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1 Introduction

We consider to compute numerical solutions of the three-dimensional exterior Helmholtz
problem:















−∆u− k2u = 0 in R3 \ O,
u = g on γ,

lim
r−→+∞

r

(

∂u

∂r
− iku

)

= 0 (Sommerfeld radiation condition),
(1)

where k is a positive constant called the wave number, O is a bounded domain of R3 with
Lipschitz continuous boundary γ, R3 \ O is assumed to be connected, r = |x| (x ∈ R3),
and i =

√
−1. This problem arises in models of acoustic scattering by a sound-soft

obstacle O embedded in a homogeneous medium.
To compute numerical solutions of (1), we use a fictitious domain method with a

Lagrange multiplier defined on γ, which is studied in [5], [6], [7], [8]. So we introduce a
rectangular parallelepiped domain Ω, the fictitious domain, such that O ⊂ Ω, and then
we set ω = Ω \ O and Γ = ∂Ω (see Figure 1). To approximate the Sommerfeld radiation
condition in (1), we impose the Sommerfeld-like boundary condition on Γ:

∂u

∂n
− iku = 0,

where n is the outward unit normal vector to Γ. This boundary condition is not so
accurate; however, we do not discuss more accurate boundary condition here, for which
we refer the reader to [1], [10]. As an approximate problem to (1), we here consider the
following problem:











−∆u− k2u = 0 in ω,
u = g on γ,

∂u

∂n
− iku = 0 on Γ.

(2)
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We can equivalently rewrite (2) as a saddle point problem in Ω which is obtained by
extending the solution u of (2) to Ω so that the extended function also satisfies the
homogeneous Helmholtz equation in O, and by imposing weakly the non-homogeneous
Dirichlet boundary condition on γ with a Lagrange multiplier. When we discretize such
a saddle point problem, we may use a uniform tetrahedral mesh in Ω; however, we need
to construct a triangular mesh on γ. These meshes can be constructed independently of
each other, except that the boundary mesh size is larger than the mesh size in the domain.
Thus the mesh generation in the fictitious domain method is easier than that in the usual
finite element computations, especially when ω is a complicated shape. When the P 1

conforming finite element on Ω and the P0 finite element on γ are used, the constrain

matrix of the discrete saddle point problem, i.e., the matrix whose entries are integrals
of the product of basis functions of the P1 and P0 finite elements, can be automatically
computed with an algorithm introduced in Section 5. Furthermore, the use of uniform
meshes in Ω allows us to use fast Helmholtz solvers as introduced in [3].

Ω

Γ

γ

Γ
Ο

ω

Figure 1: Domains Ω and ω etc.

We present an a priori error estimate for approximate solutions obtained by the ficti-
tious domain method. Such an a priori error estimate is derived by following an idea of
Girault and Glowinski [5]. Although they studied a positive definite Helmholtz problem,
we here study an indefinite one. Thus our proof for the error estimate is slightly different
from theirs; however, we do not write it here, which will be described in a forthcoming
article. We further present results of numerical experiments concerning the rate of con-
vergence for approximate solutions of a test problem which confirm the obtained a priori
error estimate.

Girault et al. [6] analyze the error of the fictitious domain method applied to a non-
homogeneous steady incompressible Navier-Stokes problem. Bespalov [2], Kuznetsov-
Lipnikov [11], Heikkola et al. [9], [10] study another fictitious domain method, which
requires locally fitted meshes. Farhat et al. [4] propose a fictitious domain decomposition
method aimed at solving efficiently partially axisymmetric acoustic scattering problems.

The remainder of this article is organized as follows. In Section 2, we describe the
fictitious domain formulation of problem (2) and present a theorem concerning the well-
posedness of the resulting saddle point problem. In Section 3, we formulate a discrete
problem of the saddle point problem. In Section 4, we present the a priori error estimate
mentioned above which are derived under some assumptions with respect to meshes in
Ω and on γ and the regularity for the solution of the continuous saddle point problem.
In Section 5, we describe how to compute the constrain matrix. In Section 6, we report
results of numerical experiments, which are consistent with the a priori error estimate.
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2 Fictitious domain formulation

A weak formulation of (2) is:







Find u ∈ H1(ω) such that
a(u, v) = 0 for all v ∈ V,

u = g on γ,
(3)

where V = {v ∈ H1(ω) | v = 0 on γ} and

a(u, v) =

∫

ω

(

∇u · ∇v − k2uv
)

dx− ik

∫

Γ

uv dγ.

Theorem 1 For every g ∈ H1/2(γ), problem (3) has a unique solution.

We here introduce some notations. We denote the standard Sobolev space H 1(Ω) by
X. Let H−1/2(γ) be the set of all semi-linear forms on H 1/2(γ). We denote H−1/2(γ) by
M , and the duality pairing between H−1/2(γ) and H1/2(γ) by 〈·, ·〉γ .

The solution of (3) can be obtained by solving the following saddle point problem:







Find {u, λ} ∈ X ×M such that

ã(u, v) + b(v, λ) = 0 for all v ∈ X,

b(u, µ) = 〈µ, g〉γ for all µ ∈M,

(4)

where

ã(u, v) =

∫

Ω

(

∇u · ∇v − k2uv
)

dx− ik

∫

Γ

uv dγ for u, v ∈ X,

b(v, µ) = 〈µ, v〉γ for v ∈ X and for µ ∈M.

To describe the well-posedness of problem (4), we consider the following eigenvalue prob-
lem:

{

−∆u = αu in O,
u = 0 on γ.

(5)

We denote by σ the set of all eigenvalues of (5).

Theorem 2 Assume that k2 ∈ (0, ∞) \ σ. Then, for every g ∈ H1/2(γ), problem (4)
has a unique solution {u, λ} ∈ H1(Ω)×H−1/2(γ). Further the restriction of u to ω is the

solution of problem (3).

3 Discrete problem

We divide Ω by a uniform cube grid and subdivide each cube into six tetrahedrons, as in
Figure 2. Let h denote the length of the longest edge of these tetrahedrons and let Th

denote the corresponding tetrahedrization of Ω. We take a Cartesian coordinate system
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in R3 so that Ω can be represented as follows: Ω = (−lx/2, lx/2) × (−ly/2, ly/2) ×
(−lz/2, lz/2). Let

H =

{

h =
√

3h′ | h′ =
lx
Nx

=
ly
Ny

=
lz
Nz

, (Nx, Ny, Nz) ∈ N 3

}

.

We consider a family {Th}h∈H of such tetrahedrizations of Ω. For each h ∈ H, we take

Xh =
{

vh ∈ C0(Ω) | vh|T ∈ P1 for every T ∈ Th

}

,

where P1 denotes the space of polynomials, in three variables, of degree less than or equal
to one.

Figure 2: Tetrahedrization of domain Ω.

We here assume

(B) the boundary γ is polyhedral, with restrictions that its angles at edges and vertices
are not too small.

We divide each face of γ into triangular patches. Let η be the maximum length of the
sides of these triangular patches and denote by Pη the corresponding triangulation of γ.
We consider a family {Pη}0<η≤η̄ of triangulations of γ. For each η ∈ (0, η̄], we take

Mη = {µη | µη |P is a constant for every P ∈ Pη} .

A discrete problem of (4) is:







Find {uh, λη} ∈ Xh ×Mη such that

ã(uh, vh) + b(vh, λη) = 0 for all vh ∈ Xh,

b(uh, µη) = 〈µη , g〉γ for all µη ∈Mη.

(6)

4 Error estimate

We assume the following:

(H1) There exists a positive constant θ0 independent of η ∈ (0, η̄] such that θP ≥ θ0 for
all P ∈ Pη, where θP is the smallest angle of P .

(H2) There exists a positive constant L such that η ≤ Lh.
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(H3) For every P ∈ Pη, the diameter of the inscribed circle of P is grater than 4h.

For the solution {u, λ} ∈ X ×M of (4), we assume

(R1) There exists an s ∈ (1/2, 1] such that u ∈ H1+s(Ω);

(R2) λ ∈ L2(γ).

We now consider the following auxiliary problem: for a given f ∈ L2(Ω), find {u, λ} ∈
H1(Ω) ×H−1/2(γ) such that

{

ã∗(u, v) + b(v, λ) = (f, v)L2(Ω) for all v ∈ X,
b(u, µ) = 0 for all µ ∈M,

(7)

where

ã∗(u, v) =

∫

Ω

(

∇u · ∇v − k2uv
)

dx+ ik

∫

Γ

uv dγ.

For every f ∈ L2(Ω), problem (7) has a unique solution. We assume that for every
f ∈ L2(Ω), the solution {u, λ} ∈ X ×M of (7) satisfies

(R3) u ∈ H1+s(Ω), where s is the constant presented in (R1);

(R4) λ ∈ L2(γ).

Theorem 3 Assume that hypotheses (B) and (H1)–(H3) hold. Suppose that the wave

number k satisfies k2 ∈ (0, ∞) \ σ and that hypotheses (R1)–(R4) hold. Then, there exist

positive constants h̄(k) and η̄(k) such that for all {h, η} ∈ (0, h̄(k)) × (0, η̄(k)), problem

(6) has a unique solution {uh, λη} ∈ Xh ×Mη, and there exists a positive constant C such

that

‖u− uh‖H1(Ω) + ‖λ − λη‖H−1/2(γ) ≤ C
{

hs‖u‖H1+s(Ω) +
√
η‖λ‖L2(γ)

}

.(8)

5 Numerical computation

Let ϕ1, . . . , ϕN be the basis functions of Xh such that ϕn(Ql) = δnl (1 ≤ n, l ≤ N ),
where N = dimXh, Ql (1 ≤ l ≤ N ) are the nodes of tetrahedrization Th, and δnl denotes
Kronecker’s delta. Also let ψ1, . . . , ψM be the basis functions of Mη such that ψm|Pl

≡ δml

(1 ≤ m, l ≤ M), where M = dimMη and Pl (1 ≤ l ≤ M) are the triangular patches of
triangulation Pη. Then the solution {uh, λη} of problem (6) is written as follows:

uh =
N
∑

n=1

cnϕn and λη =
M
∑

m=1

dmψm

with (cn)1≤n≤N ∈ CN and (dm)1≤m≤M ∈ CM, and problem (6) is reduced to the following
linear system:

[

A BT

B O

] [

c

d

]

=

[

o

g

]

,
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where

A = (ã(ϕn, ϕl))1≤l, n≤N , B = (b(ϕn, ψm)) 1≤m≤M,1≤n≤N ,

c = (cn)1≤n≤N , d = (dm)1≤m≤M,

g =
(

〈ψm, g〉γ
)

1≤m≤M
.

Computation of matrix A is easy because uniform meshes are used in Ω; however,
computation of matrix B is not so easy at first glance, so we will explain how to compute
matrix B in the subsequent subsection.

5.1 Computation of matrix B

We first note that the (n, m)-entries of matrix B are given by

b(ϕn, ψm) =

∫

Pm

ϕn dγ.

To compute these values exactly, we need to construct a triangulation of the intersection of
triangular patch Pm and each of tetrahedral elements of which the support of ϕn consists.
We give an algorithm for constructing such a triangulation. We fix a triangular patch P
and a tetrahedral element K, which are considered to be closed sets.

Algorithm for constructing a triangulation of P ∩K:

1. Compute the plane Π which includes the triangular patch P .

2. Seek Π ∩K whose measure is positive.

2-1. Count the number N0 of vertices of K which are on Π and the number N+ of
vertices of K which are above Π. The cases for (N0, N+) are listed in Table 1.

2-2. Compute the intersection points of Π and edges of K which are not vertices of
K. Their number Ni is written in Table 1.

2-3. If Π ∩K is a triangle, then proceed to the next procedure.

If Π ∩K is a quadrangle, then divide it into two triangles and proceed to the
next procedure.

If the measure of Π ∩K is zero, then the measure of P ∩K is also zero, and
hence need not construct a triangulation of P ∩K.

Thus, if the measure of Π ∩K is positive then we can obtain one or two triangles,
which will be denoted by T in the following, and are also considered to be closed.

6



Table 1: Π ∩K and the number Ni of the intersection points of Π and edges of K which
are not vertices of K are listed for each (N0, N+), where N0 is the number of the vertices
of K which are on Π, and N+ is the number of the vertices of K which are above Π.

N0 N+ Π ∩K Ni

0

0
1
2
3
4

empty
triangle

quadrangle
triangle
empty

0
3
4
3
0

1

0
1
2
3

point
triangle
triangle
point

0
2
2
0

2
0
1
2

line segment
triangle

line segment

0
1
0

3
0
1

triangle
triangle

0
0

3. Construct a triangulation of P ∩ T .

Let s1, s2, s3 be the sides of the triangle T , and let lj (j = 1, 2, 3) be the line
including sj. Let Dj be the closed half-plane on Π divided by lj which includes the
vertex of T not on lj (see Figure 3). We here note that we have

T ∩ P =

(

3
⋂

j=1

Dj

)

∩ P = D3 ∩ (D2 ∩ (D1 ∩ P )).

From this relation, we get the following procedure for constructing a triangulation
of T ∩ P .

3-1. Construct a triangulation of D1 ∩ P .

(a) Seek the line l1.

(b) Count the number n0 of vertices of P which are on l1 and the number n+ of
vertices of P which are interior points of D1. There are cases for (n0, n+)
as in Table 2.

(c) Compute the intersection points of l1 and sides of P which are not vertices
of P . Their number ni is written in Table 2.

(d) If D1 ∩ P is a triangle, which will be denoted by P1, then proceed to
procedure 3-2.
If D1 ∩ P is a quadrangle, then divide it into two triangles P

(1)
1 and P

(2)
1 ,

and proceed to procedure 3-2.
If the measure of D1 ∩ P is zero, then the measure of T ∩ P is also zero,
and hence need not construct a triangulation of T ∩ P .
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Figure 3: Half-plane Dj , triangle T , side sj and line lj.

Table 2: D1 ∩ P and the number ni of the intersection points of l1 and sides of P which
are not vertices of P are listed for each (n0, n+), where n0 is the number of the vertices
of P which are on l1, and n+ is the number of the vertices of P which are interior points
of D1.

n0 n+ D1 ∩ P ni

0

3
2
1
0

triangle
quadrangle

triangle
empty

0
2
2
0

1
2
1
0

triangle
triangle
point

0
1
0

2
1
0

triangle
line segment

0
0

3-2. Construct a triangulation of D2 ∩ (D1 ∩ P ).

If D1 ∩ P is a triangle, then we have

D2 ∩ (D1 ∩ P ) = D2 ∩ P1,

and hence apply procedure 3-1 to D2 ∩ P1.

If D1 ∩ P is a quadrangle, then we have

D2 ∩ (D1 ∩ P ) = (D2 ∩ P (1)
1 ) ∪ (D2 ∩ P (2)

1 ),

and hence apply procedure 3-1 to D2 ∩ P (1)
1 and D2 ∩ P (2)

1 .

3-3. Construct a triangulation of D3 ∩ (D2 ∩ (D1 ∩P )) = T ∩P in the same way as
in procedure 3-2.

Implementing this algorithm in a computer, we can automatically construct a triangula-
tion of K ∩ P .
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6 Numerical experiments

We measure convergence rates of approximate solutions for a test problem whose exact
solution is known analytically. In the problem, the boundary γ is a regular octahedron
with length of the edges equal to 1.5, Ω = (−2, 2)3, and the wave number k = 0.4. The
test problem is:















Find {u, λ} ∈ X ×M such that

ã(u, v) + b(v, λ) =

∫

Ω

Fv dx+

∫

Γ

fv dγ for all v ∈ X,

b(u, µ) = 〈µ, g〉γ for all µ ∈M,

where the data F , f and g are so chosen that the exact solution becomes

u(x, y, z) = x2 + y2 + z2 + i(x2 − y2 − z2) in Ω,

which belongs to C∞(Ω), and then the Lagrange multiplier λ = 0 since λ is given by

λ =
∂u|ω
∂ν

− ∂u|O
∂ν

,

where ν is the unit normal vector to γ outward from O. This problem is associated with
the following problem:











−∆u− k2u = F in ω,
u = g on γ,

∂u

∂n
− iku = f on Γ.

Although we have considered the case where F = f = 0 in the above sections, all the
theorems stated above hold for the case where F and f are non-homogeneous, with proper
modifications.

In our numerical experiments, mesh sizes h and η satisfy h, η ≤ (2π/k)/10, i.e., the
used meshes include at least ten grid points per the wavelength, which is a commonly
used criterion for computing appropriate numerical solutions of the Helmholtz problem.
In addition, the diameter of inscribed circle of each triangular patch is taken to be equal
to 4h in order that hypothesis (H3) is satisfied. All computations were performed in
double precision complex arithmetic on VT-Alpha6 G IV personal computer (Alpha21264
800MHz CPU, 4GB Memory).

We report errors measured with H1(Ω)-seminorm and L2(Ω)-norm in Table 3, which
shows that the rates of convergence with respect to H1(Ω)-seminorm and L2(Ω)-norm are
O(h1) and O(h2), respectively. This convergence rate with respect to H 1(Ω)-seminorm is
consistent with error estimate (8) since u ∈ H 2(Ω) and λ = 0 in this test problem.
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