (100) and (101).

Set eh = u− uh. Then we have

ã(eh, vh) = 0(102)

for all vh ∈ Vh, where

ã(u, v) = a(u, v) − k2(u, v) + s(u, v)(103)
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for u, v ∈ H1(Ωa). Note the following identical equation:

|eh|21,Ωa
= k2‖eh‖2

0,Ωa
− s(eh, eh) + ã(eh, eh).

Taking the real part of this identity, we can get

|eh|21,Ωa
= k2‖eh‖2

0,Ωa
− Re s(eh, eh) + Re ã(eh, eh).

By virtue of Lemmas 4.9 and 4.10, we get

|eh|21,Ωa
≤ k2‖eh‖2

0,Ωa
+ Re ã(eh, eh).(104)

To estimate the right-hand side of (104), we use the Poincaré inequality

‖v‖0,Ωa ≤ Cp|v|1,Ωa for all v ∈ V(105)

and the trace inequality

‖v‖1/2,Γa ≤ Ct|v|1,Ωa for all v ∈ V.(106)

Step 1. In this step, we show that there exists a positive constant C3(k) such that

|ã(eh, eh)| ≤ C3(k)h|eh|1,Ωa‖u‖2,Ωa,(107)

where C3(k) is independent of h, u, and uh. We see from (102) and (103) that for all
vh ∈ Vh,

ã(eh, eh) = a(eh, u− vh) − k2(eh, u− vh) + s(eh, u− vh).

By the trigonometric inequality, the Schwarz inequality, and the boundedness of S :
H1/2(Γa) −→ H−1/2(Γa),

|ã(eh, eh)|
≤ |eh|1,Ωa |u− vh|1,Ωa + k2‖eh‖0,Ωa‖u− vh‖0,Ωa + ‖S‖‖eh‖1/2,Γa‖u− vh‖1/2,Γa .

By (105) and (106),

|ã(eh, eh)| ≤ C3(k)|eh|1,Ωa |u− vh|1,Ωa,

where

C3(k) = C2
pk

2 + ‖S‖C2
t + 1.(108)

From this inequality and (98), we can get (107).
Step 2. In this step, we show that there exists a positive constant C4(k) such that

‖eh‖0,Ωa ≤ C4(k)h|eh|1,Ωa ,(109)

where C4(k) is independent of h, u, and uh. Suppose that w ∈ V satisfies

a(w, v) − k2(w, v) + s(v, w) = (eh, v)(110)

for all v ∈ V . Then w is a weak solution of the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δu − k2u = eh in Ωa,

u = 0 on γ,
∂u

∂n
= −S∗u on Γa,
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where S∗ is the DtN operator corresponding to the incoming radiation condition given
by (97). As mentioned in Remark 6.1, Corollary 6.1 holds for the incoming solution w.
Hence we have w ∈ H2(Ωa) and

‖w‖2,Ωa ≤ C∗
r‖eh‖0,Ωa.(111)

Taking v = eh in (110), we obtain

‖eh‖2
0,Ωa

= a(w, eh) − k2(w, eh) + s(eh, w)

= a(eh, w) − k2(eh, w) + s(eh, w),

and hence, by (102), we have for all vh ∈ Vh,

‖eh‖2
0,Ωa

= a(eh, w − vh) − k2(eh, w − vh) + s(eh, w − vh).

In the same way as in Step 1, we can get

‖eh‖2
0,Ωa

≤ |eh|1,Ωa |w − vh|1,Ωa + k2‖eh‖0,Ωa‖w − vh‖0,Ωa + ‖S‖‖eh‖1/2,Γa‖w − vh‖1/2,Γa

≤ C3(k)|eh|1,Ωa |w − vh|1,Ωa,

where C3(k) is the constant given by (108). From this inequality, (98), and (111), we can
get (109) with C4(k) = C3(k)C

∗
rCa.

Combining (104), (107), and (109), we obtain

|eh|1,Ωa ≤ C5(k)h
2|eh|1,Ωa + C3(k)h‖u‖2,Ωa,

where C5(k) = k2(C4(k))
2. Thus, for every h ∈ (0, h̄] satisfying

1 − C5(k)h
2 ≥ 1

2
,

which is equivalent to

0 < h ≤ 1√
2C5(k)

,

we have

|eh|1,Ωa ≤ C3(k)

2
h‖u‖2,Ωa.(112)

Let here h0(k) = min(1/
√

2C5(k), h̄). We can see from (112) and (96) that for every

0 < h ≤ h0(k), we have (100) with C1(k) = C3(k)Cr/2. Further, combining (109) and
(100), we obtain (101) with C2(k) = C1(k)C4(k).

We next show the well-posedness of problem (99). For this purpose, it is sufficient
to show uniqueness of the solution to problem (99) since Vh is finite dimensional. Hence
assume that uh ∈ Vh is a solution to problem (99) with f = 0. Since the solution u to
problem (61) with f = 0 is identically zero, it follows from (100) (or (101)) that uh = 0.
Thus we can conclude that problem (99) is well-posed.

Remark 7.1 We can see from the proof of Theorem 7.1 that h0(k) is a decreasing
function of k on (0, ∞) and C1(k) and C2(k) are increasing functions of k on (0, ∞).
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7.1 Truncation of the DtN operator

Practically we can not compute the problem (99) because the sesquilinear form s is analyt-
ically represented by the infinite series. Hence, in the practical computations of numerical
solutions, we have to truncate this infinite series. We analyze the effect of this truncation
on the error estimates. To this end, we introduce the following sesquilinear form: for
N ∈ N ,

sN(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=−N

−kaH
(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a) if d = 2,

N∑
n=0

n∑
m=−n

−ka2h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a) if d = 3.

We here consider the following problem: find uN
h ∈ Vh such that

a(uN
h , vh) − k2(uN

h , vh) + sN (uN
h , vh) = (f, vh) for all vh ∈ Vh.(113)

We show that this problem is well-posed for h sufficiently small and for N sufficiently
large, and further we establish error estimates for u− uN

h when h is sufficiently small and
N is sufficiently large. That is, we prove the following theorem:

Theorem 7.2 Let k be an arbitrary positive number, f an arbitrary function of L2(Ωa),
and u the solution to problem (61). Then there exist a γ0(k) > 0 such that for every
(h, N) ∈ (0, h̄]×N satisfying h+N−1 ≤ γ0(k), problem (113) has a unique solution uN

h ,
and further

|u− uN
h |1,Ωa ≤ C1(k)(h+N−1)‖f‖0,Ωa,(114)

‖u− uN
h ‖0,Ωa ≤ C2(k)(h +N−1)2‖f‖0,Ωa,(115)

where γ0(k), C1(k), and C2(k) are independent of f , u, and uN
h , and further C1(k) and

C2(k) are independent of h and N .

To prove Theorem 7.2, we here introduce two sesquilinear forms on H1(Ωa):

ãN(u, v) = a(u, v) − k2(u, v) + sN(u, v),

rN(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
|n|>N

−kaH
(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a) if d = 2,

∑
n>N

n∑
m=−n

−ka2h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a) if d = 3.

Note here that we have

s(u, v) = sN (u, v) + rN(u, v) for u, v ∈ H1(Ωa).

Proof. As in the proof of Theorem 7.1, we first assume that problem (113) has a
solution uN

h .
Set eN

h = u− uN
h . Then we have

ãN(eN
h , vh) + rN(u, vh) = 0(116)
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for all vh ∈ Vh. Note the following identical equation:

|eN
h |21,Ωa

= k2‖eN
h ‖2

0,Ωa
− sN(eN

h , e
N
h ) + ãN (eN

h , e
N
h ).

Taking the real part of this identity, we can get

|eN
h |21,Ωa

= k2‖eN
h ‖2

0,Ωa
− Re sN(eN

h , e
N
h ) + Re ãN(eN

h , e
N
h ).

By virtue of Lemmas 4.9 and 4.10, we get

|eN
h |21,Ωa

≤ k2‖eN
h ‖2

0,Ωa
+ Re ãN(eN

h , e
N
h ).(117)

We here introduce the set of all polynomials of degree l in the variable k with non-
negative coefficients:

P+
l =

⎧⎨⎩
l∑

j=0

ajk
j | al > 0, aj ≥ 0 (0 ≤ j ≤ l − 1)

⎫⎬⎭ .
Step 1. In this step, we show that there exist positive constants C3(k), C4, and C5

such that for an arbitrary ε > 0,

|ãN(eN
h , e

N
h )| ≤ ε|eN

h |21,Ωa
+

(
C3(k)

ε
h2 +

C4

ε
N−2 + C5hN

−1

)
‖u‖2

2,Ωa
,(118)

where constants C3(k), C4, and C5 are independent of h, N , u, uN
h , and ε, and further C4

and C5 are independent of k. Here C3(k) belongs to P+
4 as a function of k. By (116), we

have for all vh ∈ Vh,

ãN(eN
h , e

N
h ) = ãN (eN

h , u− vh) + rN(u, uN
h − vh)

= ãN (eN
h , u− vh) + rN(u, u− vh) − rN(u, eN

h ).

Thus, by using the trigonometric inequality, the Schwarz inequality, and Lemmas 4.5 and
4.6, we get

|ãN(eN
h , e

N
h )|

≤ |eN
h |1,Ωa|u− vh|1,Ωa + k2‖eN

h ‖0,Ωa‖u− vh‖0,Ωa + C‖eN
h ‖1/2,Γa‖u− vh‖1/2,Γa

+|rN(u, u− vh)| + |rN(u, eN
h )|.

Further, by (105) and (106),

|ãN(eN
h , e

N
h )| ≤ C6(k)|eN

h |1,Ωa|u− vh|1,Ωa + |rN(u, u− vh)| + |rN(u, eN
h )|,(119)

where C6(k) ∈ P+
2 . Let us here estimate the second term on the right-hand side of (119).

If d = 2, by Lemma 4.5, the Schwarz inequality, and the trace theorem,

|rN(u, u− vh)| ≤ C
∑

|n|>N

|n||un(a)||(u− vh)n(a)|(120)

≤ CN−1‖u‖3/2,Γa‖u− vh‖1/2,Γa

≤ CN−1‖u‖2,Ωa‖u− vh‖1,Ωa ,

where (u−vh)n(a) are the Fourier coefficients of u−vh. If d = 3, we analogously get (120)
by using Lemma 4.6 instead of Lemma 4.5. Further, for the third term, we can similarly
estimate as follows:

|rN(u, eN
h )| ≤ CN−1‖u‖2,Ωa‖eN

h ‖1,Ωa .(121)
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Combining (119), (120), (121), and (98), we achieve the following:

|ãN(eN
h , e

N
h )|

≤ C7(k)h|eN
h |1,Ωa‖u‖2,Ωa + C8N

−1|eN
h |1,Ωa‖u‖2,Ωa + C9hN

−1‖u‖2
2,Ωa

,

where C7(k) ∈ P+
2 . Applying the arithmetic-geometric mean inequality to the first and

second terms on the right-hand side of the above inequality, we have, for an arbitrary
ε > 0,

|ãN(eN
h , e

N
h )| ≤ ε

2
|eN

h |21,Ωa
+
C10(k)

ε
h2‖u‖2

2,Ωa

+
ε

2
|eN

h |21,Ωa
+
C11

ε
N−2‖u‖2

2,Ωa
+ C9hN

−1‖u‖2
2,Ωa

,

where C10(k) ∈ P+
4 . This implies (118).

Step 2. In this step, we show that there exist positive constants C12(k) and C13 such
that

‖eN
h ‖0,Ωa ≤ C12(k)(h+N−1)|eN

h |1,Ωa + C13(hN
−1 +N−2)‖u‖2,Ωa,(122)

where C12(k) and C13 are independent of h, N , u, and uN
h , and further C13 is independent

of k. Here C12(k) belongs to P+
2 as a function of k. Suppose that w ∈ V satisfies

a(w, v) − k2(w, v) + s(v, w) = (eN
h , v)(123)

for all v ∈ V . Then w is the incoming solution. As mentioned in the proof of Theorem
7.1, we have w ∈ H2(Ωa) and

‖w‖2,Ωa ≤ C‖eN
h ‖0,Ωa.(124)

Taking v = eN
h in (123), we obtain

‖eN
h ‖2

0,Ωa
= a(w, eN

h ) − k2(w, eN
h ) + s(eN

h , w).(125)

Note here that (116) can be rewritten as follows:

0 = a(vh, e
N
h ) − k2(vh, e

N
h ) + sN(eN

h , vh) + rN(u, vh).(126)

Subtracting (126) from (125) gives

‖eN
h ‖2

0,Ωa
= a(w − vh, e

N
h ) − k2(w − vh, e

N
h ) + sN(eN

h , w − vh)

+rN(eN
h , w) − rN(u, vh)

= a(w − vh, e
N
h ) − k2(w − vh, e

N
h ) + sN(eN

h , w − vh)

+rN(eN
h , w) + rN(u, w − vh) − rN(u, w).

By the trigonometric inequality, the Schwarz inequality, and Lemmas 4.5 and 4.6,

‖eN
h ‖2

0,Ωa

= |w − vh|1,Ωa|eN
h |1,Ωa + k2‖w − vh‖0,Ωa‖eN

h ‖0,Ωa + C‖w − vh‖1/2,Γa‖eN
h ‖1/2,Γa

+|rN(eN
h , w)| + |rN(u, w − vh)| + |rN(u, w)|.
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By (105) and (106),

‖eN
h ‖2

0,Ωa
≤ C14(k)|w − vh|1,Ωa|eN

h |1,Ωa(127)

+|rN(eN
h , w)| + |rN(u, w − vh)| + |rN(u, w)|,

where C14(k) ∈ P+
2 . We can here estimate the last three terms on th right-hand side of

(127) as follows:

|rN(eN
h , w)| ≤ CN−1‖eN

h ‖1/2,Γa‖w‖3/2,Γa(128)

≤ CN−1|eN
h |1,Ωa‖w‖2,Ωa,

|rN(u, w − vh)| ≤ CN−1‖u‖3/2,Γa‖w − vh‖1/2,Γa(129)

≤ CN−1‖u‖2,Ωa|w − vh|1,Ωa ,

|rN(u, w)| ≤ CN−2‖u‖3/2,Γa‖w‖3/2,Γa(130)

≤ CN−2‖u‖2,Ωa‖w‖2,Ωa.

Combining (127)–(130), we get

‖eN
h ‖2

0,Ωa
≤

{
C14(k)|eN

h |1,Ωa + CN−1‖u‖2,Ωa

}
|w − vh|1,Ωa

+
{
CN−1|eN

h |1,Ωa + CN−2‖u‖2,Ωa

}
‖w‖2,Ωa.

Using here (98) and (124), we get

‖eN
h ‖2

0,Ωa
≤

{
C15(k)|eN

h |1,Ωa + CN−1‖u‖2,Ωa

}
h‖eN

h ‖0,Ωa

+
{
CN−1|eN

h |1,Ωa + CN−2‖u‖2,Ωa

}
‖eN

h ‖0,Ωa,

where C15(k) ∈ P+
2 , and further dividing by ‖eN

h ‖0,Ωa , we arrive at (122).
From (122), we can readily deduce

‖eN
h ‖2

0,Ωa
≤ C16(k)(h+N−1)2|eN

h |21,Ωa
+ C(hN−1 +N−2)2‖u‖2

2,Ωa
,(131)

where C16(k) ∈ P+
4 . Combining (117), (118), and (131), we get{

1 − ε− C17(k)(h+N−1)2
}
|eN

h |21,Ωa
≤ C18(k, ε)(h+N−1)2‖u‖2

2,Ωa
,

and further, by taking ε = 1/2,{
1

2
− C17(k)(h+N−1)2

}
|eN

h |21,Ωa
≤ C19(k)(h+N−1)2‖u‖2

2,Ωa
,

where C17(k) ∈ P+
6 and C18(k, ε) and C19(k) ∈ P+

4 . For every {h, N} ∈ (0, h̄] × N
satisfying

1

2
− C17(k)(h+N−1)2 ≥ 1

4
,

which is equivalent to

h+N−1 ≤ 1√
4C17(k)

≡ γ0(k),
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we have

|eN
h |1,Ωa ≤ C20(k)(h+N−1)‖u‖2,Ωa,(132)

where C20(k) ∈ P+
4 . From (132) and (96), we get (114). Further, combining (122), (114),

and (96), we obtain (115).
We can now deduce from (114) (or (115)) the well-posedness of problem (113) in the

same argument as in the proof of Theorem 7.1.

Remark 7.2 We can see from the proof of Theorem 7.2 that γ0(k) is a decreasing
function of k on (0, ∞) and C1(k) and C2(k) are increasing functions of k on (0, ∞).
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