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Abstract

We consider the exterior problem for the wave equation. When numerically
solving the exterior problem, one often introduces an artificial boundary in order to
reduce the computational domain to a bounded domain and imposes an artificial
boundary condition (ABC) on the artificial boundary. We introduce a new ABC,
which is constructed by using the Dirichlet-to-Neumann (DtN) operator associated
with the Helmholtz equation. Our ABC is suitable for the controllability method
for computing numerical solutions of the Helmholtz equation. We show the well-
posedness of the wave equation with our ABC. Then it is important to investigate
some properties of the Hankel functions since the DtN operator on a spherical
artificial boundary is analytically represented by the Hankel functions.
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1 Introduction

We consider the exterior problem for the wave equation:

{
utt − Δu = f in Ω,

u = 0 on γ,
(1)

where Ω is an unbounded domain of Rd (d = 2 or 3) with boundary γ of class C∞. We
assume that O = Rd \ Ω is a bounded open set. If f(x, t) = F (x)e−ikt, where k is a
positive constant, and if F has a compact support, then the limiting amplitude principle
holds, that is, the solution u(x, t) converges locally to a steady state U(x)e−ikt as time
tends to infinity, where U is the solution of the Helmholtz equation with the outgoing
radiation condition:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ΔU − k2U = F in Ω,

U = 0 on γ,

r
d−1
2

(
∂U

∂r
− ikU

)
= 0 as r −→ ∞,

(2)

where r = |x| for x ∈ Rd.
When numerically solving the exterior problem for the wave equation, one often intro-

duces an artificial boundary in order to reduce the computational domain to a bounded
domain and imposes an artificial boundary condition (ABC) on the artificial boundary.
We choose the artificial boundary as follows: Γa = {x ∈ Rd | |x| = a}, where a is a posi-
tive number such that O∪suppF ⊂ {x ∈ Rd | |x| < a}. Then the bounded computational
domain is defined by Ωa = {x ∈ Ω | |x| < a}.

We introduce a new ABC:

∂u

∂n
+
∂u

∂t
= −Su − iku on Γa,(3)

where n is the unit normal vector on Γa being toward infinity and S is the Dirichlet-to-
Neumann (DtN) operator for the Helmholtz equation with the outgoing radiation condi-
tion, i.e., S is defined by the following relation:

∂U

∂n
= −SU on Γa,

where U is the solution of the Helmholtz equation (2). We design our ABC (3) so that
U(x)e−ikt can satisfy it.

We consider the wave equation with our ABC:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − Δu = f in Q,

u = 0 on σ,

∂u

∂n
+
∂u

∂t
= −Su − iku on Σ,

u(x, 0) = u∗0(x) in Ωa,

ut(x, 0) = u∗1(x) in Ωa,

(4)
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where Q = Ωa × (0, ∞), σ = γ × (0, ∞), and Σ = Γa × (0, ∞). We expect that if
f(x, t) = F (x)e−ikt in the problem (4), then the solution u converges, on Ωa, to the
steady state U(x)e−ikt as time tends to infinity. However it is yet to be proved. In this
report, we show the well-posedness of the problem (4), following the way of proof by
Ikawa [6]. To accomplish this purpose, we need to investigate some properties of the
Hankel functions since the DtN operator on a spherical artificial boundary is analytically
represented by the Hankel functions.

We can use our ABC in the numerical technique of Bristeau-Glowinski-Périaux [3],
called the controllability method, for solving the exterior Helmholtz problem. The use of
our ABC makes it possible that we obtain accurate numerical solutions regardless of the
size of the artificial boundary (see Koyama [7]). Hence, by using our ABC and by taking
a small artificial boundary, we can reduce computational costs.

An ABC introduced by Engquist-Halpern [4] motivated us to consider our ABC. They
consider the case where the force term f of the wave equation (1) depends only on the
space variable x. Their ABC is given as follows:

∂u

∂n
+
∂u

∂t
= −T u on Γa,

where T is the DtN operator for the Laplace equation. Their ABC forces the solution of
the wave equation to converge, on Ωa, to a solution of the Laplace equation as time tends
to infinity.

This report is organized as follows. In Section 2, we define the Sobolev space on Γa,
i.e., Hs(Γa) (s ∈ R), and show that the DtN operator S is a bounded linear operator from
H1/2(Γa) into H−1/2(Γa). In Section 3, we state main theorem and prove it. In Appendix
A, we describe some properties of the Hankel functions. In Appendix B, we study the
Poisson equation with the following ABC:

∂u

∂n
= −T u on Γa.

2 Properties of the DtN Operator

We denote by L2(Γa) the usual space of complex-valued square integrable functions on Γa.
Let 〈·, ·〉 and ‖·‖L2(Γa) denote the inner product and the norm of L2(Γa), respectively. We
define the Sobolev space Hs(Γa) in the following. We first describe the two-dimensional
case. The polar coordinates are denoted by r, θ. The spherical harmonics Yn (n ∈ Z)
are defined by Yn(θ) = einθ/

√
2πa. Then {Yn | n ∈ Z} becomes a complete orthonormal

system of L2(Γa). For every ϕ ∈ L2(Γa), we denote the Fourier coefficients of ϕ by
ϕn = 〈ϕ, Yn〉 (n ∈ Z). For each s > 0, we define Hs(Γa) by

Hs(Γa) =

{
ϕ ∈ L2(Γa) |

∞∑
n=−∞

|n|2s|ϕn|2 <∞
}
.

Then Hs(Γa) becomes a Hilbert space equipped with the following inner product:

〈ϕ, ψ〉Hs(Γa) =
∞∑

n=−∞
(1 + |n|2s)ϕnψn for all ϕ, ψ ∈ Hs(Γa).
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For each s < 0, the space Hs(Γa) is the dual space of H−s(Γa), and for s = 0, the space
H0(Γa) = L2(Γa).

We next describe the three-dimensional case. The spherical coordinates are denoted
by r, θ, φ. The spherical harmonics Y m

n (n ∈ N ∪ {0}, −n ≤ m ≤ n) are defined by

Y m
n (θ, φ) =

1

a

√√√√(2n+ 1)

4π

(n− |m|)!
(n + |m|)!P

|m|
n (cos θ)eimφ,

where Pm
n are the associated Legendre functions. Then {Y m

n | n ∈ N ∪ {0}, −n ≤ m ≤ n}
is a complete orthonormal system of L2(Γa). We denote the Fourier coefficients of
ϕ ∈ L2(Γa) by ϕm

n = 〈ϕ, Y m
n 〉. For each s > 0, we define Hs(Γa) by

Hs(Γa) =

{
ϕ ∈ L2(Γa) |

∞∑
n=0

n∑
m=−n

|n|2s|ϕm
n |2 <∞

}
,

and its inner product by

〈ϕ, ψ〉Hs(Γa) =
∞∑

n=0

n∑
m=−n

(1 + |n|2s)ϕm
n ψ

m
n for all ϕ, ψ ∈ Hs(Γa).

For every s ≤ 0, we define Hs(Γa) in the same way as the two-dimensional case.

Proposition 2.1 The DtN operator S is a bounded linear operator from H1/2(Γa) into
H−1/2(Γa).

Proof. We first note that the DtN operator S is analytically represented as follows
(see Grote-Keller [5]):

Sϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

−kH
(1)′
n (ka)

H
(1)
n (ka)

ϕnYn, if d = 2,

∞∑
n=0

n∑
m=−n

−kh
(1)′
n (ka)

h
(1)
n (ka)

ϕm
n Y

m
n , if d = 3,

where H(1)
n and h(1)

n are the cylindrical and the spherical Hankel functions of the first kind
of order n, respectively, and the prime on functions denotes differentiation with respect
to the argument.

Let us begin with the two-dimensional case. For every ϕ ∈ H1/2(Γa), we can regard
Sϕ as an element of H−1/2(Γa) by the following identity:

〈Sϕ, ψ〉 =
∞∑

n=−∞
−kH

(1)′
n (ka)

H
(1)
n (ka)

ϕnψn for all ψ ∈ H1/2(Γa),(5)

where 〈·, ·〉 also denotes the duality between H−1/2(Γa) and H1/2(Γa). This can be un-
derstood in the following way. By the Schwarz inequality, we have

|〈Sϕ, ψ〉| ≤
⎛
⎝ ∞∑

n=−∞

∣∣∣∣∣ k

1 + |n|
H(1)′

n (ka)

H
(1)
n (ka)

∣∣∣∣∣
2

(1 + |n|)|ϕn|2
⎞
⎠

1/2 ( ∞∑
n=−∞

(1 + |n|)|ψn|2
)1/2

.(6)
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Here, by the recursion formula:

H(1)′
ν (ka) = H

(1)
ν−1(ka) −

ν

ka
H(1)

ν (ka) for all ν ∈ R(7)

(see Abramowitz-Stegun [1]), we can get

k
H(1)′

n (ka)

H
(1)
n (ka)

= k
H

(1)
n−1(ka)

H
(1)
n (ka)

− n

a
for all n ∈ Z.(8)

We here notice that we have the following asymptotic behavior:

H
(1)
ν−1(ka)

H
(1)
ν (ka)

∼ ka

2ν
(ν −→ ∞),(9)

which will be shown in Lemma A.2 described in Appendix A. By using (8) and (9), we
can show that there is a positive constant C such that∣∣∣∣∣ k

1 + |n|
H(1)′

n (ka)

H
(1)
n (ka)

∣∣∣∣∣ ≤ C for all n ∈ Z.(10)

Thus, it follows from (6) and (10) that

|〈Sϕ, ψ〉| ≤ C‖ϕ‖H1/2(Γa)‖ψ‖H1/2(Γa).

This implies that we can define Sϕ as an element of H−1/2(Γa) by (5), and moreover that
S is a bounded operator from H1/2(Γa) into H−1/2(Γa).

Let us next consider the three-dimensional case. By (7) and the formula:

h(1)
n (ka) =

√
π

2ka
H

(1)
n+1/2(ka),

we can get

k
h(1)′

n (ka)

h
(1)
n (ka)

= k
H

(1)
n−1/2(ka)

H
(1)
n+1/2(ka)

− n+ 1

a
for all n ∈ N ∪ {0}.(11)

By using (11) and (9), we can show that S is a bounded operator from H1/2(Γa) into
H−1/2(Γa) in the same way as the two-dimensional case.

Now we define a linear operator B : H1/2(Γa) −→ H−1/2(Γa) as follows: for every
ϕ ∈ H1/2(Γa),

Bϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

−kRe

{
H(1)′

n (ka)

H
(1)
n (ka)

}
ϕnYn, if d = 2,

∞∑
n=0

n∑
m=−n

−kRe

{
h(1)′

n (ka)

h
(1)
n (ka)

}
ϕm

n Y
m
n , if d = 3.

Proposition 2.2 The operator B is a bounded linear operator from H1/2(Γa) into
H−1/2(Γa), and satisfies

〈Bϕ, ϕ〉 ≥ 0 for all ϕ ∈ H1/2(Γa).(12)
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Proof. We can show that B is a bounded linear operator fromH1/2(Γa) intoH−1/2(Γa)
in the same way as the proof of Proposition 2.1.

Now we see from Lemmas A.3 and A.4 that

−kRe

{
H(1)′

n (x)

H
(1)
n (x)

}
> 0 for all n ∈ Z,

−kRe

{
h(1)′

n (x)

h
(1)
n (x)

}
> 0 for all n ∈ N ∪ {0}.

This implies (12).

3 Main Results

Let us introduce two spaces:

V =
{
v ∈ H1(Ωa) | v = 0 on γ

}
,

E = V × L2(Ωa),

where for each m ∈ N , Hm(Ωa) denotes the usual complex-valued Sobolev space of order
m on Ωa, whose norm is denoted by ‖ · ‖Hm(Ωa). The space E becomes a Hilbert space
equipped with the following inner product: for u = {u0, u1}, v = {v0, v1} ∈ E,

(u, v)E =
∫
Ωa

∇u0 · ∇v0 dx+
∫
Ωa

u1v1 dx+ 〈Bu0, v0〉 .

We denote the associated norm by ‖ · ‖E.
To transform the wave equation to a system of first order, we define a linear operator

A : D(A)(⊂ E) −→ E as follows:

Av = {v1, Δv0} for all v = {v0, v1} ∈ D(A),

where

D(A) =

{
v = {v0, v1} | v0 ∈ H2(Ωa) ∩ V, v1 ∈ V,

∂v0

∂n
+ v1 = −Sv0 − ikv0 on Γa

}
.

The problem (4) is written as follows:

⎧⎨
⎩
du

dt
(t) = Au(t) + f (t) for t ∈ (0, ∞),

u(0) = u∗,

where f(t) = {0, f(t)} and u∗ = {u∗0, u∗1}.
Main theorem of this report is the following.

Theorem 3.1 The linear operator A is the infinitesimal generator of a semigroup of
class C0.
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In order to prove this theorem, it suffices from Hille-Yosida’s theorem to prove three
propositions described below (see [6]).

Proposition 3.1 D(A) is dense in E.

Proposition 3.2 There is a positive constant C such that

Re(Au, u)E ≤ C‖u‖2
E for all u ∈ D(A).(13)

Proposition 3.3 For every λ ≥ 0, there exists (λ−A)−1.

Propositions 3.1–3.3 will be proved in Subsections 3.1–3.3, respectively.

3.1 Proof of Proposition 3.1

To prove Proposition 3.1, we first prove two lemmas.

Lemma 3.1 The space C∞
0 (Ωa ∪ Γa) is dense in V equipped with the induced topology

from H1(Ωa), where

C∞
0 (Ωa ∪ Γa) = {ϕ ∈ C∞(Ωa) | There is a ϕ̃ ∈ C∞

0 (Ω) such that ϕ = ϕ̃|Ωa} .

Proof. For every v ∈ V , there is a ṽ ∈ H1
0 (Ω) such that v = ṽ|Ωa . Then there are

ϕ̃k ∈ C∞
0 (Ω) (k = 1, 2, . . .) such that ϕ̃k −→ ṽ in H1(Ω) as k −→ ∞. We here set

ϕk = ϕ̃k|Ωa . Then ϕk ∈ C∞
0 (Ωa ∪ Γa) and ϕk −→ v in H1(Ωa) as k −→ ∞.

Lemma 3.2 For all g ∈ C∞(Γa) and for all ε > 0, there is a u ∈ C∞
0 (Ωa ∪ Γa) such

that

u = 0 on Γa,
∂u

∂n
= g on Γa,

and ‖u‖H1(Ωa) ≤ ε.

Proof. A proof is written in [6]. However, we rewrite it in more detail.
We take χ(r) ∈ C∞

0 (R) such that

χ(0) = 0,
dχ

dr
(0) = 1, and suppχ ⊂ [−1, 1].

We choose a neighborhood of Γa as follows: Uα = {x = rω | |r−a| ≤ α, ω ∈ Sd−1}, where
α is a sufficiently small positive number and Sd−1 is a unit sphere in Rd with center at
the origin. For η ∈ (0, α), we define

uη(x) =

⎧⎪⎨
⎪⎩
g(ω)ηχ

(
r − a

η

)
on Uα,

0 on Rd \ Uα.

Then we have uη|Ωa ∈ C∞
0 (Ωa ∪ Γa),

uη = 0 on Γa, and
∂uη

∂n
= g on Γa.(14)
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We further have

∫
Ωa

|uη|2 dx ≤
∫

Sd−1

∫ a

a−η

∣∣∣∣∣g(ω)ηχ

(
r − a

η

)∣∣∣∣∣
2

rd−1dr dω.

Setting ρ = (r − a)/η, we can get

∫
Ωa

|uη|2 dx ≤
∫

Sd−1

∫ 0

−1
|g(ω)ηχ(ρ)|2(ρη + a)d−1ηdρ dω.

Thus there is a positive constant C such that, for sufficiently small η > 0,∫
Ωa

|uη|2 dx ≤ Cη3.(15)

We next show that there is a positive constant C such that, for sufficiently small η > 0,∫
Ωa

|∇uη|2 dx ≤ Cη.(16)

We prove (16) only in the two-dimensional case. Indeed, we have∫
Ωa

|∇uη|2 dx

=
∫ a

a−η

∫
S1

⎧⎨
⎩
∣∣∣∣∣g(ω)η

∂

∂r
χ

(
r − a

η

)∣∣∣∣∣
2

+
1

r2

∣∣∣∣∣ ∂∂θg(ω)ηχ

(
r − a

η

)∣∣∣∣∣
2
⎫⎬
⎭ r dωdr

= η
∫ 0

−1

∫
S1

|g(ω)χ′(ρ)|2 (ηρ+ a) dωdρ+ η3
∫ 0

−1

∫
S1

∣∣∣∣∣ ∂∂θg(ω)χ(ρ)

∣∣∣∣∣
2

1

ηρ+ a
dωdρ.

This yields (16) for sufficiently small η. We can analogously show (16) in the three-
dimensional case. It follows from (15) and (16) that if we take η sufficiently small, we can
make ‖uη‖H1(Ωa) small. This fact and (14) complete the proof of Lemma 3.2.

Proof of Proposition 3.1. Let {v0, v1} be an arbitrary element of E. We can see from
Lemma 3.1 that there are v0j ∈ C∞

0 (Ωa ∪ Γa) (j = 1, 2, . . .) such that

v0j −→ v0 in V as j −→ ∞.(17)

Since C∞
0 (Ωa ∪ Γa) is also dense in L2(Ωa), there are v1j ∈ C∞

0 (Ωa ∪ Γa) (j = 1, 2, . . .)
such that

v1j −→ v1 in L2(Ωa) as j −→ ∞.(18)

We here define

gj =
∂v0j

∂n
+ v1j + Sv0j + ikv0j on Γa.(19)

Since gj ∈ C∞(Γa), we can see from Lemma 3.2 that for each j ∈ N , there is a wj ∈
C∞

0 (Ωa ∪ Γa) such that

wj = 0 on Γa,
∂wj

∂n
= gj on Γa,(20)
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and

‖wj‖H1(Ωa) ≤
1

j
.(21)

Then we have {v0j − wj, v1j} ∈ D(A). Indeed, it is obvious that v0j − wj ∈ H2(Ωa) ∩ V
and v1j ∈ V . By (20) and (19), we have

∂

∂n
(v0j − wj) + v1j + S(v0j − wj) + ik(v0j − wj)

=
∂v0j

∂n
+ v1j + Sv0j + ikv0j −

∂wj

∂n
= gj − gj = 0 on Γa.

Furthermore, it follows from (17), (18), and (21) that

{v0j − wj , v1j} −→ {v0, v1} in E as j −→ ∞.

3.2 Proof of Proposition 3.2

Proof of Proposition 3.2. For every u = {u0, u1} ∈ D(A), by the Green formula, we have

(Au, u)E

=
∫
Ωa

∇u1 · ∇u0 dx+
∫
Ωa

Δu0u1 dx+ 〈Bu1, u0〉

=
∫
Ωa

∇u1 · ∇u0 dx+
∫
Γa

∂u0

∂n
u1 dγ −

∫
Ωa

∇u0 · ∇u1 dx+ 〈Bu1, u0〉

=
∫
Ωa

∇u1 · ∇u0 dx−
∫
Ωa

∇u0 · ∇u1 dx

−〈u1, u1〉 − 〈(S − B)u0, u1〉 − ik 〈u0, u1〉 − 〈Bu0, u1〉 + 〈Bu1, u0〉 .

The real part of this identity is:

Re(Au, u)E = −‖u1‖2
L2(Γa) − Re 〈(S − B)u0, u1〉 + k Im 〈u0, u1〉 .(22)

We first consider the case when d = 2. We set ϕ = u0|Γa and ψ = u1|Γa. Then we have

−Re 〈(S − B)u0, u1〉 + k Im 〈u0, u1〉 =
∞∑

n=−∞
k

[
1 − Im

{
H(1)′

n (ka)

H
(1)
n (ka)

}]
Im

(
ϕnψn

)
.(23)

Now it follows from Lemma A.5 that there is a positive constant C0 such that

k

∣∣∣∣∣1 − Im

{
H(1)′

n (ka)

H
(1)
n (ka)

}∣∣∣∣∣ ≤ k

⎛
⎝1 + Im

⎧⎨
⎩H

(1)′
0 (ka)

H
(1)
0 (ka)

⎫⎬
⎭
⎞
⎠ ≡ C0 for all n ∈ Z.(24)

Combining (22), (23), and (24), we have

Re(Au, u)E ≤ −‖u1‖2
L2(Γa) + C0‖u0‖L2(Γa)‖u1‖L2(Γa)

≤ −1

2
‖u1‖2

L2(Γa) +
C2

0

2
‖u0‖2

L2(Γa) ≤
C2

0

2
‖u0‖2

L2(Γa).

Further, by using the trace theorem and the Poincaré inequality, we can get (13).
When d = 3, by using Lemma A.6 instead of Lemma A.5, we can show (13) in the

same way as the case when d = 2.
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3.3 Proof of Proposition 3.3

For λ ∈ R and f ∈ E, we suppose that u ∈ D(A) satisfies

(λ−A)u = f .

Then we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu0 + λ2u0 = f1 + λf0 in Ωa,
u0 = 0 on γ,

∂u0

∂n
= −Su0 − iku0 − λu0 + f0 on Γa,

(25)

and

u1 = λu0 − f0.(26)

Hence, to prove Proposition 3.3, we consider the following problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu + λ2u = f in Ωa,
u = 0 on γ,

∂u

∂n
= −Su − iku− λu+ g on Γa,

(27)

and prove the following proposition, which plays an essential role in the proof of Propo-
sition 3.3.

Proposition 3.4 For each λ ≥ 0, for every f ∈ L2(Ωa), and for every g ∈ H1/2(Γa),
the problem (27) has a unique solution which belongs to H2(Ωa).

We now consider the following problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = f in Ωa,
u = 0 on γ,

∂u

∂n
+ T u = g on Γa,

(28)

where T is the DtN operator associated with the Laplace equation and can be represented
as follows:

T ϕ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

|n|
a
ϕnYn, if d = 2,

∞∑
n=0

n∑
m=−n

n+ 1

a
ϕm

n Y
m
n , if d = 3.

It is easily seen that T is a bounded linear operator form H1/2(Γa) into H−1/2(Γa) and
satisfies

〈T ϕ, ϕ〉 ≥ 0 for all ϕ ∈ H1/2(Γa).(29)
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Lemma 3.3 For all f ∈ L2(Ωa) and for all g ∈ H1/2(Γa), the problem (28) has a unique
solution belonging to H2(Ωa), and we have the following a priori estimate

‖u‖H2(Ωa) ≤ C
{
‖f‖L2(Ωa) + ‖g‖H1/2(Γa)

}
.(30)

We shall prove Lemma 3.3 in Appendix B.
For ε ≥ 0, we consider the following problem:

(Pε)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lεu ≡ −Δu + ελ2u = f in Ωa,
u = 0 on γ,

Kεu ≡ ∂u

∂n
+ T u+ εRu = g on Γa,

where R = S − T + ik + λ.

Lemma 3.4 Let λ ≥ 0 and 0 ≤ ε ≤ 1. Assume that u ∈ H2(Ωa) satisfies (Pε) with
f ∈ L2(Ωa) and g ∈ H1/2(Γa). Then there is a positive constant C such that

‖u‖H1(Ωa) ≤ C
{
‖f‖L2(Ωa) + ‖g‖L2(Γa)

}
,(31)

where C is independent of λ, ε, f , g, and u.

Proof. By the Green formula, we can get∫
Ωa

|∇u|2 dx+ ελ2
∫
Ωa

|u|2 dx+ 〈T u, u〉 + ε{〈(S − T )u, u〉 + ik 〈u, u〉 + λ 〈u, u〉}

=
∫
Ωa

fu dx+ 〈g, u〉 .

The real part of this identity is:∫
Ωa

|∇u|2 dx+ ελ2
∫
Ωa

|u|2 dx+ (1 − ε) 〈T u, u〉 + ε{Re 〈Su, u〉 + λ‖u‖2
L2(Γa)}

= Re
∫
Ωa

fu dx+ Re 〈g, u〉 .

We here note that we have

Re 〈Su, u〉 = 〈Bu, u〉 ≥ 0.(32)

Thus it follows from (29), (32), and the conditions of ε and λ that∫
Ωa

|∇u|2 dx ≤ Re
∫
Ωa

fu dx+ Re 〈g, u〉 .

Therefore, by the Poincaré inequality and the trace theorem, we obtain (31).

Lemma 3.5 Let λ be an arbitrary non-negative number. Then there is an α > 0 such
that if, for an ε1 ∈ [0, 1], the problem (Pε1) has a solution belonging to H2(Ωa) for every
f ∈ L2(Ωa) and for every g ∈ H1/2(Γa), then, for each ε satisfying |ε − ε1| < α, the
problem (Pε) has a solution belonging to H2(Ωa) for every f ∈ L2(Ωa) and for every
g ∈ H1/2(Γa).

11



Proof. For every f ∈ L2(Ωa) and for every g ∈ H1/2(Γa), let u(0) be a solution of the
problem (Pε1), which belongs to H2(Ωa). For p = 0, 1, 2, . . ., let u(p+1) ∈ H2(Ωa) be a
solution of the following problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Lε1u

(p+1) = (ε1 − ε)λ2u(p) in Ωa,

u(p+1) = 0 on γ,

Kε1u
(p+1) = (ε1 − ε)Ru(p) on Γa.

Then, by Lemma 3.4, we have, for every p ∈ N ∪ {0},

‖u(p+1)‖H1(Ωa) ≤ C1

{
|ε1 − ε|λ2‖u(p)‖L2(Ωa) + |ε1 − ε|‖Ru(p)‖L2(Γa)

}
,(33)

where C1 is a positive constant independent of λ, ε, ε1, u
(p), and u(p+1). We here note

that Lemmas A.7 and A.8 imply that R is a bounded linear operator on Hs(Γa) for every
s ∈ R. Thus, it follows from (33) and the trace theorem that there is a positive constant
C2 such that

‖u(p+1)‖H1(Ωa) ≤ C2|ε1 − ε|‖u(p)‖H1(Ωa),

where C2 is independent of ε, ε1, u
(p), and u(p+1). This yields

‖u(p+1)‖H1(Ωa) ≤ (C2|ε1 − ε|)p+1‖u(0)‖H1(Ωa).(34)

We here set uq =
∑q

p=0 u
(p). Then we can see from (34) that if C2|ε1−ε| < 1, then {uq}∞q=1

is a Cauchy sequence in V . Furthermore we note that we have⎧⎪⎨
⎪⎩

Lε1uq = (ε1 − ε)λ2uq−1 + f in Ωa,
uq = 0 on γ,

Kε1uq = (ε1 − ε)Ruq−1 + g on Γa,
(35)

and hence, for q > q′,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δ(uq − uq′) = fqq′ in Ωa,

uq − uq′ = 0 on γ,

∂

∂n
(uq − uq′) + T (uq − uq′) = gqq′ on Γa,

where

fqq′ = −ε1λ
2(uq − uq′) + (ε1 − ε)λ2(uq−1 − uq′−1),

gqq′ = −ε1R(uq − uq′) + (ε1 − ε)R(uq−1 − uq′−1).

By the a priori estimate (30), we have, for q > q′,

‖uq − uq′‖H2(Ωa) ≤ C
{
‖fqq′‖L2(Ωa) + ‖gqq′‖H1/2(Γa)

}
.(36)

Since R is a bounded linear operator on H1/2(Γa), we can see from (36) and the trace
theorem that

‖uq − uq′‖H2(Ωa) ≤ C
{
‖uq − uq′‖H1(Ωa) + ‖uq−1 − uq′−1‖H1(Ωa)

}
.

12



This implies that {uq}∞q=1 is a Cauchy sequence in H2(Ωa) since {uq}∞q=1 is a Cauchy
sequence in V . Hence there is a u ∈ H2(Ωa) such that uq −→ u in H2(Ωa). Then we can
conclude from (35) that u satisfies

−Δu+ ε1λ
2u = (ε1 − ε)λ2u+ f in Ωa, u = 0 on γ,

∂u

∂n
+ T u+ ε1Ru = (ε1 − ε)Ru+ g on Γa.

This shows that u is a solution of the problem (Pε). We can see from the argument above
that if we take α = 1/C2, then the assertion of Lemma 3.5 holds.

Proof of Proposition 3.4. Lemma 3.3 assures that the problem (28), i.e., the problem
(Pε) with ε = 0 has a solution belonging to H2(Ωa) for all f ∈ L2(Ωa) and for all
g ∈ H1/2(Γa). Thus we can see from Lemma 3.5 that for each ε ∈ (−α, α), the problem
(Pε) has a solution belonging to H2(Ωa) for all λ ≥ 0, for all f ∈ L2(Ωa), and for all
g ∈ H1/2(Γa). Repeating this argument, we can conclude that for every ε ∈ (−α, 1 + α),
the problem (Pε) has a solution belonging to H2(Ωa) for all λ ≥ 0, for all f ∈ L2(Ωa),
and for all g ∈ H1/2(Γa). Taking here ε = 1, we can see that the problem (27) has a
solution belonging to H2(Ωa) for all λ ≥ 0, for all f ∈ L2(Ωa), and for all g ∈ H1/2(Γa).
The uniqueness for the solution of the problem (27) follows from (31).

Proof of Proposition 3.3. Let λ be an arbitrary non-negative number. We first show
that (λ−A) is one-to-one. Suppose

(λ−A)u = 0, u = {u0, u1} ∈ D(A),

then u0 satisfies (27) with f = 0 and g = 0, and hence it follows from Proposition 3.4
that u0 = 0. Further, since by (26) we have u1 = λu0, we can get u1 = 0.

We next show that (λ − A) is onto. We can see from Proposition 3.4 that for every
f = {f0, f1} ∈ E, there is a u0 ∈ H2(Ωa) such that u0 satisfies (25). Set u1 = λu0−f0 ∈ V .
Then we can easily see that u = {u0, u1} ∈ D(A) and (λ−A)u = f .

A Some Properties of the Hankel Functions

Lemma A.1 For each x > 0, we have

H(1)
ν (x) ∼ −i

√
2

πν

(
ex

2ν

)−ν

(ν −→ ∞),(37)

where ν ∈ R.

Proof. According to [1], we have

Jν(x) ∼ 1√
2πν

(
ex

2ν

)ν

(ν −→ ∞),(38)

Nν(x) ∼ −
√

2

πν

(
ex

2ν

)−ν

(ν −→ ∞),(39)
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where Jν and Nν are the cylindrical Bessel functions and the cylindrical Neumann func-
tions of order ν, respectively. We have

H(1)
ν (x)

⎧⎨
⎩−i

√
2

πν

(
ex

2ν

)−ν
⎫⎬
⎭

−1

(40)

= Jν(x)

{
1√
2πν

(
ex

2ν

)ν
}−1 {

1√
2πν

(
ex

2ν

)ν
}⎧⎨
⎩−i

√
2

πν

(
ex

2ν

)−ν
⎫⎬
⎭

−1

+Nν(x)

⎧⎨
⎩−

√
2

πν

(
ex

2ν

)−ν
⎫⎬
⎭

−1

.

We here note that

{
1√
2πν

(
ex

2ν

)ν
}⎧⎨
⎩−i

√
2

πν

(
ex

2ν

)−ν
⎫⎬
⎭

−1

=
i

2

(
ex

2ν

)2ν

−→ 0 (ν −→ ∞).(41)

Combining (38) – (41), we can get (37).

Lemma A.2 For each x > 0, we have

H
(1)
ν−1(x)

H
(1)
ν (x)

∼ x

2ν
(ν −→ ∞),(42)

where ν ∈ R.

Proof. We have

H
(1)
ν−1(x)

H
(1)
ν (x)

2ν

x
=

H
(1)
ν−1(x)

−i
√

2
π(ν−1)

(
ex

2(ν−1)

)−(ν−1)

−i
√

2
πν

(
ex
2ν

)−ν

H
(1)
ν (x)

−i
√

2
π(ν−1)

(
ex

2(ν−1)

)−(ν−1)

−i
√

2
πν

(
ex
2ν

)−ν

2ν

x
.(43)

We here note that

−i
√

2
π(ν−1)

(
ex

2(ν−1)

)−(ν−1)

−i
√

2
πν

(
ex
2ν

)−ν

2ν

x
(44)

=
(
1 +

1

ν − 1

)3/2
{(

1 − 1

ν

)−ν
}−1

e −→ 1 (ν −→ ∞).

From (43), (44), and Lemma A.1, we can obtain (42).

Lemma A.3 For all x > 0 and for all ν ∈ R, we have

Re

{
H(1)′

ν (x)

H
(1)
ν (x)

}
< 0.
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Proof. Since H(1)
ν (x) = Jν(x) + iNν(x), we have

Re

{
H(1)′

ν (x)

H
(1)
ν (x)

}
=
Jν(x)J

′
ν(x) +Nν(x)N

′
ν(x)

J2
ν (x) +N2

ν (x)
.(45)

According to Watson [8], we have

J2
ν (x) +N2

ν (x) =
8

π2

∫ ∞

0
K0(2x sinh t) cosh(2νt) dt,(46)

where K0 is the modified Bessel function of the second kind of order zero. Differentiating
(46) with x, we obtain

Jν(x)J
′
ν(x) +Nν(x)N

′
ν(x) =

8

π2

∫ ∞

0
K ′

0(2x sinh t) sinh t cosh(2νt) dt.(47)

Now we note that we have the following formula:

K0(ξ) =
∫ ∞

0
e−ξ cosh t dt for all ξ > 0 (see Abramowitz and Stegun [1]).(48)

Differentiating (48) with ξ, we can get

K ′
0(ξ) = −

∫ ∞

0
e−ξ cosh t cosh t dt < 0 for all ξ > 0.(49)

Combining (45), (47), and (49) will complete the proof of Lemma A.3.

Lemma A.4 For all x > 0 and for all n ∈ N ∪ {0}, we have

Re

{
h(1)′

n (x)

h
(1)
n (x)

}
< 0.

Proof. Since

h(1)
n (x) =

√
π

2x
H

(1)
n+1/2(x),

we have

h(1)′
n (x)

h
(1)
n (x)

= − 1

2x
+
H

(1)′
n+1/2(x)

H
(1)
n+1/2(x)

.(50)

Thus, we can see form Lemma A.3 that

Re

{
h(1)′

n (x)

h
(1)
n (x)

}
= − 1

2x
+ Re

⎧⎨
⎩
H

(1)′
n+1/2(x)

H
(1)
n+1/2(x)

⎫⎬
⎭ < 0.

Lemma A.5 For all x > 0 and for all ν, ν ′ ∈ R satisfying |ν| > |ν ′|, we have

0 < Im

{
H(1)′

ν (x)

H
(1)
ν (x)

}
< Im

⎧⎨
⎩H

(1)′
ν′ (x)

H
(1)
ν′ (x)

⎫⎬
⎭ .(51)
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Proof. We have the following formulas:

H(1)′
ν (x) = H

(1)
ν−1(x) −

ν

x
H(1)

ν (x),

Jν−1(x)Nν(x) − Jν(x)Nν−1(x) = − 2

πx
(see [1]).

Using these formulas, we can get

Im

{
H(1)′

ν (x)

H
(1)
ν (x)

}
=

2

πx

1

J2
ν (x) +N2

ν (x)
> 0.(52)

Now it follows from (48) that K0(2x sinh t), being in the integral on the right-hand side
of (46), is a positive function of t on (0, ∞). Thus, we can easily see from (46) that for
all ν, ν ′ ∈ R satisfying |ν| > |ν ′|,

J2
ν (x) +N2

ν (x) > J2
ν′(x) +N2

ν′(x).(53)

From (52) and (53), we can get (51).

Lemma A.6 For all x > 0 and for all n ∈ N , we have

0 < Im

{
h(1)′

n (x)

h
(1)
n (x)

}
< Im

⎧⎨
⎩h

(1)′
0 (x)

h
(1)
0 (x)

⎫⎬
⎭ ≡ 1.

Proof. From (50), we can get

Im

{
h(1)′

n (x)

h
(1)
n (x)

}
= Im

⎧⎨
⎩
H

(1)′
n+1/2(x)

H
(1)
n+1/2(x)

⎫⎬
⎭ .

Thus, by Lemma A.5, we have

0 < Im

{
h(1)′

n (x)

h
(1)
n (x)

}
< Im

⎧⎨
⎩h

(1)′
0 (x)

h
(1)
0 (x)

⎫⎬
⎭ for all n ∈ N .

Since h
(1)
0 (x) = −ieix/x, we can see that

Im

⎧⎨
⎩h

(1)′
0 (x)

h
(1)
0 (x)

⎫⎬
⎭ ≡ 1.

Lemma A.7 Let k > 0 and a > 0. Then there is a positive constant C such that∣∣∣∣∣kH
(1)′
n (ka)

H
(1)
n (ka)

+
|n|
a

∣∣∣∣∣ ≤ C for all n ∈ Z.(54)
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Proof. From Lemma A.2, we can see that there is a positive constant C such that∣∣∣∣∣∣
H

(1)
n−1(ka)

H
(1)
n (ka)

2n

ka

∣∣∣∣∣∣ ≤ C for all n ∈ N ∪ {0}.

This implies that∣∣∣∣∣∣
H

(1)
n−1(ka)

H
(1)
n (ka)

∣∣∣∣∣∣ ≤ C
ka

2n
for all n ∈ N .

Thus, by using (8), we can get∣∣∣∣∣kH
(1)′
n (ka)

H
(1)
n (ka)

+
n

a

∣∣∣∣∣ ≤ C
k2a

2n
for all n ∈ N .

Further, noting that H
(1)
−n(ka) = (−1)nH(1)

n (ka), we see that (54) holds.

Lemma A.8 Let k > 0 and a > 0. Then there is a positive constant C such that∣∣∣∣∣kh
(1)′
n (ka)

h
(1)
n (ka)

+
n+ 1

a

∣∣∣∣∣ ≤ C for all n ∈ N ∪ {0}.(55)

Proof. We can see from (42) that there is a positive constant C such that∣∣∣∣∣∣
H

(1)
n−1/2(ka)

H
(1)
n+1/2(ka)

∣∣∣∣∣∣ ≤ C
ka

2n+ 1
for all n ∈ N ∪ {0}.(56)

From (11) and (56), we can get (55).

B Proof of Lemma 3.3

In the proof of Lemma 3.3, it is essential to prove the following theorem.

Theorem B.1 For every f ∈ L2(Ωa), there is a unique function u ∈ H2(Ωa) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = f in Ωa,
u = 0 on γ,

∂u

∂n
= −T u on Γa.

(57)

Further there is a positive constant C such that

‖u‖H2(Ωa) ≤ C‖f‖L2(Ωa),(58)

where C is independent of u and f .

If we prove Theorem B.1, then we can easily prove Lemma 3.3 by virtue of the following
lemma.
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Lemma B.1 For every g ∈ H1/2(Γa), there is a w ∈ H2(Ωa) ∩ V such that

∂w

∂n
+ T w = g on Γa.(59)

Further there is a positive constant C such that

‖w‖H2(Ωa) ≤ C‖g‖H1/2(Γa),(60)

where C is independent of w and g.

We shall prove this lemma after describing the proof of Lemma 3.3.

Proof of Lemma 3.3. For every f ∈ L2(Ωa) and for every g ∈ H1/2(Γa), let u be a
solution of the problem (28) and w a function satisfying (59) and (60). Setting v = u−w,
we have

−Δv = −Δu+ Δw = f + Δw in Ωa,

v = u− w = 0 on γ,

∂v

∂n
+ T v =

∂u

∂n
+ T u−

(
∂w

∂n
+ T w

)
= g − g = 0 on Γa.

This shows that we can reduce the problem (28) to the problem (57). Thus, the existence
and uniqueness for the solution of the problem (28) is assured by Theorem B.1. Further,
we can easily get (30) by using (58) and (60).

Proof of Lemma B.1. We prove only the two-dimensional case, since we can similarly
prove the three-dimensional case. For every g ∈ H1/2(Γa), set

ϕ =
∑
|n|>0

a

|n|gnYn,

where gn = 〈g, Yn〉. Then we have{
ϕ,

1

2πa

∫
Γa

g dγ
}
∈ H3/2(Γa) ×H1/2(Γa).

We can see from the trace theorem that there is a w ∈ H2(Ωa) ∩ V such that

w = ϕ on Γa and
∂w

∂n
=

1

2πa

∫
Γa

g dγ on Γa,(61)

and that there is a positive constant C1 such that

‖w‖H2(Ωa) ≤ C1

{
‖ϕ‖H3/2(Γa) +

∥∥∥∥ 1

2πa

∫
Γa

g dγ
∥∥∥∥

H1/2(Γa)

}
,(62)

where C1 is independent of g and w. By (61), we have

∂w

∂n
+ T w =

1

2πa

∫
Γa

g dγ + (g − g0Y0) = g.

Next we show (60). By simple calculation, we can get

‖ϕ‖H3/2(Γa) +

∥∥∥∥ 1

2πa

∫
Γa

g dγ

∥∥∥∥
H1/2(Γa)

≤ C2‖g‖H1/2(Γa),(63)

where C2 is a positive constant independent of g. Combining (62) and (63), we can get
(60).

We shall prove Theorem B.1 in the subsequent subsection.
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B.1 Proof of Theorem B.1

To prove Theorem B.1, we consider the exterior problem for the Poisson equation: for f
given in L2(Ω) which has a compact support, find u ∈W (Ω) such that{

−Δu = f in Ω,
u = 0 on γ,

(64)

where W (Ω) is the weighted Sobolev space defined as follows: if d = 2,

W (Ω) =

{
u ∈ D′(Ω) | u(x)

(1 + |x|2)1/2 log(2 + |x|2) ∈ L2(Ω),
∂u

∂xj

∈ L2(Ω) (j = 1, 2)

}
;

if d = 3,

W (Ω) =

{
u ∈ D′(Ω) | u(x)

(1 + |x|2)1/2
∈ L2(Ω),

∂u

∂xj

∈ L2(Ω) (j = 1, 2, 3)

}
,

where D′(Ω) is the Schwartz space of all distributions on Ω. The weak formulation of the
problem (64) is:⎧⎨

⎩
Find u ∈W0(Ω) such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx for all v ∈W0(Ω),

(65)

where W0(Ω) = {u ∈W (Ω) | u = 0 on γ}.
Here for every m ∈ N and for every unbounded domain Ω ⊂ Rd, we define

Hm
loc(Ω) = {u | u ∈ Hm(U) for all bounded open set U ⊂ Ω}.

Theorem B.2 For every f ∈ L2(Ω) whose support is compact, the problem (65) has a
unique solution, which belongs to H2

loc(Ω).

Proof. In Amrouche-Girault-Giroire [2], it is proved that the problem (65) has a
unique solution. Form the well-known regularity argument for the solution of the Poisson
equation, it follows that the solution belongs to H2

loc(Ω).

Proof of Theorem B.1. We first show (58) by assuming that the problem (57) has a
unique solution belonging to H2(Ωa) for every f ∈ L2(Ωa). We define G : L2(Ωa) −→
H2(Ωa) as follows:

Gf = u for all f ∈ L2(Ωa),

where u is the solution of the problem (57). Then G is a closed operator, and hence, by
the closed graph theorem, G is a bounded linear operator from L2(Ωa) into H2(Ωa). This
implies (58).

We next show that the problem (57) has a unique solution belonging to H2(Ωa) for
every f ∈ L2(Ωa). If the problem (57) has a solution u ∈ H2(Ωa), then u is a solution of
the following weak formulation:⎧⎨

⎩
Find u ∈ V such that∫
Ωa

∇u · ∇v dx+ 〈T u, v〉 =
∫
Ωa

fv dx for all v ∈ V.
(66)
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Conversely, if the problem (66) has a solution u ∈ H2(Ωa), then u is a solution of the
problem (57). Thus, our task is now to show that the problem (66) has a unique solution
belonging to H2(Ωa).

It is easy to show that the problem (66) has a unique solution. Indeed, by virtue of
the Poincaré inequality, the space V is a Hilbert space equipped with the inner product:

(u, v)V =
∫

Ω
∇u · ∇v dx.

The right-hand side of the equality in (66) can be regarded as an element of the dual
space of V . Since the operator T is non-negative, the sesquilinear form on the left-hand
side of the equality in (66) is elliptic on V . Therefore it is follows from Lax-Milgram’s
lemma that the problem (66) has a unique solution u.

It remains to show that the solution u of the problem (66) belongs to H2(Ωa). In
order to show this fact, because of Theorem B.2, it is sufficient to show that a harmonic
extension of u becomes the solution of the problem (65), namely, to show the following
proposition.

Proposition B.1 Let ui be the solution of (66) and set ϕ = ui|Γa. Define a function
u on Ω as follows:

u|Ωa = ui,(67)

u|Ω′
a

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

(
a

r

)|n|
ϕnYn(θ), if d = 2,

∞∑
n=0

n∑
m=−n

(
a

r

)n+1

ϕm
n Y

m
n (θ, φ), if d = 3,

(68)

where Ω′
a = {x ∈ Rd | |x| > a}, ϕn = 〈ϕ, Yn〉, and ϕm

n = 〈ϕ, Y m
n 〉. Then u is the solution

of the problem (65).

To prove Proposition B.1, we shall use the following lemma, whose proof is postponed
to the completion of the proof of Proposition B.1.

Lemma B.2 Let ϕ ∈ H1/2(Γa) and define u, on Ω′
a, by

u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

(
a

r

)|n|
ϕnYn(θ), if d = 2,

∞∑
n=0

n∑
m=−n

(
a

r

)n+1

ϕm
n Y

m
n (θ, φ), if d = 3.

(69)

Then, u ∈ W (Ω′
a), that is, the infinite series on the right-hand side of (69) converge in

W (Ω′
a).

Proof of Proposition B.1. Let ui be the solution of the problem (66) and u the function
on Ω defined by (67) and (68). We denote u|Ω′

a
by ue. We first show that u ∈ W0(Ω).

Because of Lemma B.2, it suffices to show that u ∈ H1
loc(Ω). This follows from the

following facts: ui ∈ H1(Ωa), ue ∈ H1
loc(Ω

′
a), and ui = ue on Γa.
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We next show that u is the solution of the problem (65). Since C∞
0 (Ω) is dense in

W0(Ω), it suffices to show that

−
∫
Ω
uΔψ dx =

∫
Ω
fψ dx for all ψ ∈ C∞

0 (Ω),(70)

where f is assumed to be extended by zero to Ω. By the Green formula, we have

−
∫
Ω
uΔψ dx = −

∫
Ωa

uiΔψ dx−
∫

Ω′
a

ueΔψ dx

= −
∫
Γa

ui
∂ψ

∂r
dγ +

∫
Ωa

∇ui · ∇ψ dx+
∫
Γa

ue
∂ψ

∂r
dγ +

∫
Ω′

a

∇ue · ∇ψ dx.

Noting ui = ue on Γa, we can see

−
∫
Ω
uΔψ dx =

∫
Ωa

fψ dx− 〈T ui, ψ〉 +
∫
Ω′

a

∇ue · ∇ψ dx.

Thus, in order to show (70), it suffices to show that∫
Ω′

a

∇ue · ∇ψ dx = 〈T ui, ψ〉.(71)

We show (71) only in the two-dimensional case, since we can similarly show (71) in the
three-dimensional case. Set ϕ = ui|Γa, and define, for N ∈ N ,

uN =
N∑

n=−N

(
a

r

)|n|
ϕnYn(θ) on Ω′

a.(72)

Then uN ∈ C∞(Ω′
a), where C∞(Ω′

a) = {u = ũ|Ω′
a
| ũ ∈ C∞(Rd)}, and moreover −ΔuN =

0 in Ω′
a. Hence, by the Green formula, we obtain

∫
Ω′

a

∇uN · ∇ψ dx−
N∑

n=−N

|n|
a
ϕn

∫
Γa

Yn(θ)ψ dγ = 0 for all ψ ∈ C∞
0 (Ω).(73)

There is a sufficiently large number b such that suppψ ∩ Ω′
a ⊂ Ωb

a, where Ωb
a = {x ∈

Rd | a < |x| < b}. Hence we can rewrite (73) as follows:

∫
Ωb

a

∇uN · ∇ψ dx =
N∑

n=−N

|n|
a
ϕnψn.(74)

Since ui|Γa = ϕ ∈ H1/2(Γa), we have

∞∑
n=−∞

|n|
a
ϕnψn = 〈T ui, ψ〉

and, by Lemma B.2,

uN −→ ue in H1(Ωb
a).

Thus, forcing N to approach infinity in (74), we can get (71).
We finally have to prove Lemma B.2 to complete the proof of Theorem B.1.
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Proof of Lemma B.2. We first prove the two-dimensional case. We can easily see that
for all n ∈ Z,

(
a

r

)|n|
Yn(θ) ∈W (Ω′

a).

For N ∈ N , we define uN by (72). Let us show that uN −→ u in W (Ω′
a) as N −→ ∞.

For N < N ′, we have∥∥∥∥∥ uN(x) − uN ′(x)

(1 + |x|2)1/2 log(2 + |x|2)

∥∥∥∥∥
2

L2(Ω′
a)

(75)

=
∑

N<|n|≤N ′

∫ ∞

a

(
a

r

)2|n| r

(1 + r2) log2(2 + r2)
dra|ϕn|2.

Note that for all n ∈ Z,

∫ ∞

a

(
a

r

)2|n| r

(1 + r2) log2(2 + r2)
dr ≤

∫ ∞

a

r

(1 + r2) log2(2 + r2)
dr ≡ C1 < +∞.(76)

From (75) and (76), we can get∥∥∥∥∥ uN(x) − uN ′(x)

(1 + |x|2)1/2 log(2 + |x|2)

∥∥∥∥∥
2

L2(Ω′
a)

≤ aC1

∑
N<|n|≤N ′

|ϕn|2.(77)

We here note that we have∫
Ω′

a

∇u · ∇v dx =
∫
Ω′

a

∂u

∂r

∂v

∂r
dx−

∫
Ω′

a

1

r2
(Λu)v dx for u, v ∈ C∞(Ω′

a) ∩W (Ω′
a),(78)

where Λ is the Laplace-Beltrami operator on the unit circle of R2. Since −ΛYn = n2Yn,
we have, by (78),

‖∇(uN − uN ′)‖2
L2(Ω′

a)(79)

=
∫
Ω′

a

∣∣∣∣∣∂uN

∂r
− ∂uN ′

∂r

∣∣∣∣∣
2

dx−
∫
Ω′

a

1

r2
[Λ(uN − uN ′)] (uN − uN ′) dx

=
∑

N<|n|≤N ′

∫ ∞

a

⎧⎨
⎩
∣∣∣∣∣ ddr

(
a

r

)|n|∣∣∣∣∣
2

+
n2

r2

(
a

r

)2|n|
⎫⎬
⎭ r dra|ϕn|2

=
∑

N<|n|≤N ′
na|ϕn|2.

Since ϕ ∈ H1/2(Γa), it follows from (77) and (79) that uN −→ u in W (Ω′
a) as N −→ ∞.

We next prove the three-dimensional case. It is obvious that(
a

r

)n+1

ϕm
n Y

m
n (θ, φ) ∈W (Ω′

a) (n ∈ N ∪ {0}, −n ≤ m ≤ n).

For N ∈ N , we set

uN =
N∑

n=0

n∑
m=−n

(
a

r

)n+1

ϕm
n Y

m
n (θ, φ).
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For N < N ′, we have

∥∥∥∥∥uN(x) − uN ′(x)

(1 + |x|2)1/2

∥∥∥∥∥
2

L2(Ω′
a)

=
N ′∑

n=N+1

n∑
m=−n

∫ ∞

a

(
a

r

)2(n+1) r2

1 + r2
dra2|ϕm

n |2.(80)

Here we note that for all n ∈ N ∪ {0},
∫ ∞

a

(
a

r

)2(n+1) r2

1 + r2
dr ≤

∫ ∞

a

(
a

r

)2

dr ≡ C2 < +∞.(81)

Form (80) and (81), we can get

∥∥∥∥∥uN(x) − uN ′(x)

(1 + |x|2)1/2

∥∥∥∥∥
2

L2(Ω′
a)

≤ a2C2

N ′∑
n=N+1

n∑
m=−n

|ϕm
n |2.(82)

We here note that (78) holds good for the three-dimensional case. Therefore, since
−ΛY m

n = n(n + 1)Y m
n , we have

‖∇(uN − uN ′)‖2
L2(Ω′

a)(83)

=
∫
Ω′

a

∣∣∣∣∣∂uN

∂r
− ∂uN ′

∂r

∣∣∣∣∣
2

dx−
∫
Ω′

a

1

r2
[Λ(uN − uN ′)] (uN − uN ′) dx

=
N ′∑

n=N+1

n∑
m=−n

∫ ∞

a

⎧⎨
⎩
∣∣∣∣∣ ddr

(
a

r

)n+1
∣∣∣∣∣
2

+
n(n + 1)

r2

(
a

r

)2(n+1)
⎫⎬
⎭ r2 dra2|ϕm

n |2

=
N ′∑

n=N+1

n∑
m=−n

(n + 1)a3|ϕm
n |2.

Form (82) and (83), we can see that uN −→ u in W (Ω′
a) as N −→ ∞.
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