2.3 FreeFEM++入門

2.3.1 FreeFEM++とは(文献[4]からの引用)

FreeFEM プロジェクトはパリ第6大学の O. ピロノ (Pironneau) によってはじめられ, その後, F. エヒト (Hecht, パリ第6大学), 大塚厚二(広島国際学院大学)らの協力のもとに進められている.

2.3.2 インストール

FreeFEM++は http://www.freefem.org/ からダウンロードできる.また, FreeFEM++用統合 環境 FreeFEM++-cs も用意されているので,その統合環境を http://www.ann.jussieu.fr/ lehyaric/ffcs/index.htm からダウンロードすることを勧める(と りあえずは, FreeFEM++-cs をインストールするだけ良い.)

2.3.3 三角形分割

図 2.15 のような W 型領域を考える.この領域の三角形分割を生成する.プログラムは下記の w-triangulation.edp ⁵ のようになる.生成結果は図 2.16 のようになる.その三角形分割データ は w-triangulation.msh に保存される(詳しくは.2.3.4 参照).w-triangulation.edp のプログラ ムでは, border コマンドによって領域の境界を定義する際,境界のパラメータ表示を用いるが,そ のパラメータを領域を左手に見て進むようにとらなくてはならない.

図 2.15: W 型領域 Ω と境界ラベル

⁵http://www.im.uec.ac.jp/~koyama/w.html からダウンロードできる.

図 2.16: W 型領域の三角形分割

-w-triangulation.edp int n=5; border Gamma1(t = 0, 1) {x = -t -3; y = 4;} border $Gamma2(t = 0, 1) \{x = -t +4; y = 4;\}$ border Gamma3(t = 0, 1) {x = 3*t - 4; y = -6*t + 4;} border Gamma4(t = 0, 1) {x = 3*t + 1; y = 6*t - 2;} border Gamma5(t = 0, 1) {x = -2*t -1; y = 4*t;} border Gamma6(t = 0, 1) {x = -2*t + 3; y = -4*t + 4;} border Gamma7(t = 0, 1) {x = -t; y = -2*t + 2;} border $Gamma8(t = 0, 1) \{x = -t+1; y = 2*t;\}$ border $Gamma9(t = 0, 1) \{x = t-1; y = 2*t-2;\}$ border Gamma10(t = 0, 1) {x = t; y = -2*t;} mesh Th = buildmesh(Gamma1(n)+Gamma2(n)+Gamma3(6*n)+Gamma4(6*n) +Gamma5(4*n)+Gamma6(4*n)+Gamma7(2*n)+Gamma8(2*n)+Gamma9(2*n)+Gamma10(2*n)); plot(Th, wait=true, ps="w-triangulation.eps"); savemesh(Th, "w-triangulation.msh");

2.3.4 三角形分割データファイル

図 2.16 の三角形分割 Th のデータは, savemesh によって, ファイル w-triangulation.msh に保存 される.ファイルに書かれるデータフォーマットは 4 つのデータ群からなる.第1データ群は, 節点 数,要素数,境界上の辺の数であり,第2データ群は「節点・座標対応表」に,第3データ群は「要 素・節点対応表」に,第4データ群は「境界要素・節点対応表」に,それぞれ対応するデータである. これらのデータ群は表 2.6 のように並べられて出力される.

w-triangulation.mshの中身

382 612 150

-4 4 3

- -3.79665632248 4 1
- -3.90262050629 3.80524101257 3
- -3.69793953756 3.80803382295 0

	•				•	•
	•				•	•
	•				•	•
231	244	232	0			
221	235	233	0			
244	245	232	0			
	•	•	•			
	•	•	•			
218	231	10				
231	229	10				
229	230	10				
	•	•				
•	•	•				

第1カラムの数	第2カラムの数	第3カラムの数	第4カラムの数	行数					
節点数	要素数	境界上の辺の数	-	1 行					
節点 x 座標	節点 <i>y</i> 座標	境界ラベル	-	節点数					
要素の第1節点番号	要素の第2節点番号	要素の第3節点番号	部分領域ラベル	要素数					
境界にある辺の第1節点番号	境界にある辺の第2節点番号	境界ラベル	-	境界上の辺の数					

表 2.6: 三角形分割データ フォーマット

2.3.5 Poisson 方程式 (Laplace 方程式)

図 2.15 の W 型領域 Ω において次の Laplace 方程式の混合境界値問題を考える:

$$(P) \begin{cases} -\Delta u = 0 & \text{in } \Omega \\ u = 1 & \text{on } \Gamma_1, \\ u = 0 & \text{on } \Gamma_2, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \Gamma_1, \Gamma_2$$
以外の境界.

この弱形式は

$$(\Pi) \begin{cases} \text{Find } u \in V(g) \text{ such that} \\ \int_{\Omega} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \right) dx dy = 0 \quad \forall v \in V. \end{cases}$$

ここで,

$$V(g) := \left\{ w \in H^{1}(\Omega) \mid w = g \text{ on } \Gamma_{1} \cup \Gamma_{2} \right\},$$

$$(2.50) \quad g := \left\{ \begin{array}{rrr} 1 & \text{on } \Gamma_{1}, \\ 0 & \text{on } \Gamma_{2}, \end{array} \right.$$

$$V := \left\{ v \in H^{1}(\Omega) \mid v = 0 \text{ on } \Gamma_{1} \cup \Gamma_{2} \right\}.$$

この問題を 2.3.3 節の三角形分割を用いて解くソースプログラム(w-laplace.edp)は以下のようである.ただし,分割はより細かくしてある.すなわち,n=10としてある.

— w-laplace.edp int n=10; border Gamma1(t = 0, 1) {x = -t -3; y = 4;} border $Gamma2(t = 0, 1) \{x = -t +4; y = 4;\}$ border Gamma3(t = 0, 1) {x = 3*t - 4; y = -6*t + 4;} border Gamma4(t = 0, 1) {x = 3*t +1; y = 6*t - 2;} border Gamma5(t = 0, 1) {x = -2*t -1; y = 4*t;} border Gamma6(t = 0, 1) {x = -2*t + 3; y = -4*t + 4;} border Gamma7(t = 0, 1) {x = -t; y = -2*t + 2;} border $Gamma8(t = 0, 1) \{x = -t+1; y = 2*t;\}$ border Gamma9(t = 0, 1) {x = t-1; y = 2*t-2;} border Gamma10(t = 0, 1) {x = t; y = -2*t;} mesh Th = buildmesh(Gamma1(n)+Gamma2(n)+Gamma3(6*n)+Gamma4(6*n) +Gamma5(4*n)+Gamma6(4*n)+Gamma7(2*n)+Gamma8(2*n)+Gamma9(2*n)+Gamma10(2*n)); fespace Vh(Th, P1); Vh u, v; solve laplace(u, v) = int2d(Th)(dx(u)*dx(v) + dy(u)*dy(v)) + on(Gamma1, u=1) + on(Gamma2, u=0); plot(u, wait=true, value=true, fill=true, ps="w-laplace.eps");

2.3.6 熱伝導方程式

有界領域Ωにおいて次の熱伝導方程式の初期値・境界値問題を考える:

$$(P) \begin{cases} \frac{\partial u}{\partial t}(\boldsymbol{x}, t) - \Delta u(\boldsymbol{x}, t) &= f(\boldsymbol{x}, t) \quad \text{in } \Omega \times (0, T], \\ u(\boldsymbol{x}, t) &= g(\boldsymbol{x}, t) \quad \text{on } \Gamma_D \times (0, T], \\ \frac{\partial u}{\partial n}(\boldsymbol{x}, t) &= 0 \quad \text{on } \Gamma_N \times (0, T], \\ u(\boldsymbol{x}, 0) &= u^0(\boldsymbol{x}) \quad \text{in } \Omega. \end{cases}$$

ここで,領域 Ω の境界 $\partial\Omega$ は二つの部分 Γ_D と Γ_N からなるものとする. この弱形式は

$$(\Pi) \begin{cases} \text{Find } u : [0, T] \longrightarrow H^{1}(\Omega) \text{ such that} \\ \frac{d}{dt}(u(t), v) + a(u(t), v) &= (f(t), v) \quad \forall v \in V, \\ u(t) &= g(t) \quad \text{on } \Gamma_{D}, \\ u(0) &= u^{0} \quad \text{in } \Omega. \end{cases}$$

図 2.17: w-laplace.edp の出力結果

ここで,

$$(u(t), v) := \int_{\Omega} u(\boldsymbol{x}, t) v(\boldsymbol{x}) d\boldsymbol{x},$$

$$a(u(t), v) := \int_{\Omega} \nabla u(\boldsymbol{x}, t) \cdot \nabla v(\boldsymbol{x}) d\boldsymbol{x},$$

$$V := \left\{ v \in H^{1}(\Omega) \, | \, v = 0 \text{ on } \Gamma_{D} \right\}.$$

半離散近似問題

領域 Ω に三角形分割を施し、その節点を $q^1, q^2, ..., q^N$ とする.ただし、記述を簡単にするために次のように番号付けされているものとする.

- $q^1, \ldots, q^{N_0}: \Omega$ 内部節点,
- $q^{N_0+1}, ..., q^{N_0+N_2}$: Γ_N 内部節点,
- $\boldsymbol{q}^{N'+1}, \ldots, \boldsymbol{q}^{N'+N_1}$: $\overline{\Gamma_D}$ 上節点.

ここで, $N' := N_0 + N_2$ とし, $N = N' + N_1$ となるものとした.

節点 q^i に対応する基底関数を φ_i とする.すなわち, φ_i は, $\varphi_i(q^j) = \delta_{ij}$ $(1 \le i, j \le N)$ を満たす 区分1次連続関数とする.この時, 関数空間(有限要素空間):

 $V_h := \operatorname{span}\{\varphi_i \mid 1 \le i \le N'\},$ $W_h := \operatorname{span}\{\varphi_i \mid 1 \le i \le N\}$

を導入する⁶.

 ${}^{6}V_{h} = \{v_{h} \in W_{h} \, | \, v_{h} = 0 \text{ on } \Gamma_{D}\}$ が成り立つことに注意する.

この時,弱形式(II)の半離散近似問題を考えることができる:

$$(\Pi_h) \begin{cases} \text{Find } u_h : [0, T] \longrightarrow W_h \text{ such that} \\ \frac{d}{dt}(u_h(t), v_h) + a(u_h(t), v_h) &= (f(t), v_h) \quad \forall v_h \in V_h \\ u_h(t) &= g_h(t) \quad \text{on } \Gamma_D, \\ u_h(0) &= u_h^0 \quad \text{in } \Omega \end{cases}$$

ここで, g_h および u_h^0 はそれぞれ g および u^0 の適当な近似関数である. 今,半離散近似問題 (Π_h) における g_h を

$$g_h(\boldsymbol{x}, t) = \sum_{j=N'+1}^{N'+N_1} g(\boldsymbol{q}^j, t) \varphi_j(\boldsymbol{x})$$

.

で与えるものとすると,問題 (Π_h) の解 u_h は

$$u_h(\boldsymbol{x}, t) = \sum_{j=1}^{N'} c_j(t)\varphi_j(\boldsymbol{x}) + \sum_{j=N'+1}^{N'+N_1} g(\boldsymbol{q}^j, t)\varphi_j(\boldsymbol{x})$$

と書ける.ただし, $c_j(t)$ $(1 \le j \le N')$ は未知関数である.これを (Π_h) に代入し, (Π_h) における v_h を φ_i $(1 \le i \le N')$ とすると, (Π_h) は次のように書ける:

$$\sum_{j=1}^{N'} \left[b_{ij} \frac{dc_j}{dt}(t) + a_{ij} c_j(t) \right] = f_i(t) - \sum_{j=N'+1}^{N'+N_1} \left[b_{ij} \frac{\partial g}{\partial t}(\boldsymbol{q}^j, t) + a_{ij} g(\boldsymbol{q}^j, t) \right] \quad (1 \le i \le N').$$

$$a_{ij} := a(\varphi_j, \varphi_i) \quad (1 \le i, j \le N),$$

$$b_{ij} := (\varphi_j, \varphi_i) \quad (1 \le i, j \le N),$$

$$f_i(t) := (f(t), \varphi_i) \quad (1 \le i \le N)$$

である.

さらに,

$$\begin{array}{lll}
A & := & (a_{ij})_{1 \le i, j \le N'}, \\
B & := & (b_{ij})_{1 \le i, j \le N'}, \\
\mathbf{f}(t) & := & \left(f_i(t) - \sum_{j=N'+1}^{N'+N_1} \left[b_{ij} \frac{\partial g}{\partial t}(\mathbf{q}^j, t) + a_{ij}g(\mathbf{q}^j, t) \right] \right)_{1 \le i \le N'}, \\
\mathbf{c}(t) & := & (c_i(t))_{1 < i < N'}
\end{array}$$

とすると, (Π_h) は次のように書ける:

$$(S_h) \begin{cases} \text{Find } \boldsymbol{c} : [0, T] \longrightarrow \mathbb{R}^{N'} \text{ such that} \\ B \frac{d\boldsymbol{c}}{dt}(t) + A\boldsymbol{c}(t) = \boldsymbol{f}(t), \\ \boldsymbol{c}(0) = \boldsymbol{c}^0. \end{cases}$$

ここで,

$$u_h^0(\boldsymbol{x}) = \sum_{j=1}^{N'} c_j^0 \varphi_j(\boldsymbol{x}) + \sum_{j=N'+1}^{N'+N_1} g(\boldsymbol{q}^j, 0) \varphi_j(\boldsymbol{x})$$

 $\boldsymbol{c}^0 := (c_i^0)_{1 \le i \le N'}$
とした .

時間微分 d/dt を差分近似する.ここでは,後退 Euler 法によって差分近似することを考える.時 間刻幅 τ として, $t_n := n\tau$ (n = 0, 1, 2...)とする.そして, $c(t_n) \approx c^n$, $f^n := f(t_n)$ とする.この時, (S_h) の近似問題は次のようになる:

$$(S_h^{\tau}) \begin{cases} \text{For each } n = 1, 2 \dots, \text{ find } \boldsymbol{c}^n \in \mathbb{R}^{N'} \text{ such that} \\ B\left(\frac{\boldsymbol{c}^{n+1} - \boldsymbol{c}^n}{\tau}\right) + A\boldsymbol{c}^{n+1} = \boldsymbol{f}^{n+1}. \end{cases}$$

問題 (S_h^{τ}) の等式は,

(2.51)
$$(B + \tau A)\mathbf{c}^{n+1} = B\mathbf{c}^n + \tau \mathbf{f}^{n+1}$$

と書ける.

同様の操作を, (Π_h) に対して行うことを考える. $u_h(t_n) \approx u_h^n$ とする.この時, (Π_h) の近似問題は次のようになる:

$$(\Pi_{h}^{\tau}) \begin{cases} \text{For each } n = 1, 2 \dots, \text{find } u_{h}^{n} \in W_{h} \text{ such that} \\ \left(\frac{u_{h}^{n+1} - u_{h}^{n}}{\tau}, v_{h}\right) + a(u_{h}^{n+1}, v_{h}) &= (f(t_{n+1}), v_{h}) \quad \forall v_{h} \in V_{h} \\ u_{h}^{n+1} &= g_{h}(t_{n+1}) \quad \text{on } \Gamma_{D}, \\ u_{h}(0) &= u_{h}^{0} \quad \text{in } \Omega \end{cases}$$

問題 (Π_h^{τ}) の等式は,

$$\int_{\Omega} u_h^{n+1} v_h \, dx \, dy + \int_{\Omega} \tau \left(\frac{\partial u_h^{n+1}}{\partial x} \frac{\partial v_h}{\partial x} + \frac{\partial u_h^{n+1}}{\partial y} \frac{\partial v_h}{\partial y} \right) \, dx \, dy - \int_{\Omega} u_h^n v_h \, dx \, dy + \tau \int_{\Omega} f(t_{n+1}) v_h \, dx \, dy = 0 \quad \forall v_h \in V_h$$

と書ける.FreeFEM++では,この書き方を利用する.

問題 (P) において, Ω を図 2.15の W 型領域とし, Γ_D を図 2.15の $\Gamma_1 \cup \Gamma_2$ とし, Γ_N を残りの境界 とする. $f \equiv 0$ とし, g は 2.3.5 節の (2.50) とし, $u^0 \equiv 0$ とする. 近似問題 (Π_h^τ)を解くソースプログ ラム(w-heat.edp)は以下のようである.

註記 2.12 実際,自分でプログラムを作成する際には,

_

$$(S_h) \begin{cases} \operatorname{Find} \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{c}_D \end{bmatrix} : [0, T] \longrightarrow \mathbb{R}^N \text{ such that} \\ \begin{bmatrix} B & O \\ O & O \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \boldsymbol{c}(t) \\ \boldsymbol{c}_D(t) \end{bmatrix} + \begin{bmatrix} A & O \\ O & I \end{bmatrix} \begin{bmatrix} \boldsymbol{c}(t) \\ \boldsymbol{c}_D(t) \\ \boldsymbol{c}_D(t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{f}(t) \\ \boldsymbol{g}(t) \\ \boldsymbol{g}(t) \\ \boldsymbol{c}_D(0) \end{bmatrix}, \\ \begin{bmatrix} \boldsymbol{c}(0) \\ \boldsymbol{c}_D(0) \end{bmatrix} = \begin{bmatrix} \boldsymbol{c}^0 \\ \boldsymbol{g}(0) \end{bmatrix}. \end{cases}$$

を考える.ここで,

 $\boldsymbol{g}(t) := (g(\boldsymbol{q}^j, t))_{N'+1 \le j \le N'+N}$

ある. すなわち, 行列は N × N のサイズで考え, Drichlet 条件の処理を施す. この時, (2.51) は

$$\begin{bmatrix} B + \tau A & O \\ O & \tau I \end{bmatrix} \begin{bmatrix} \mathbf{c}^{n+1} \\ \mathbf{c}^{n+1}_D \end{bmatrix} = \begin{bmatrix} B & O \\ O & O \end{bmatrix} \begin{bmatrix} \mathbf{c}^n \\ \mathbf{c}^n_D \end{bmatrix} + \tau \begin{bmatrix} \mathbf{f}^{n+1} \\ \mathbf{g}^{n+1} \end{bmatrix}$$

となる.ここで, $oldsymbol{g}^n := oldsymbol{g}(t_n)$ である.

```
- w-heat.edp —
int n=10;
real T = 40, tau = 0.1;
border Gamma1(t = 0, 1) {x = -t -3; y = 4;}
border Gamma2(t = 0, 1) {x = -t +4; y = 4;}
border Gamma3(t = 0, 1) {x = 3*t - 4; y = -6*t + 4;}
border Gamma4(t = 0, 1) {x = 3*t +1; y = 6*t - 2;}
border Gamma5(t = 0, 1) {x = -2*t -1; y = 4*t;}
border Gamma6(t = 0, 1) {x = -2*t + 3; y = -4*t + 4;}
border Gamma7(t = 0, 1) {x = -t; y = -2*t + 2;}
border Gamma8(t = 0, 1) {x = -t+1; y = 2*t;}
border Gamma9(t = 0, 1) {x = t-1; y = 2*t-2;}
border Gamma10(t = 0, 1) {x = t; y = -2*t;}
mesh Th = buildmesh(Gamma1(n)+Gamma2(n)+Gamma3(6*n)+Gamma4(6*n)
                   +Gamma5(4*n)+Gamma6(4*n)+Gamma7(2*n)+Gamma8(2*n)
                   +Gamma9(2*n)+Gamma10(2*n));
fespace Vh(Th, P1);
Vh u=0, v, uold;
problem heat(u, v) = int2d(Th)(u*v + tau*(dx(u)*dx(v) + dy(u)*dy(v)))
                   - int2d(Th)(uold*v)
                   + on(Gamma1, u=1) + on(Gamma2, u=0);
for(real t=0; t<T; t+=tau){</pre>
uold = u;
heat;
plot(u, fill=true);
}
```

2.3.7 Stokes 方程式

有界領域 $\Omega \subset \mathbb{R}^2$ において次の Stokes 方程式⁷の境界値問題を考える:

$$(P) \begin{cases} -\Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} & \text{in } \Omega, \\ \text{div } \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u}(\boldsymbol{x}, t) = \boldsymbol{g} & \text{on } \Gamma_D, \\ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}} - p\boldsymbol{n} = \boldsymbol{t} & \text{on } \Gamma_N. \end{cases}$$

ここで,領域 Ω の境界 $\partial\Omega$ は二つの部分 Γ_D と Γ_N からなるものとし, $n := (n_1, n_2)$ は外向き単位法線ベクトルである.問題(P)は,外力 $f := (f_1, f_2)$,境界での速度 $g := (g_1, g_2)$,境界での応力の法線方向成分 $t := (t_1, t_2)$ が既知の時,流体の流速 $u := (u_1, u_2)$ と圧力pを求める問題である. この弱形式は

$$(\Pi) \begin{cases} \text{Find } \{\boldsymbol{u}, p\} \in V(\boldsymbol{g}) \times Q \text{ such that} \\ \int_{\Omega} \nabla \boldsymbol{u} : \nabla \boldsymbol{v} \, d\boldsymbol{x} - \int_{\Omega} p \operatorname{div} \boldsymbol{v} \, d\boldsymbol{x} &= \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, d\boldsymbol{x} + \int_{\Gamma_N} \boldsymbol{t} \cdot \boldsymbol{v} \, d\Gamma_N \quad \forall \boldsymbol{v} \in V, \\ \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, d\boldsymbol{x} &= 0 \qquad \qquad \forall q \in Q. \end{cases}$$

ここで,

$$\nabla \boldsymbol{u} : \nabla \boldsymbol{v} := \sum_{i=1}^{2} \nabla u_{i} \cdot \nabla v_{i},$$

$$V(\boldsymbol{g}) := \left\{ \boldsymbol{w} \in \left[H^{1}(\Omega) \right]^{2} \mid \boldsymbol{w} = \boldsymbol{g} \text{ on } \Gamma_{D} \right\},$$

$$V := \left\{ \boldsymbol{v} \in \left[H^{1}(\Omega) \right]^{2} \mid \boldsymbol{v} = 0 \text{ on } \Gamma_{D} \right\},$$

$$Q := \left\{ q \in L^{2}(\Omega) \mid \int_{\Omega} q \, d\boldsymbol{x} = 0 \right\}.$$

領域 Ω を図 2.18 のような流入口付き W 型領域とする.境界に図 2.18 のようにラベルをつける.境 界 $\Gamma_N := \Gamma_2$,境界 Γ_D をその他の部分としする.既知データは f = o, t = o,

$$g = \begin{cases} \left(-\frac{a}{4}(y-4)(y-5), 0\right) & \text{on} & \Gamma_{11}(流入口ではポアズイユ流れとする) \\ o & \text{on} & \Gamma_D$$
のその他の部分

とする.

この時,(П)の二つの等式はまとめて,次のように書けることに注意する:

$$\int_{\Omega} \left(\frac{\partial u_1}{\partial x} \frac{\partial v_1}{\partial x} + \frac{\partial u_1}{\partial y} \frac{\partial v_1}{\partial y} + \frac{\partial u_2}{\partial x} \frac{\partial v_2}{\partial x} + \frac{\partial u_2}{\partial y} \frac{\partial v_2}{\partial y} \right) dxdy - \int_{\Omega} p \left(\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} \right) dxdy + \int_{\Omega} q \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} \right) dxdy = 0 \quad \forall (v_1, v_2, q) \in V \times Q.$$

FreeFEM++ではこの書き方を用いる.

註記 2.13 Stokes 問題の有限要素計算では, $V \geq Q$ を近似する有限要素空間 $V_h \geq Q_h$ を適切な組み 合わせで選ばなくてはならない.

⁷Stokes 方程式は流速の遅い非圧縮粘性流体の運動を記述する方程式である.

図 2.18: 流入口付き W 型領域と境界ラベル

 $V_h:P2, Q_h:P1$

 \times V_h:P1, Q_h:P1

これらの適切性を判断するための条件として, Inf-Sup 条件がある: $\exists \beta > 0$ such that $\forall h$

 $\inf_{q_h \in Q_h \setminus \{0\}} \sup_{\boldsymbol{v}_h \in V_h \setminus \{0\}} \frac{\int_{\Omega} q_h \operatorname{div} \boldsymbol{v}_h d\boldsymbol{x}}{\|\boldsymbol{v}_h\|_V \|q_h\|_Q} \geq \beta.$

ここで, β はhに依らない定数である.

註記 2.14 FreeFEM++(w-stokes.edp)では,Qhの元qは,

$$\int_{\Omega} q \, dx dy = 0$$

をみたすように設定されていない.このことから,解くべき連立1次方程式の行列のランクは1つ下がる(ものと思われる).実際,solver=LUとするとエラーになる.

```
— w-stokes.edp —
```

```
int n=5;
real a=10;
func ud = -a*0.25*(y-4)*(y-5);
border Gamma1(t = 0, 1) {x = -1.5*t - 3.5; y = 5;}
border Gamma2(t = 0, 1) \{x = -t +4; y = 4;\}
border Gamma3(t = 0, 1) {x = 3*t - 4; y = -6*t + 4;}
border Gamma4(t = 0, 1) {x = 3*t +1; y = 6*t - 2;}
border Gamma5(t = 0, 1) {x = -2.5*t -1; y = 5*t;}
border Gamma6(t = 0, 1) {x = -2*t + 3; y = -4*t + 4;}
border Gamma7(t = 0, 1) {x = -t; y = -2*t + 2;}
border Gamma8(t = 0, 1) {x = -t+1; y = 2*t;}
border Gamma9(t = 0, 1) \{x = t-1; y = 2*t-2;\}
border Gamma10(t = 0, 1) {x = t; y = -2*t;}
border Gamma11(t = 0, 1) {x = -5; y = -t+5;}
border Gamma12(t = 0, 1) \{x = t-5; y = 4;\}
mesh Th = buildmesh(Gamma1(1.5*n)+Gamma2(n)+Gamma3(6*n)+Gamma4(6*n)
                   +Gamma5(5*n)+Gamma6(4*n)+Gamma7(2*n)+Gamma8(2*n)
                   +Gamma9(2*n)+Gamma10(2*n)+Gamma11(n)+Gamma12(n);
fespace Vh(Th,P2); Vh u1,u2,v1,v2;
fespace Qh(Th,P1); Qh p,q;
solve stokes([u1,u2,p],[v1,v2,q],solver=UMFPACK) =
    int2d(Th)(dx(u1)*dx(v1)+dy(u1)*dy(v1) + dx(u2)*dx(v2)+ dy(u2)*dy(v2)
          - p*(dx(v1)+dy(v2)) + q*(dx(u1)+dy(u2)))
            + on(1,3,4,5,6,7,8,9,10,12,u1=0,u2=0) + on(11,u1=ud,u2=0);
plot([u1,u2],p,wait=1,ps="w-stokes.eps");
//plot(Th, wait=true, ps="w-stokes-Th.eps");
//savemesh(Th, "w-stokes-Th.msh");
```


図 2.19: w-stokes.edpの出力結果