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Abstract

We consider the exterior problem for the wave equation. When numerically
solving the exterior problem, one often introduces an artificial boundary in order to
reduce the computational domain to a bounded domain and imposes an artificial
boundary condition (ABC) on the artificial boundary. We introduce a new ABC,
which is constructed by using the Dirichlet-to-Neumann (DtN) operator associated
with the Helmholtz equation. Our ABC is suitable for the controllability method
for computing numerical solutions of the Helmholtz equation. We show the well-
posedness of the wave equation with our ABC. Then it is important to investigate
some properties of the Hankel functions since the DtN operator on a spherical
artificial boundary is analytically represented by the Hankel functions.



1 Introduction

We consider the exterior problem for the wave equation:

) {utt—Au = f in Q,

u = 0 on 7,

where (2 is an unbounded domain of R? (d = 2 or 3) with boundary + of class C*. We
assume that @ = R?\ Q is a bounded open set. If f(x,t) = F(z)e ™! where k is a
positive constant, and if F' has a compact support, then the limiting amplitude principle
holds, that is, the solution u(z, t) converges locally to a steady state U(z)e ™! as time
tends to infinity, where U is the solution of the Helmholtz equation with the outgoing
radiation condition:

~AU-KU = F inQ,
U = 0 onn,

rT<a——ikU> = 0 asr— oo,

where r = |z| for z € R".

When numerically solving the exterior problem for the wave equation, one often intro-
duces an artificial boundary in order to reduce the computational domain to a bounded
domain and imposes an artificial boundary condition (ABC) on the artificial boundary.
We choose the artificial boundary as follows: I', = {x € R* | |2| = a}, where a is a posi-
tive number such that OUsupp F C {z € R" | |z| < a}. Then the bounded computational
domain is defined by Q, = {z € Q| |z| < a}.

We introduce a new ABC:

0 0
(3) a—z + 8—7;: = —-Su—iku on Ty,
where n is the unit normal vector on I', being toward infinity and S is the Dirichlet-to-
Neumann (DtN) operator for the Helmholtz equation with the outgoing radiation condi-
tion, i.e., § is defined by the following relation:

ou

—=-8U onl,,

on
where U is the solution of the Helmholtz equation (2). We design our ABC (3) so that
U(z)e™™ can satisfy it.

We consider the wave equation with our ABC:

Ut — Au = f in Q7
u = 0 on o,
ou Ou
4 — 4+ — = —-Su—1 by
(4) I + T Su —1iku on X,
u(z, 0) = uj(x) in Qg
w(z, 0) = uj(z) in Q,



where @ = Q, x (0, 00), 0 = v x (0, 00), and X = I', x (0, 00). We expect that if
f(x, t) = F(x)e ™! in the problem (4), then the solution u converges, on g, to the
steady state U(x)e~ ! as time tends to infinity. However it is yet to be proved. In this
report, we show the well-posedness of the problem (4), following the way of proof by
Ikawa [6]. To accomplish this purpose, we need to investigate some properties of the
Hankel functions since the DtN operator on a spherical artificial boundary is analytically
represented by the Hankel functions.

We can use our ABC in the numerical technique of Bristeau-Glowinski-Périaux [3],
called the controllability method, for solving the exterior Helmholtz problem. The use of
our ABC makes it possible that we obtain accurate numerical solutions regardless of the
size of the artificial boundary (see Koyama [7]). Hence, by using our ABC and by taking
a small artificial boundary, we can reduce computational costs.

An ABC introduced by Engquist-Halpern [4] motivated us to consider our ABC. They
consider the case where the force term f of the wave equation (1) depends only on the
space variable x. Their ABC is given as follows:

g—zjtg—q::—’]'u on I,
where 7 is the DtN operator for the Laplace equation. Their ABC forces the solution of
the wave equation to converge, on (,, to a solution of the Laplace equation as time tends
to infinity.

This report is organized as follows. In Section 2, we define the Sobolev space on T,
i.e., H*(I',) (s € R), and show that the DtN operator S is a bounded linear operator from
H'Y2(,) into H~'/2(T,). In Section 3, we state main theorem and prove it. In Appendix
A, we describe some properties of the Hankel functions. In Appendix B, we study the
Poisson equation with the following ABC:

g—Z:—TU on I',.

2 Properties of the DtN Operator

We denote by L?(T',) the usual space of complex-valued square integrable functions on T',.
Let (-, -) and |||/ 2(r,) denote the inner product and the norm of L*(T',), respectively. We
define the Sobolev space H*(I',) in the following. We first describe the two-dimensional
case. The polar coordinates are denoted by r, §. The spherical harmonics Y,, (n € Z)
are defined by Y, () = ¢ /v/2ra. Then {Y, | n € Z} becomes a complete orthonormal
system of L*(T,). For every ¢ € L*T,), we denote the Fourier coefficients of ¢ by
on = (p, Yn) (n € Z). For each s > 0, we define H*(T',) by

oo

Hs<ra>={soeL2<ra>| 5 |n|28|<,on|2<oo}.

n=—oo

Then H*(I',) becomes a Hilbert space equipped with the following inner product:

oo

(0, V) ey = 2 L+ n[*)puthy  forall , ¢ € H(Ty).

n=—oo



For each s < 0, the space H*(I',) is the dual space of H~*(I';), and for s = 0, the space
HO(T,) = L3(T,).

We next describe the three-dimensional case. The spherical coordinates are denoted
by 7, 0, ¢. The spherical harmonics V" (n € N U{0}, —n < m < n) are defined by

Y (6, 6) = w B s

where P are the associated Legendre functions. Then {Y;" | n € N U {0}, —n < m < n}
is a complete orthonormal system of L*(T,). We denote the Fourier coefficients of
o € L*(T,) by ¢™ = {p, Y™). For each s > 0, we define H*(T',) by

HS(ra>={soeL2<ra>| D3 |n|28|so;”|2<oo},
n=0m=—n

and its inner product by

(@, V) s Z Z (14 |n|*)pmpm  for all ¢, ¢ € H*(T,).

n=0m=—n

For every s < 0, we define H*(I',) in the same way as the two-dimensional case.

PROPOSITION 2.1 The DtN operator S is a bounded linear operator from H'/?(T,) into
H=Y2(1,).

Proof.  We first note that the DtN operator S is analytically represented as follows
(see Grote-Keller [5]):

> HW (ka)
Z _pn A\

OnYn, if d =2,
n=—00 7(11) (ka)

W (ka)

ZZ—W(

erY™if d = 3,

n=0m=-—n ka

where H(! and h{!) are the cylindrical and the spherical Hankel functions of the first kind
of order n, respectively, and the prime on functions denotes differentiation with respect
to the argument.

Let us begin with the two-dimensional case. For every ¢ € HY?(I',), we can regard
S as an element of H~'/2(T,) by the following identity:

6) Se = S —kla ()

o, forall v € HYA(T,),
2 TR (/m)@ Y 0 (T'a)

where (-, -) also denotes the duality between H~'/2(T',) and H'/?(T',). This can be un-
derstood in the following way. By the Schwarz inequality, we have

W0 |1+ 0l BV (ka)

n=—oo

W (g |2 V2w 1/2
6) [(Se. v (Z Hy  (ka) <1+rnr>w) (Z(1+!n!)!wn!2> |
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Here, by the recursion formula:

(1) HY (ka) = HY, (ka) — kiHy)(ka) forall v € R
a

(see Abramowitz-Stegun [1]), we can get

HY (k HY, (k
(8) k “(1)( 9 _y "(1)1( D" frallne Z.
Hy'(ka) Hy'(ka) @

We here notice that we have the following asymptotic behavior:

HV (ka) — 2v

(v — 00),
which will be shown in Lemma A.2 described in Appendix A. By using (8) and (9), we
can show that there is a positive constant C' such that
ko HY (k
(10) ‘ "(1)( )
L+ [n| B (ka)
Thus, it follows from (6) and (10) that

(S, D) < Cllelmewa) ¢l me.,)-

This implies that we can define Sy as an element of H~/2(T,) by (5), and moreover that
S is a bounded operator from HY2(T,) into H~/3(T,,).
Let us next consider the three-dimensional case. By (7) and the formula:

T
hle)(ka) =/ %H&)l/z(ka),

we can get

<(C forallneZ.

1) KM ka) o a(ka)
b (ka)  HY)p(ka) @

for all n € N U {0}.

By using (11) and (9), we can show that S is a bounded operator from H'/?(T,) into
H~'%(T,) in the same way as the two-dimensional case. W

Now we define a linear operator B : HY?*(T',) — H~'?(T,) as follows: for every
Y e HI/Q(Fa)a

s HW (k
3 —kRe{%}%Yn, if d=2,

By =
%) n (1)
> Y —kRe {M} eryyr, it d=3.

n=0m=-—n h7(11) (ka)

PROPOSITION 2.2 The operator B is a bounded linear operator from Hl/Q(Fa) mnto
H=Y2(T,), and satisfies

(12) (Bp, ©) >0  for allp € HY*(T,).



Proof.  We can show that B is a bounded linear operator from H'/%(T,) into H~'/%(T,)
in the same way as the proof of Proposition 2.1.
Now we see from Lemmas A.3 and A.4 that
(1)

H
—kRe{ ”(1)(‘”)} > 0 forallneZ,
Hy/(x)

Rl
—k;Re{ ,(zl)(:r)} > 0 forallne NUJ{0}.
hn' ()

This implies (12). N

3 Main Results

Let us introduce two spaces:

V = {veHl(Qa)\v:O on”y},
E = V xL*%Q,),

where for each m € N, H™(£2,) denotes the usual complex-valued Sobolev space of order
m on ), whose norm is denoted by || - ||gm,). The space E becomes a Hilbert space
equipped with the following inner product: for w = {ug, u1}, v = {vg, v1} € E,

(u, ’U)E:/Q Vuo-Vv_odx%—/Q u 07 dx + (Bug, vo) -

We denote the associated norm by || - || .
To transform the wave equation to a system of first order, we define a linear operator

A:D(A)(C E) — E as follows:
Av = {vy, Avg}  for all v = {vy, v1} € D(A),

where

D(A) = {'U = {Uo, Ul} | Vo € H2(Qa) N V, U1 € ‘/,

0
el +v1 = =Svg — tkvy on Fa}.
on

The problem (4) is written as follows:

dt
u(0) = u¥,

{ d_u(t) = Au(t) + f(t) forte (0, 00),

where f(t) = {0, f(¢)} and u* = {uf, ui}.
Main theorem of this report is the following.

THEOREM 3.1 The linear operator A is the infinitesimal generator of a semigroup of
class Cy.



In order to prove this theorem, it suffices from Hille-Yosida’s theorem to prove three
propositions described below (see [6]).

PROPOSITION 3.1 D(A) is dense in E.

PROPOSITION 3.2 There is a positive constant C such that
(13) Re(Au, u)p < C|lu||3  for allu € D(A).

PROPOSITION 3.3 For every A > 0, there exists (A — A)~L.

Propositions 3.1-3.3 will be proved in Subsections 3.1-3.3, respectively.

3.1 Proof of Proposition 3.1

To prove Proposition 3.1, we first prove two lemmas.

LEMMA 3.1 The space C§°(2, UT,) is dense in V' equipped with the induced topology
from HY(Q,), where

CP(QUT,) ={p e C® ) | Thereisa @ e CF(Q) such that ¢ = Plq, } -

Proof. For every v € V, there is a 0 € H}(Q) such that v = 9|g,. Then there are
or € C(Q) (k= 1,2,...) such that ¢, — © in H'(Q) as k — oco. We here set
©r = Prla,- Then ¢ € C°(Q, UT,) and ¢, — v in H(Q,) ask — o0o. N

LEMMA 3.2 For all g € C*°(T',) and for all € > 0, there is a u € C§°(, UT,) such
that

0
u=0 only, —u:g on Iy,
on
and ||ul| g, < €.

Proof. A proof is written in [6]. However, we rewrite it in more detail.
We take x(r) € C5°(R) such that

dx

dr (0)=1, and suppy C [-1,1].

x(0) =0,
We choose a neighborhood of I', as follows: U, = {z = 1w | |r—a| < a, w € S971}, where
a is a sufficiently small positive number and S% ! is a unit sphere in R? with center at
the origin. For n € (0, o), we define

rTr—a
g(w)nx < p ) on Uy,
0 on R\ U,.

uy(x) =

Then we have u,|q, € C5°(Q, UT,),

0
(14) u, =0 onl,, and % =g onl,.
n



We further have

2

2 a T—a

d </ / r-a
/Qalunl v an‘Q(W)ﬁX( ; )

Setting p = (r — a)/n, we can get

rdr dw.

/Qa Juy[* da < /Sd_l /_01 lg(W)nx(p)*(on + a)*~'ndp dw.
Thus there is a positive constant C' such that, for sufficiently small n > 0,
(15) /Q luy|> da < Cip.
We next show that there is a positive constant C' such that, for sufficiently small n > 0,
(16) /Q IV, [? de < C.
We prove (16) only in the two-dimensional case. Indeed, we have

2
d
/Qa‘vun’ x
a 0 r—a\l®> 1
e (5

= 7 /_01 o 9@)X(p)[* (np + a) dwdp + n® /_01 /Sl

9 (w) r—a\[ r dwdr
aeg nx 1

S|

np+a

dwdp.

%g(wx(ﬂ)

This yields (16) for sufficiently small 7. We can analogously show (16) in the three-
dimensional case. It follows from (15) and (16) that if we take n sufficiently small, we can
make ||uyl| g1,y small. This fact and (14) complete the proof of Lemma 3.2. W

Proof of Proposition 3.1. Let {vg, v1} be an arbitrary element of E. We can see from
Lemma 3.1 that there are vg; € C3°(2, UL,) (7 =1, 2, ...) such that

(17) vogj — vy InV asj— oo.

Since Cg°(Q, UT,) is also dense in L*(Q,), there are vy; € C°(Q, UT,) (1 =1,2,...)
such that

(18) vy; — vy in L*(Q,) asj — oo.

We here define

Ovg; ,
(19) 9i = (972] + vy + S?)oj + Zlﬂ’l)oj on I',.

Since g; € C™(I',), we can see from Lemma 3.2 that for each j € IN, there is a w; €
Ce(Q, UT,) such that
Ow;

(20) w; =0 only,, 5, —Ji on I,



and

(1) Nwjllmen) < =

k>|»—t

Then we have {vg; — wj, v1;} € D(A). Indeed, it is obvious that vy; — w; € H*(Q,) NV
and v; € V. By (20) and (19), we have

0 .
%(Uoj — wj) + Ulj + S(Uoj — wj) + Zk’(l)oj — wj)

Oy , ow,
= —an] + v1; + Svy; + kv — 3—71] =9g;—9;=0 onl,.

Furthermore, it follows from (17), (18), and (21) that

{voj —wj, v1;} — {vo, n} MmE asj—o0. N

3.2 Proof of Proposition 3.2
Proof of Proposition 3.2. For every u = {ug, u;} € D(A), by the Green formula, we have
(Au, u)p
= / Vuy - Vg dx +/ Augty dx + (Buy, ug)

= Vu; - Vg dx + ﬂu_l dy — /Q Vug - Vg dx + (Buy, ug)

Qa
=/, Vuy - Vg dx —/Q Vug - Vg dx
- 2u1, uy) — (S — B);O, wy) — ik (ug, ur) — (Bug, uy) + (Buy, ug) .
The real part of this identity is:
(22) Re(Au, u)g = —HU1H%2(FG) — Re ((S — B)ug, uq1) + kIm (ug, ug).
We first consider the case when d = 2. We set ¢ = ug|r, and ¥ = uy|p,. Then we have
(23) —Re((S — B)ug, u1) + kIm (ug, u1) n_z;ook ll —Im {i )((:Z)) H Im (gonm) :

Now it follows from Lemma A.5 that there is a positive constant Cy such that

(1y 1y
(24) k|1—1m{m} Sk(l+1m{m}> =Cy, forallneZ.

HY (ka) HY (ka)
Combining (22), (23), and (24), we have

Re(Au, u)p < —Hulf\%2(ra)+COHUOHLQ(RZ)HulHLZ(Fa)

C, C
< —§HU1||%2(FQ) + TOHUOH%%FQ) < 70||U0H%2(ra)-

Further, by using the trace theorem and the Poincaré inequality, we can get (13).
When d = 3, by using Lemma A.6 instead of Lemma A.5, we can show (13) in the
same way as the case when d =2. W



3.3 Proof of Proposition 3.3
For A € R and f € E, we suppose that u € D(A) satisfies

A—Au=f.
Then we have
—Aug+ Nuy = fi+ Mo i €,
Ug = 0 on 77
—_— = —SUO — ZkUO — AU/() + fO on Fav
on

and
(26) Uy = /\UO - f().

Hence, to prove Proposition 3.3, we consider the following problem:

“AutNu = f in Qg
u = 0 on 7,
(27) ou )
— = —Su—iku—Xu+g on I
on

and prove the following proposition, which plays an essential role in the proof of Propo-
sition 3.3.

PROPOSITION 3.4 For each A > 0, for every f € L*(Qy), and for every g € H/*(T,),
the problem (27) has a unique solution which belongs to H*(£,).

We now consider the following problem:

—Au = f in Q

(28) u = 0 on 7,

ou

—+7u = g on Iy

on
where 7 is the DtN operator associated with the Laplace equation and can be represented
as follows:

o0

a

n=—oo

Tp=

Sy P mym ra—s

n=0m=-—n a

It is easily seen that 7 is a bounded linear operator form H'/?(I',) into H~'/?(T',) and
satisfies

(29) (T, ¢) >0 forall p € HYX(T,).

10



LEMMA 3.3 Forall f € L*(Q,) and for all g € HY*(T',), the problem (28) has a unique
solution belonging to H?*(Q,), and we have the following a priori estimate

(30) |l < C{IIf 2@ + gl e, } -

We shall prove Lemma 3.3 in Appendix B.
For € > 0, we consider the following problem:

Lou=—-Au+e\u = f in
(P.) u = 0 on 7,

Ksuz%jt’fu—i—eRu = ¢g on I
on
where R =8 — 7 +ik + \.

LEMMA 3.4 Let A > 0 and 0 < ¢ < 1. Assume that u € H?(S,) satisfies (P.) with
f € L*Q,) and g € HY*(T',). Then there is a positive constant C' such that

(31) lullm@, < C{lIfllz2@n + lgllz2wa }

where C' is independent of X\, €, f, g, and u.
Proof. By the Green formula, we can get
/Qa IVul? dz + X2 /Q | d + (Tu, w) + e{((S = T)u, u) + ik (u, u) + A (u, u)}
= /fzafﬂdx+<g, u) .
The real part of this identity is:
/Qa Vul? dz + X2 /Q (a2 da + (1 — &) (Tu, u) + ={Re (Su, u) + MulZ) }
- Re/Q fadzs + Re (g, u) .
We here note that we have
(32) Re(Su, u) = (Bu, u) > 0.
Thus it follows from (29), (32), and the conditions of € and A that
/Q |Vul? dz < Re/Q fudz + Re (g, u).
Therefore, by the Poincaré inequality and the trace theorem, we obtain (31). M

LEMMA 3.5 Let A\ be an arbitrary non-negative number. Then there is an a > 0 such
that if, for an €, € [0, 1], the problem (P.,) has a solution belonging to H*(S,) for every
f € L*(,) and for every g € HY*(T,), then, for each ¢ satisfying | — e1| < «, the
problem (P.) has a solution belonging to H?(,) for every f € L*(Q4) and for every
g€ H'2(T,).

11



Proof.  For every f € L*(€,) and for every g € H'/2(T',), let u(%) be a solution of the
problem (P.,), which belongs to H?(€,). For p =0, 1,2, ..., let u®*) € H?(Q,) be a
solution of the following problem:

LouP = (g) —e)A2u® in Q,
uPt) = 0 on 7,
K, u%™ = (¢, —e)Ru on T,.

Then, by Lemma 3.4, we have, for every p € N U {0},
(33) 14 sy < Cr {Jes — el 20y + o1 — el IRUP 12}

where C) is a positive constant independent of \, €, 1, u®, and u®*). We here note
that Lemmas A.7 and A.8 imply that R is a bounded linear operator on H*(I',) for every
s € R. Thus, it follows from (33) and the trace theorem that there is a positive constant
(5 such that

[u® Dm0,y < Coler = ell[u® | m ),
where Cj is independent of ¢, 1, u®, and u®*V. This yields
(34) [u® Vo, < (Coler — )P [ ).

We here set u, = 37 u'?). Then we can see from (34) that if Cle; —¢| < 1, then {ug}22,
is a Cauchy sequence in V. Furthermore we note that we have

Lou, = (e1—e)Nug 1+ f in Q
(35) u, = 0 on 7,
K.ou, = (e1—¢)Rug-1+9g on T,

and hence, for ¢ > ¢/,

—A(Uq - Uq/) = qu/ in Qa,

ug—uy = 0 on 7,
%(uq —uy) + T (ug—uy) = gg¢ on Iy,
where
far = —e1X(ug —ug) + (61 — )N (ug1 — ug 1),
Joo = —€1R(ug —ug) + (1 — &)R(ug—1 — ug-1).

By the a priori estimate (30), we have, for ¢ > ¢/,

(36) lug = tgll i) < C{Ifarllz@a) + 9ar Lo, }

Since R is a bounded linear operator on H'2(T,), we can see from (36) and the trace
theorem that

g = ug |l 200y < C {llug = gl + g1 = g1l | -

12



This implies that {ug}s2, is a Cauchy sequence in H?*(Q,) since {ug}o2, is a Cauchy
sequence in V. Hence there is a u € H?({),) such that u, — w in H*(Q,). Then we can
conclude from (35) that u satisfies

—Au+eNu= (g1 —e)\Nu+f inQ,, u=0 on~,

0
% +7Tu+eRu=(e; —e)Ru+g onl,.

This shows that u is a solution of the problem (P.). We can see from the argument above
that if we take @ = 1/C5, then the assertion of Lemma 3.5 holds. W

Proof of Proposition 3.4. Lemma 3.3 assures that the problem (28), i.e., the problem
(P.) with e = 0 has a solution belonging to H?*(Q,) for all f € L?*(,) and for all
g € HY2(T',). Thus we can see from Lemma 3.5 that for each ¢ € (—a, «), the problem
(P.) has a solution belonging to H?(Q,) for all A > 0, for all f € L*(Q,), and for all
g € HY*(T',). Repeating this argument, we can conclude that for every € € (—a, 1 + a),
the problem (P.) has a solution belonging to H?(Q,) for all A > 0, for all f € L*(Q,),
and for all ¢ € H'Y?(T,). Taking here ¢ = 1, we can see that the problem (27) has a
solution belonging to H2(§2,) for all A > 0, for all f € L*(Q,), and for all g € H?(T,).
The uniqueness for the solution of the problem (27) follows from (31). MW

Proof of Proposition 3.3. Let A be an arbitrary non-negative number. We first show
that (A — A) is one-to-one. Suppose

A—Au=0, u={uy, u} € D(A),

then wug satisfies (27) with f = 0 and g = 0, and hence it follows from Proposition 3.4
that ug = 0. Further, since by (26) we have u; = Aug, we can get u; = 0.

We next show that (A — .A) is onto. We can see from Proposition 3.4 that for every
f={fo, f1} € E, thereisaug € H*(Q,) such that ug satisfies (25). Set u; = A\ug—fy € V.
Then we can easily see that w = {ug, u1} € D(A) and A —A)u=f. N
A Some Properties of the Hankel Functions

LEMMA A.1 For each x > 0, we have

(37) HO(x) ~ —@ ()" v—w),

where v € R.

Proof.  According to [1], we have

(38) Jo(z) ~ #(Q—) (v — o0),

(39) N(z) ~ —@ () w—oo)

13



where J, and N, are the cylindrical Bessel functions and the cylindrical Neumann func-
tions of order v, respectively. We have

(40) Hﬁl)(@{_i\/g <%>V}—1
= L(x){%(%)”}1{\/217T_V(g>u}{_i\/g(g>_y}—l
2

We here note that

o {2 (g)‘”}‘lzg(g)ho o0

Combining (38) — (41), we can get (37). W

LEMMA A.2 For each x > 0, we have

H(l)

(42) H,—i(x) oz (v — o),
ngl)(x) 2v

where v € R.

Proof.  We have

Y (z)20 HY, (2) —i\/Z (%)*” i (ﬁ)(yl)Q_V

m@ L ) e g ()

We here note that

. 2 ex —(=1)
N xeo-D \2-D) 2
x

iz () }
e (O R

From (43), (44), and Lemma A.1, we can obtain (42). N

(43)

LEMMA A.3 For all x > 0 and for all v € R, we have

Re {H’E(ll)), (z) } <0
v (2)

14



Proof.  Since H(V (z) = J,(x) + iN,(x), we have

Hﬁ”'(fv)} _ Jul@)J}(2) + N, (2) Ny (z)

(45) Re{Hw(x) 72(z) + N2(a)

According to Watson [8], we have
(46) J2(x) + N2(z) = % /Oo Ko(2x sinh t) cosh(2vt) dt,
72 Jo

where K is the modified Bessel function of the second kind of order zero. Differentiating
(46) with =, we obtain

(47) J,(x)J,(x) + N, ()N, (z) = s /Oo K{ (2 sinh t) sinh ¢ cosh(2vt) dt.

72 Jo

Now we note that we have the following formula:

(48) Ky(&) = /Oo e ¢ttt forall € >0 (see Abramowitz and Stegun [1]).
0

Differentiating (48) with &, we can get

(49) K((&) = —/ e Mt coshtdt <0 for all € > 0.
0

Combining (45), (47), and (49) will complete the proof of Lemma A.3. W

LEMMA A.4 For all x > 0 and for alln € N U{0}, we have
B’
Re{ ’Zl)(x)} <0
hn'(x)
Proof.  Since

T
WD () = 5 H o),

we have

/ xy
1 - 1 .
W(x) 20 HY ()

Thus, we can see form Lemma A.3 that

(1)’ 7Y (z
Re{h" (x)}: ! +Re{7"+1/2() <0.

1 T 9. 1
hi (x) 2z aY, ()

LEMMA A.5 For all x > 0 and for all v, v' € R satisfying |v| > |V'|, we have

M (g W
(51) 0< Im{HV(”((x))} < Im{f[”(l)((x)) }

14

15



Proof.  We have the following formulas:
’ 1%
HY () = B, () — ZHD (1),

o1 (2)No(2) = Jo(2)Ny 1 () = ——=  (see [1]).

T
Using these formulas, we can get

HV (2) 2 1
52) 1 = = — >0
o0 {3 } = e

Now it follows from (48) that Ky(2xsinht), being in the integral on the right-hand side
of (46), is a positive function of ¢ on (0, co). Thus, we can easily see from (46) that for
all v, v/ € R satistying |v| > |V/],

(53) Jy(x) + N, (z) > Jp(z) + Ny (2).

From (52) and (53), we can get (51). M
LEMMA A.6 For all x > 0 and for alln € N, we have
1y h(l)'

0<Im{h?l)(x)} < Im (21) (z) =1

ha () hy ()

Proof.  From (50), we can get
’ 1)’
_ { ) @)} L { 1, () }
) 1 :
WY () aY, ()

Thus, by Lemma A.5, we have

1y @
0 < Tm { thl) C’”} < Im h(gl) (@) for all n € N
hn’ () hy (@)

Since h(()l)(x) = —ie'”/z, we can see that

W) | _
m{ h(()l)(x) } =1. N

LEMMA A.7 Let k>0 and a > 0. Then there is a positive constant C' such that

HY (k
(54) ‘k% + Inl <C foralneZ.
Hy' (ka) @

16



Proof. From Lemma A.2, we can see that there is a positive constant C' such that

(1)

H,” (ka)2
%y (ka) 2n <C forallne NU{0}.
HV (ka) ka

This implies that

1)

H k k

M §C’—a for all n € IN.
HY (ka) 2n

Thus, by using (8), we can get

HW (k k?
kM—i—ﬁ SC—Q foralln € N.
HV (ka) @ 2n

Further, noting that H(_lg(ka) = (=1)"HWY(ka), we see that (54) holds. M

LEMMA A.8 Let k>0 and a > 0. Then there is a positive constant C such that

hY' (k 1
( a)+n+ }SC for alln € N U {0}.

(55) ‘k n

Proof. We can see from (42) that there is a positive constant C' such that

)
H.”\ (ka k

(56) %() <0 forallne NU{0).
Hn+1/2(ka) 2n+1

From (11) and (56), we can get (55). W

B Proof of Lemma 3.3

In the proof of Lemma 3.3, it is essential to prove the following theorem.

THEOREM B.1 For every f € L*(€,), there is a unique function u € H*(,) such that

—Au = f in Qg
u = 0 on 7,
(57) o
— = —Tu on T,
on

Further there is a positive constant C' such that

(58) Null2a) < Cllfllz2a)s

where C' 1s independent of u and f.

If we prove Theorem B.1, then we can easily prove Lemma 3.3 by virtue of the following
lemma.

17



LEMMA B.1 For every g € HY*(T,), there is a w € H*(Q,) NV such that
ow
on
Further there is a positive constant C' such that

(59) +7Tw=g onl,.

(60) Nwllzz@a) < Cligllmar,),

where C' s independent of w and g.

We shall prove this lemma after describing the proof of Lemma 3.3.

Proof of Lemma 3.3. For every f € L?(€,) and for every g € HY?(T',), let u be a
solution of the problem (28) and w a function satisfying (59) and (60). Setting v = v —w,
we have

—Av=-Au+Aw=f+Aw in €,
v=u—w=0 on-y,
v ou <8w

——l—Tw):g—g:O on [',.
on

This shows that we can reduce the problem (28) to the problem (57). Thus, the existence
and uniqueness for the solution of the problem (28) is assured by Theorem B.1. Further,
we can easily get (30) by using (58) and (60). MW

Proof of Lemma B.1. We prove only the two-dimensional case, since we can similarly
prove the three-dimensional case. For every g € HY/?(T,), set

a
Y= Z _gnYm

|n|>0 ’n’
where g, = (g, Y,,). Then we have

1
— [ gdyy € H¥*(I',) x HY/2(T,).
{90,%&/“9 7} (Fa) x HYH(T)

We can see from the trace theorem that there is a w € H*(),) NV such that

0 1
(61) w=¢ onT, and Y gdy on T,

o 2ma Jr,
and that there is a positive constant 'y such that
1
62 <C H— [ gd ‘ ,
©) ulhean < O ey + |5 fo],
where () is independent of g and w. By (61), we have
ow

1
ow T:—/ d — aYo) = a.
o T TW =5 LY Y+ (9 —90Y0) =g

Next we show (60). By simple calculation, we can get

1
63 ' > | gd
63) Nellwewn + |5— [ 9

a

< CQH.gHHl/?(Fa)v
H1/2(Fa)

where Cy is a positive constant independent of g. Combining (62) and (63), we can get
(60). m
We shall prove Theorem B.1 in the subsequent subsection.
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B.1 Proof of Theorem B.1

To prove Theorem B.1, we consider the exterior problem for the Poisson equation: for f
given in L?(Q) which has a compact support, find v € W(Q) such that

—Au = f in
(64){ u = 0 on 7,

where W (Q) is the weighted Sobolev space defined as follows: if d = 2,

_ / u(z) 2 du 2 . .
W(Q) = {u e D'(Q) | AT 2 g2 + 2P e L*(9), —axj e L*(Q) (=1, 2)},
if d =3,
W(Q) = {u e | —"T) ¢ 2y ez (=1, 2 3)}
(1+ |z[2)1/2 " O, ) 4 ;

where D'(2) is the Schwartz space of all distributions on 2. The weak formulation of the
problem (64) is:

Find u € Wy(Q2) such that
(65) [ Ve Vode= [ frde for allve W),
Q Q

where Wy(2) ={u e W(Q) |u=0 on~}.
Here for every m € N and for every unbounded domain Q ¢ R, we define

H”.(Q) ={u | we H™(U) for all bounded open set U C Q}.

THEOREM B.2 For every f € L*(Q) whose support is compact, the problem (65) has a
unique solution, which belongs to HZ ().

Proof. In Amrouche-Girault-Giroire [2], it is proved that the problem (65) has a
unique solution. Form the well-known regularity argument for the solution of the Poisson
equation, it follows that the solution belongs to H2.(Q2). M

loc

Proof of Theorem B.1. We first show (58) by assuming that the problem (57) has a
unique solution belonging to H%(Q),) for every f € L*(€,). We define G : L?(Q,) —
H?(Q,) as follows:

Gf=u forall feL*Q,),

where u is the solution of the problem (57). Then G is a closed operator, and hence, by
the closed graph theorem, G is a bounded linear operator from L?(Q,) into H*(),). This
implies (58).

We next show that the problem (57) has a unique solution belonging to H?(€,) for
every f € L*(€,). If the problem (57) has a solution u € H?(),), then u is a solution of
the following weak formulation:

Find v € V such that
(66) Vu-Vode + (Tu, 0= | fode forallveV
Qq

Qa
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Conversely, if the problem (66) has a solution u € H?*(€),), then u is a solution of the
problem (57). Thus, our task is now to show that the problem (66) has a unique solution
belonging to H*(Q,).

It is easy to show that the problem (66) has a unique solution. Indeed, by virtue of
the Poincaré inequality, the space V is a Hilbert space equipped with the inner product:

(u, v)y = / Vu-Vudz.
0

The right-hand side of the equality in (66) can be regarded as an element of the dual
space of V. Since the operator 7 is non-negative, the sesquilinear form on the left-hand
side of the equality in (66) is elliptic on V. Therefore it is follows from Lax-Milgram’s
lemma that the problem (66) has a unique solution w.

It remains to show that the solution u of the problem (66) belongs to H?*(,). In
order to show this fact, because of Theorem B.2, it is sufficient to show that a harmonic
extension of u becomes the solution of the problem (65), namely, to show the following
proposition.

PROPOSITION B.1 Let u; be the solution of (66) and set ¢ = u;|r,. Define a function
u on € as follows:

(67) U|Qa = U,

[e.o]

> (9)" e, iod=2

n=—oo NI

(68) ule, = »
>3 (4) e, i d-s

n=0m=-n
where Q) = {x € R | |z| > a}, ¢n = (¢, Yy), and o™ = (@, Y™). Then u is the solution
of the problem (65).

To prove Proposition B.1, we shall use the following lemma, whose proof is postponed
to the completion of the proof of Proposition B.1.

LEMMA B.2 Let p € HY*(T,) and define u, on S, by

o0

> (9)" e, =2

n=—oo

(69) u= o .
> > <%) eny9, 6), if d=3.

n=0m=-n
Then, uw € W(S.), that is, the infinite series on the right-hand side of (69) converge in
W)

Proof of Proposition B.1. Let u; be the solution of the problem (66) and u the function
on ) defined by (67) and (68). We denote u|o, by u.. We first show that u € Wy(Q).
Because of Lemma B.2, it suffices to show that w € H{.(Q). This follows from the
following facts: u; € H*(Q4), u. € H (), and u; = u, on T,.
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We next show that u is the solution of the problem (65). Since C§°(€2) is dense in
Wo(Q2), it suffices to show that

(70) —/Quawmz/ﬂf@dm for all ¥ € C(Q),

where f is assumed to be extended by zero to ). By the Green formula, we have
—/ uApde = —/ w AP dx —/ ue A da
Q Qa Qq
o — o —
= —/ ui—wd”y—l—/ Vui-dex+/ ue—wd”y—l—/ Vu, - Vi dz.
r, Or Qu r, Or o
Noting u; = u, on I'y,, we can see
—/ WA d = / Fbde — (Tu;, ¥) +/ Vu, - Vi da.
Q Q o,
Thus, in order to show (70), it suffices to show that

(71) /Q/ Vue - Vi dr = (Tug, ).

We show (71) only in the two-dimensional case, since we can similarly show (71) in the
three-dimensional case. Set ¢ = w;|r,, and define, for N € N,

N ra

(72) un = > <—>n|<,0nYn(6’) on €.

n=—N r
Then uy € C=(%%,), where C=(%) = {u = 1o, | @ € C=°(R%}, and moreover —Auy =
0 in . Hence, by the Green formula, we obtain

- Inl

(73) /Q Vuy - Vidr— %gpn/r Yo(@)bdy =0 for all € C2(9).

n=—N

There is a sufficiently large number b such that suppy N Q, C Q°, where Q° = {z €
R® | a < |z| < b}. Hence we can rewrite (73) as follows:

N

) [, Vay-Vide= Y. Mo

n=n &

Since u;|r, = » € HY?(T,), we have
0 n L

n=-—o00 a

and, by Lemma B.2,
uy — u, in H'(Q).

Thus, forcing N to approach infinity in (74), we can get (71). W
We finally have to prove Lemma B.2 to complete the proof of Theorem B.1.
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Proof of Lemma B.2. We first prove the two-dimensional case. We can easily see that
forall n € Z,

a

(_)"' Y, (0) € W(S).

r

For N € N, we define uyx by (72). Let us show that uy — w in W(£2,) as N — oo.
For N < N’, we have

2

uN(a:) — un ()

- 2 / <>2nl — dralp,|*.

N<|n[<N’ 1+72)log™(2 +1?)

Note that for all n € Z,

e8] 2|n| r o] r
76 / (—) d </ dr = C} < +oo.
(76) a \T (1—|—r2)log2(2+r2) "= a (14+72) log2(2+r2) " 1< oo

From (75) and (76), we can get

2

un(z) — un() 2
(77) H < aCh lonl”.
(T TP 10 + ) |y~ 2t
We here note that we have
(78) o Vu-Vodr = o gz g: dr — o 12 (Au)v dr  for u, v € C(Q)NW(Q),

where A is the Laplace-Beltrami operator on the unit circle of R?. Since —AY,, = n?Y,,
we have, by (78),

(79) IV (ux — un)[3aqey

:/Q,

2
ou N ou N/

dz — / iQ Ay — un)] (v =) da

or or
|”‘ n2 a 2|n|
= > / ( ) +— <—> }rdra|<pn|2
N<[n|<N’ a r r
= . nalp)
N<|n|<N’

Since ¢ € HY2(T,), it follows from (77) and (79) that uy — u in W () as N — 0.
We next prove the three-dimensional case. It is obvious that

<g>n+1 oY ™6, ¢) e W(Q,) (ne NU{0}, —n<m <n).

r

For N € N, we set

=3 3 (4)" .o

n=0m=—n
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For N < N’, we have

2

20n+1) ) )
S SHD Sl B () P

L2(Q) n=N+1m=—n

uy(z) — un(x) 2
1+ [e)

(80)

Here we note that for all n € N U {0},

0o s\ 2ntl) g2 < /a2
(81) / (;> 1+T2dr§/a (;> dr = Cy < +oc.

Form (80) and (81), we can get

uy(z) — uy(x) 2

Sl CEREE

N’ n
> el

L2(Q) n=N+1m=-n

We here note that (78) holds good for the three-dimensional case. Therefore, since
—AY"™ =n(n+1)Y™, we have

(83) [IV(uy —un)lZ2ay)

:// or or

dx—/% ri? [A(uy —un)| (uny — upnr) de
SR

n+1/|2 1 2(n+1)
< ) +7n(n+ ) (E) r dm2]g0 ]2
n=N+1m=-n

72 r
= Z Z(n+1)a3ls@?|2'

n=N+1m=-n

2
aU/N 3uN/

Form (82) and (83), we can see that uy — win W(,) as N — oco. M
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