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波動問題に対するDirichlet-to-Neumann有限要素法

小 　山 　大 　介 　

概要

凹角を持つ水域における水の波の線型固有値問題と外部 Helmholtz問題
に対する Dirichlet-to-Neumann (DtN)有限要素法の事前誤差評価を導出す
る．水の波の線型固有値問題の場合には，導出した誤差評価の正当性を保証
する数値例を与える．外部Helmholtz問題の場合には，より良い評価を得る
ために，Hankel関数の新たな性質を証明する．
外部 Helmholtz問題を解くための可制御法に適した，波動方程式に対す

るあるDtN 境界条件を提案する．この境界条件下での波動方程式の一意可
解性を証明する．Helmholtz問題と可制御法において生ずるある制御問題の
同値性について考察する．
三次元外部 Helmholtz問題を解くための仮想領域法の一つの定式化を与

える．その離散問題で生ずる制約行列の要素計算アルゴリズムを与える．さ
らに，このアルゴリズムは数値誤差の影響で破綻しないことを示す．
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Dirichlet-to-Neumann
Finite Element Methods for

Wave Problems

Daisuke Koyama

Abstract

The Dirichlet-to-Neumann (DtN) finite element method is applied to the
eigenvalue problem of the linear water wave in a water region with a reentrant
corner and to the exterior Helmholtz problem.

Error estimates of the DtN finite element methods for these problems
are established. The error estimates include the effect of truncation of the
infinite series representing the DtN boundary condition as well as that of the
finite element discretization.

In the case of the eigenvalue problem of the linear water wave, the error
estimates assure that the DtN finite element method improves the deteriora-
tion of convergence rate caused by the corner singularity. Numerical examples
are presented which illustrate this improvement.

In the case of the Helmholtz problem, a new property of the Hankel
functions is proved to get a sharp estimation of the error caused by the
truncation.

A certain DtN boundary condition for the time-dependent wave equation
is proposed which is suitable to the controllability method for solving the
exterior Helmholtz problem. The well-posedness of the wave equation im-
posing the DtN boundary condition is established by using the semi-group
theory. Equivalence between the Helmholtz problem and an exact control-
lability problem arising in the controllability method is investigated. A suf-
ficient condition for the equivalence is presented in discrete level. A typical
example is shown where the condition is satisfied. Some numerical examples
are also presented which verify the validity of the controllability method with
the DtN boundary condition.

A fictitious domain formulation using the Lagrange multipliers is pre-
sented for the 3D Helmholtz problem imposing the DtN boundary condition.

ii



An algorithm for computing the constraint matrices in the linear system
arising in finite element discretizations is presented. In the algorithm, a tri-
angulation algorithm for the intersection of a tetrahedron and a triangle plays
an essential role. The triangulation algorithm is shown to be numerically ro-
bust, and further is simplified. The effectiveness of the simplified algorithm
is shown through some numerical experiments.
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Chapter 1

Introduction

The boundary value problems of differential equations defined on unbounded
domains or domains with corners often arise in science and engineering
fields. The Dirichlet-to-Neumann (DtN) finite element method is a numerical
method to solve effectively such problems by excluding the unboundedness or
the corner singularity. We investigate the DtN finite element method applied
to wave problems through mathematical analysis and numerical experiments.
As wave problems, we consider the eigenvalue problem of the linear water
wave (the sloshing problem) in a water region with a reentrant corner and
the exterior Helmholtz problem. First, we derive a priori error estimates of
the DtN finite element methods applied to these problems. Next we consider
the controllability method for solving the exterior Helmholtz problem. We
propose a DtN boundary condition for the time-dependent wave equation
that is suitable to the controllability method, and discuss the validity of the
controllability method using such a DtN boundary condition. Finally we pro-
pose a fictitious domain formulation for the Helmholtz problem imposing the
DtN boundary condition, and present an algorithm for computing the entries
of the constraint matrix arising in such a fictitious domain formulation.

1.1 The linear water wave problem

When wave motion in the water with a free surface is described as a mathe-
matical model, the fluid is assumed to be homogeneous, inviscid, and incom-
pressible, and its motion is assumed to be irrotational. The last assumption
guarantees the existence of a velocity potential Φ. When the amplitude of
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the wave motions is small, the velocity potential Φ satisfies the following
linear initial-boundary value problem:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ΔΦ = 0 in Ω,
∂2Φ

∂t2
+ g

∂Φ

∂n
=

∂F

∂t
on Γ0,

∂Φ

∂n
= 0 on Γ1,

Φ(0) = Φ0 on Γ0,
∂Φ

∂t
(0) = Φ1 on Γ0,

where Ω denotes the region of the water at rest, Γ0 the surface of the water
at rest, Γ1 the rigid wall in contact with the water at rest, g the acceleration
of gravity, n the outward unit normal vector on the boundary of Ω, and F
the additional external force per unit surface affecting the water surface. For
more details of the derivation of (1.1), see, e.g., [121, 98]. In this thesis, we
shall call (1.1) the linear water wave problem.

The eigenvalue problem associated with problem (1.1), i.e., the eigenvalue
problem of the linear water wave is as follows:

(1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δu = 0 in Ω,

∂u

∂n
= αu on Γ0,

∂u

∂n
= 0 on Γ1.

This eigenvalue problem is often called the sloshing problem. Note here that
the eigenvalues α are related to the sloshing frequencies ω by α = ω2/g. As
is well known, solutions of (1.1) can be given by superposition of eigenvectors
of (1.2) (see [127]).

For a historical review of the sloshing problem (1.2), we refer to [36] and
references therein. According to [36], we see that the sloshing problem is a
classical problem. In addition, for a historical review of the linear water wave
problem (1.1), see [120, 121, 98].

The sloshing problem is of great concern in aerospace and civil engineering
fields, as exemplified by applications to fuel sloshing in liquid propellant
vehicles and seismic loads on dams and liquid storage tanks.

The sloshing problem (1.2) is analytically solved in the cases when the
water region Ω is so simple that separation of variables can be applied to
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the problem; however, in the cases of general shapes of Ω, approximation
methods are valuable, e.g., in [25] the finite deference method is applied to
the problem in axisymmetric domains, in [106, 42] analytical representations
of approximate solutions are presented in the case when finite difference
discretizations are applied to the problem in rectangular domains, in [37, 38]
the problem in axisymmetric domains is solved by the finite element method,
and in [94] the DtN finite element method is applied to the problem in two-
dimensional domains with a reentrant corner.

1.2 The Helmholtz problem

The wave equation:

(1.3)
1

c2

∂2w

∂t2
− Δw = F

with the wave speed c, arises in acoustics, elastodynamics, and electromag-
netics. Its solutions describe the propagations of acoustic, elastic, and elec-
tromagnetic waves (see, e.g., [22, 75]).

In applications, e.g., in the radar technology, most of the time we may
assume that F is time harmonic:

F (x, t) = f(x) exp(−iωt),

where ω is the circular frequency and i =
√
−1. In this case, we may also

assume that the solution of the wave equation is of the form w(x, t) =
u(x) exp(−iωt). Then u satisfies the Helmholtz equation:

−Δu − k2u = f,

where k = ω/c is the wave number and will be assumed to be a positive
constant in this thesis.

In the stealth technology for radar, the phenomena are described as the
exterior Helmholtz problem with the Sommerfeld radiation condition im-
posed at infinity:

(1.4)

⎧⎪⎪⎨⎪⎪⎩
−Δu − k2u = f in Ω,

u = 0 on γ,

lim
r−→+∞

r
d−1
2

(
∂u

∂r
− iku

)
= 0,

3



where Ω is an unbounded domain of Rd (d = 2 or 3) with boundary γ, f is
a given datum, r = |x| for x ∈ Rd, and the last condition is the outgoing
radiation condition. Assume that O ≡ Rd \Ω is a bounded open set and that
f has a compact support (see Fig. 1.1).

γ
Ο

Ω

supp f

Figure 1.1: An exterior domain Ω with boundary γ and a compact support
of f .

The computation of numerical solutions of (1.4) for predicting the radar
cross section (RCS) are valuable for the design of stealth planes (see [87]).

1.3 The Dirichlet-to-Neumann (DtN) finite

element method

As was mentioned above, the Dirichlet-to-Neumann (DtN) finite element
method is a numerical technique for seeking approximate solutions of prob-
lems in unbounded domains or domains with corners. Its name comes from
the fact that it employs the Dirichlet-to-Neumann (DtN) operator on an ar-
tificial boundary which is introduced to decompose the domain into a regular
domain and a singular domain.

We present the definition of the DtN operator and the procedure of the
DtN finite element method by taking the case of the exterior Helmholtz
problem (1.4).
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We consider the following problem:

(1.5)

⎧⎪⎪⎨⎪⎪⎩
−Δu − k2u = 0 in Ωs,

u = ϕ on Γa,

lim
r−→∞

r
d−1
2

(
∂u

∂r
− iku

)
= 0,

where Ωs is the singular domain defined by Ωs = {x ∈ Rd | |x| > a}, and Γa

is the artificial boundary defined by Γa = {x ∈ R
d | |x| = a} (see Fig. 1.2).

Then the DtN operator S is defined as follows: for every Dirichlet datum ϕ

Γ

Ω

a

s

ns

Figure 1.2: A singular domain Ωs.

on Γa,

(1.6) Sϕ =
∂u

∂ns

∣∣∣∣
Γa

(Neumann datum),

where u is the solution of (1.5), and ns is the unit normal vector on Γa,
toward the origin (see Fig. 1.2).

The procedure of the DtN finite element method is summarized as follows:

1. We introduce the artificial boundary Γa to divide the exterior domain
Ω into the unbounded domain Ωs (singular domain) and the residual
bounded domain Ωa (regular domain). Note that the radius a of the
artificial boundary Γa is chosen so large that Γa encloses O ∪ supp f ,
namely, the nonhomogeneity of the problem (see Fig. 1.3).

2. Since Ωs is the domain exterior to the ball, we can obtain an analyt-
ical representation of the solution of problem (1.5) by separation of

5



γ
Ο

ΓΩ aa

supp f

n

Figure 1.3: A regular domain Ωa.

variables. Using this analytical representation, we obtain an analytical
representation of the DtN operator. We note here that we can also
obtain an analytical representation of the DtN operator when, as an
artificial boundary Γa, we choose an elliptic boundary if d = 2, or a
spheroidal one if d = 3 (see [63]).

3. Imposing a boundary condition using the DtN operator, called the DtN
boundary condition, on Γa, we reduce the original exterior problem
(1.4) equivalently to the following problem:

(1.7)

⎧⎪⎨⎪⎩
−Δu − k2u = f in Ωa,

u = 0 on γ,
∂u

∂n
= −Su on Γa,

where n is the outward unit normal vector on Γa (see Fig. 1.3). Note
that we have n = −ns.

4. We solve (1.7) by the finite element method.

In 1989, Keller–Givoli [86] first called the last equation of (1.7) the DtN
boundary condition, and further the above procedures 1–4 the DtN finite
element method. Before 1989, the DtN boundary condition had been already
known as a boundary condition which is naturally incorporated into the finite
element procedure; several authors had derived the DtN boundary conditions
for several problems and had studied the corresponding DtN finite element
methods.

Examples of such works before 1989 are the following.
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In 1978, Fix–Marin [35], who are pioneers in the DtN finite element
method, derived the DtN boundary condition for the under-water acoustic
problem as a generalized radiation condition; the DtN boundary condition
is based on separation of variables and is represented as a Fourier infinite
series. They presented some numerical examples, where the second order
convergence of the DtN finite element method in the maximum norm is
observed and a comparison between the DtN boundary condition and the
classical radiation condition is made.

In 1980, MacCamy–Marin [103] represented the DtN boundary condition
for the exterior Helmholtz problem through an integral equation; such a
representation is available for general smooth artificial boundaries. They
further established error estimates and presented some numerical examples
which confirm such error estimates.

In 1982, Goldstein [56] derived the DtN boundary condition for the Helmholtz
problem on unbounded waveguides; he also represented it through a Fourier
infinite series. Moreover he established error estimates that include the ef-
fect of truncation of the infinite series as well as that of discretization of the
finite element method. Further, Seto [117] derived the DtN boundary con-
dition associated with the three dimensional water wave radiation problem,
and computed practical problems by using it.

In 1983, Feng [31] derived a Fourier series representation of the DtN
operator for the exterior Helmholtz problem, and presented a sequence of
local artificial boundary conditions which is obtained by approximating the
Fourier series representation by using an asymptotic expansion of the Hankel
functions for large arguments. In addition, Feng–Yu [32] derived the DtN
boundary conditions for the Laplace, the biharmonic, and the linear elastic
equations.

In 1985, Han–Wu [72] established an error estimate for the exterior Laplace
problem which also estimates the error cause by the truncation of the infinite
series in the DtN boundary condition as well as the discretization error due
to the finite element method. Yu [138] analyzed, for the same problem, only
the truncation error.

In 1986, Yu [137] applied the DtN finite element method to the Laplace
problem with a corner singularity, and proved an error estimate with respect
to the mesh size.

In 1987, Masmoudi [105] also proved the same error estimate as in MacCamy–
Marin [103] for the exterior Helmholtz problem. He however employed the
Fourier series representation of the DtN boundary condition, and presented

7



some numerical examples which confirm the error estimate.
In 1988, Lenoir–Tounsi [99] established an error estimate of the DtN finite

element method for the two-dimensional water wave radiation problem. In
their error estimate, the truncation error and the discretization error are both
analyzed.

After 1989, the DtN finite element method has been applied further to
various problems.

For problems in unbounded domains, the linear elastic wave problem were
investigated by Givoli–Keller [48] for 2D and by Gächter–Grote [40] for 3D;
the Stokes problem by Yu [140] for 2D and by Zheng–Han [142] for 3D;
and the diffraction problem of a time harmonic wave incident on a periodic
surface of some inhomogeneous material by Bao [6].

For problems with corner singularities, boundary value problems for the
Laplace and the Helmholtz equations were investigated by Givoli–Rivkin–
Keller [50], Givoli–Vigdergauz [51], and Wu–Han [133], and the eigenvalue
problem of the linear water wave (the sloshing problem) by Koyama–Tanimoto–
Ushijima [94].

For time-dependent problems in three dimensional exterior domains, Grote–
Keller investigated the DtN boundary conditions for the scalar wave equation
in [64, 65]; for the elastic wave equation in [67, 61]; and the Maxwell equa-
tion in [66, 62]. For the scalar wave equation, Hagstrom–Hariharan [69] and
Sofronov [119] also investigated.

As mentioned above, the infinite series representing the DtN boundary
condition is truncated at a finite number of terms in practice. So it is impor-
tant to analyze the error due to the truncation for validating the DtN finite
element method. Error estimates including both the truncation error and
the discretization error were first derived by Goldstein [56] for the Helmholtz
problem on unbounded waveguides. His error estimates are very sharp and
give one typical form of estimation of the truncation error.

Wu–Han [133] and Han–Bao [70, 71] established more sophisticate error
estimates for a certain class of the linear elliptic second order boundary value
problem in exterior domains and in semi-infinite strips, for the linear elastic
problem in exterior domains, and for the Laplace and the Helmholtz problems
with boundary singularities. Their error estimates depends not only on the
mesh size and the number of terms used in DtN boundary condition but also
on the position of the artificial boundary. All of the problems they considered
are positive definite. At present we do not know whether such type of an
error estimate can be derived for indefinite problems such as the Helmholtz

8



problem considered in Goldstein [56].
For other problems, error estimates including the effects of the truncation

error and the discretization error were established by several authors, for
example, for the two-dimensional water wave radiation problem by Lenoir–
Tounsi [99], for the diffraction problem of a time harmonic wave incident
on a periodic surface of some inhomogeneous material by Bao [6], for the
eigenvalue problem of the linear water wave in a water region with a reentrant
corner by Koyama–Tanimoto–Ushijima [94], and for the exterior Helmholtz
problem by Koyama [92].

Further, Ushijima–Ajiro–Yokomatsu [129] derived an error estimate for
the exterior Laplace problem that also includes the effect of the approxima-
tion of the circular artificial boundary, naturally arising in triangulations of
the computational domain.

In addition, there are some studies for the DtN finite element method for
the exterior Helmholtz problem from a different point of view. Grote–Keller
[63] proposed the modified DtN boundary condition to prevent the occur-
rence of positive eigenvalues which is caused by the truncation of the DtN
boundary condition. The resulting system of linear equations in the DtN fi-
nite element computations for large-scale problems is often solved by Krylov
subspace iterative methods. Then the nonlocality of the DtN boundary con-
dition increases the storage requirements for the coefficient matrix and the
computational costs in the matrix-vector products. So Oberai–Malhotra–
Pinsky [111] presented efficient algorithms to compute matrix-vector prod-
ucts that are carried out without storing the dense matrix associated with
the DtN boundary condition. They also presented an SSOR-type precon-
ditioner utilizing the algorithms effectively. Giljohann–Bittner [43] solved a
real engineering problem in the three-dimensional space by the DtN finite
element method, and compared the numerical solution with experimental
data. Grote–Kirsch [68] presented a DtN formulation for multiple scatter-
ing problem, where the computational domain consists of multiple disjoint
bounded domains.

In the realm of the finite element methods for problems in unbounded
domains, there are five other types of methods.

The first method uses other artificial boundary conditions (ABCs) than
the DtN boundary condition. Liu–Kako [101, 102] derived a unique non-
local ABC that has higher-order than the first order absorbing condition
due to Engquist–Majda [29], Bayliss–Gunzburger–Turkel [9], and Feng [31],
and moreover enables us to establish error estimates. Ushijima [128] also
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derived a nonlocal ABC for the exterior Laplace problem by using the idea
of the charge simulation method. Although the DtN boundary condition is
also nonlocal, there are many local artificial boundary conditions which ap-
proximate the (exact) DtN boundary condition. Such local ABCs were pro-
posed by Engquist–Majda [29], Bayliss–Gunzburger–Turkel [9], Feng [31],
Kriegsmann–Morawetz [95], etc (see, e.g., [46], for a review). The DtN
boundary condition has an advantage over these local ABCs as follows: The
use of the DtN boundary condition arrows us to take the computational do-
main as small as possible, and hence the DtN boundary condition can reduce
the computational costs. Shortcomings of the DtN boundary condition are
twofold: the nonlocality that spoils the sparsity of the coefficient matrix in
the system of linear equations and the necessity to compute values of special
functions which are employed in the analytical representation of the DtN
operator. Further comparisons of the exact DtN boundary condition with
local ABCs are described in [47, 49].

The second method couples the boundary element method with the finite
element method. This method is investigated, for example, by the following
authors: Greenspan–Werner [58], Zienkiewicz–Kelly–Bettess [143], Brezzi–
Johnson [15], Johnson–Nédélec [83], Wendland [131, 132], and Hsiao [80].

The third method employs finite number of elements with infinite measure
and is called the infinite element method (Bettess [11], Bettess–Zienkiewicz
[12], Burnett [18], Demkowicz–Gerdes [23], Shirron–Babuška [118], Gerdes
[41], Demkowicz–Ihlenburg [24]).

The fourth method is also called the infinite element method; however it
employs infinite number of elements with finite measure (Thatcher [124, 125],
Ying [135]).

The fifth method uses an absorbing layer which reduces the reflection of
incident waves. This method was proposed by Berenger [10] and is called the
perfectly matched layer (PML).

As other numerical methods for problems with corner singularities base
on the finite element method, there are fourth types of methods as follows.

The first method adds singular functions to the standard finite element
spaces (Fix–Gulati–Wakoff [34]).

The second method uses refinements of the finite element mesh (Raugel
[113], Babuška–Kellogg–Pitkäranta [3]).

The third method generates adaptive meshes by using a posteriori esti-
mates (Babuška–Rheinboldt [5], Morin–Nochetto–Siebert [107]).

The fourth method is the infinite element method due to Thatcher [126]
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and Ying [134, 135], which was mentioned above as the fifth method for
problems in unbounded domains.

1.4 Topics of the thesis

1.4.1 Error analysis of the DtN finite element method

We consider the eigenvalue problem of the linear water wave in a water
region with a reentrant corner and the exterior Helmholtz problem. For these
problems, we establish error estimates for approximate solutions obtained
by the DtN finite element method. Since the DtN boundary condition is
represented by the Fourier infinite series, we have to truncate the series in
practical computations. So we analyze the series truncation error as well as
the finite element discretization error.

To establish error estimates including the effect of the truncation error,
we employ theorems of Babuška–Osborn [4]. Our theoretical results show
that a bound of the truncation error is O(M−s), where M is the number
of the terms used in the truncated DtN boundary condition, and s is an
arbitrary positive number, and that a bound of the discretization error is
the same bound as is obtained by using a standard finite element method
in the case when the water region is a convex domain. We further present
numerical results concerning the rate of convergence for the DtN method,
and compare them with those obtained by a standard finite element method.
This shows that the use of the DtN method improves the rate of convergence
in comparison with that for the standard finite element method.

Our error analysis for the exterior Helmholtz problem roughly follows the
analysis of Goldstein [56]; however, we needs some properties of the Hankel
functions, which contain a new and important result (Lemma A.7); we were
inspired to prove Lemma A.7 by Han–Bao [70, Lemma 3.1]. We here remark
that in the error analysis of ours (and also of Goldstein), the argument of
Schatz [116] plays an essential role, since the Helmholtz equation is indefinite.

1.4.2 The controllability method

When we apply the finite element method directly to problem (1.7), the coef-
ficient matrix in the linear system of equations to be solved is non-Hermitian
and has an indefinite Hermitian part in general, which makes the linear
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system hard to solve by Krylov subspace iterative methods such as conju-
gate gradient (CG) method [57] and GMRES [114]. Hence many precon-
ditioning techniques are developed (see, e.g., Bayliss–Goldstein–Turkel [8],
Oberai–Malhotra–Pinsky [111], Elman–O’Leary [27], Magolu monga Made
[104], Kakihara–Koyama–Fujino [84]).

Bristeau–Glowinski–Périaux [16, 17] proposed a controllability method to
avoid solving such a linear system. In the controllability method, we solve
a linear system that arises from discretization of the Laplace equation (cf.
Section 4.5). Since the coefficient matrix in such a linear system is real,
symmetric and positive definite, the linear system is relatively easy to solve
by iterative methods such as preconditioned CG methods [57]. By way of
compensation, the controllability method requires solving the original wave
equation (1.3) with an appropriate ABC imposed on the artificial boundary.

As such an ABC, Bristeau–Glowinski–Périaux [16, 17] use local ABCs
proposed by Engquist and Majda [29], whereas Koyama [89] introduce the
following new ABC:

(1.8)
∂u

∂n
+

∂u

∂t
= −Su − iku,

where S is the DtN operator defined by (1.6). The controllability method
using (1.8) leads us to the following exact controllability problem: find
u = {u0, u1} ∈ E such that there exists a function u : [0, T ] −→ H1(Ωa)
satisfying

(1.9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2
t u − Δu = f(x)e−ikt in Ωa × (0, T ),

u = 0 on γ × (0, T ),
∂u

∂n
+

∂u

∂t
= −Su − iku on Γa × (0, T ),

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in Ωa,
u(x, T ) = u0(x), ∂tu(x, T ) = u1(x) in Ωa,

where T = 2π/k, E = V × L2(Ωa) with V = {u ∈ H1(Ωa) | u = 0 on γ},
L2(Ωa) denotes the usual space of complex-valued square integrable functions
on Ωa and H1(Ωa) is the complex Sobolev space on Ωa (for the definition,
see Section 1.6).

One solution to this problem is clearly given by u = {U |Ωa , −ikU |Ωa},
where U is the solution to problem (1.7), because u(x, t) ≡ U(x)e−ikt satisfies
(1.9). Hence, if the solution to (1.9) is unique, then the solution to (1.7) is
equal to the first component in Ωa, that is, (1.9) is equivalent to (1.7). This
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implies that the uniqueness of the solution to problem (1.9) is a sufficient
condition for the equivalence between problems (1.9) and (1.7). Hence, it is
important to prove such a uniqueness in order to validate theoretically the
controllability method using ABC (1.8); however, it is yet to be proved.

Bardos and Rauch [7] showed the uniqueness in the case when ABC (1.8)
is replaced by the following local ABC:

(1.10)
∂u

∂n
+ α(x)

∂u

∂t
+ β(x)u = 0,

where α(x) and β(x) are smooth functions defined on Γa satisfying α(x) > 0
and β(x) ≥ 0, respectively.

In this thesis, as a first step to show the uniqueness, we prove the well-
posedness of the wave equation subject to ABC (1.8). We prove the well-
posedness following the way of the proof due to Ikawa [82]. In [82], a
more general second order hyperbolic differential equation is treated, and
its boundary condition is a generalization of (1.10) associated with the hy-
perbolic differential operator; such a boundary condition does not include
(1.8). So we further need to investigate properties of the Hankel functions
which are used in the analytical representation of the DtN operator, and to
use such properties with care in the proof.

Moreover we discuss the uniqueness of the solution to a semi-discrete
problem of (1.9) discretized by the finite element method. Such uniqueness
is a sufficient condition of the equivalence between problems (1.9) and (1.7)
in discrete level. We present a necessary and sufficient condition for the
uniqueness (cf. Theorems 4.3 and 4.4). Although we have not been able to
prove the uniqueness for general discrete problems, we prove it for a specific
one in Section 4.4. For test problems presented in Section 4.6, numerical
solutions are stably computed, which suggests that the uniqueness for those
problems is true.

1.4.3 The fictitious domain method

When we numerically solve problem (1.7) in the three-dimensional space by
the finite element method, the mesh generation of the computational domain
is generally a hard task. As a numerical method for overcoming this difficulty,
there is a fictitious domain method via Lagrange multiplier. Glowinski et al.
[53, 54, 44, 45] have proposed such a fictitious domain method for solving the
Dirichlet boundary value problems. The works of Glowinski et al. inspire
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Hetmaniuk–Farhat [78] to solve the Neumann boundary value problems by
using the fictitious technique with the Lagrange multiplier.

In this thesis, we give a fictitious domain formulation for solving (1.7). As

a fictitious domain, we use a rectangular parallelepiped domain Ω̃ enclosing
Ωa (see Fig. 1.4). We utilize the technique due to Glowinski et al. [53, 54]

γ

ΩΩ
Ο

a

Γa

∼

Figure 1.4: Left: Domain Ωa and boundaries γ and Γa; Right: Fictitious
domain Ω̃.

to handle the Dirichlet boundary condition on γ, and the technique due to
Hetmaniuk–Farhat [78] to handle the DtN boundary condition on Γa. To get
a discrete problem in this formulation, we use a uniform tetrahedral mesh
of the fictitious domain, a tetrahedral mesh of domain e depicted in Fig. 1.5
that is locally fitted to Γa, and triangular meshes of the boundaries γ and
Γa. For those tetrahedral meshes, we employ the continuous piecewise linear

e

Γa

Γ

Figure 1.5: Domain e and boundary Γ.

functions, and for those triangular meshes, the piecewise constant functions.
Mathematical analysis and practical computations for the associated discrete
problem have not been done yet.
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In this thesis, as a first step of practical computations, we present an algo-
rithm for computing the constraint matrix arising in the resulting system of
linear equations. Although Glowinski et al. compute three dimensional prob-
lems in [54], they do not describe how to compute the constraint matrix. In
our algorithm, a triangulation algorithm for the intersection of a tetrahedron
and a triangle plays an essential role. As far as the author knows, such an
algorithm has never been published yet.

First we design such an algorithm for computing the constraint matrix
so that no degenerate triangles occur in the course of computation on the
assumption that numerical errors do not take place. But some degenerate
triangles can occur in real computations because numerical errors cannot be
avoided completely. However, these degenerate triangles do not cause the
algorithm to fail, that is, the algorithm is numerically robust in the sense
that it always carries out its task ending up with some output (cf. [122]).
Thus, we simplify the algorithm by allowing degenerate triangles to occur
even if it is implemented in precise arithmetic. We show the effectiveness of
the simplified algorithm through numerical experiments.

There are other kinds of fictitious domain methods, for example, the
method which uses locally fitted meshes near the boundary of the original
domain and is often called capacitance matrix method or domain imbedding
method [97, 76, 77, 13, 30, 108, 109], and the method via singular perturba-
tion [39, 123]．

Although Kuznetsov–Lipnikov [97] and Heikkola et al. [77] solve the 3D
exterior Helmholtz problem by using a spherical fictitious domain and locally
fitted meshes, they use the local ABCs developed in [9] on the spherical
artificial boundary.

1.5 Organization of the thesis

The remainder of this thesis is organized as follows.
In Chapter 2, we apply the DtN finite element method to the eigenvalue

problem of the linear water wave in a water region with a reentrant corner.
We derive error estimates for approximate eigenvalues and eigenvectors ob-
tained by the DtN finite element method. We give numerical examples to
confirm the error estimates and to compare the rate of convergence for ap-
proximate solutions obtained by the DtN finite element method and by the
standard finite element method.
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In Chapters 3–5, we consider the exterior Helmholtz problem.
In Chapter 3, we establish error estimates in the H1- and L2-norms for

approximate solutions obtained by the DtN finite element method.
In Chapter 4, we investigate the controllability method using the DtN

boundary condition. We give a sufficient condition for the uniqueness of the
solution to the exact controllability problem (1.9), and further a necessary
and sufficient condition for the uniqueness of the solution to the associated
semi-discrete problems. We present numerical examples which suggest that
the uniqueness is true.

In Chapter 5, we present a fictitious domain formulation for solving the
3D exterior Helmholtz problem using the DtN boundary condition. We show
that the problem on the fictitious domain has a unique solution whose re-
striction to the original bounded domain Ωa is the solution of problem (1.7).
We present an algorithm for computing the constraint matrix in the resulting
system of linear equations. Further the algorithm is simplified. The original
and the simplified algorithms are both shown to be numerically robust. The
effectiveness of the simplified algorithm is shown through some numerical
experiments.

In Appendix A, we prove some properties of the Hankel functions, which
are employed to derive the error estimates of the DtN finite element method
applied to the exterior Helmholtz problem in Chapter 3, and to mathemati-
cally analyze the controllability method in Chapter 5.

In Appendix B, we prove a theorem concerning the well-posedness of the
wave equation imposing the DtN boundary condition (1.8) which arises in
the procedures of the controllability method.

1.6 Notations

We introduce several notations which will be used throughout this thesis.
If X and Y are Banach spaces, L(X, Y ) is the linear space of all bounded

linear operators from X into Y ; for simplicity, we will write L(X) instead of
L(X, X).

For each integer m ≥ 0 and every open subset Ω of Rd, the real (or
complex) Sobolev space Hm(Ω) is defined by

Hm(Ω) =
{
v | Dαv ∈ L2(Ω) for all multi indices α such that |α| ≤ m

}
,

where L2(Ω) denotes the usual space of real-valued (or complex-valued)
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square integrable functions on Ω. As usual, for the multi index α = (α1, α2, . . . , αd)
with nonnegative integers α1, α2, . . . , αd, we have

Dαv =
∂|α|v

∂xα1
1 ∂xα2

2 · · ·∂xαd
d

, |α| = α1 + α2 + · · ·+ αd.

On Hm(Ω), we shall use the semi-norm

|v|2m,Ω =
∑
|α|=m

∫
Ω

|Dαv|2dx

and the norm

‖v‖2
m,Ω =

∑
|α|≤m

∫
Ω

|Dαv|2dx.

We shall use the real Soblev space in the linear water wave problem, and
the complex Soblev space in the Helmholtz problem.
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Part I

The Eigenvalue Problem of the
Linear Water Wave in a Water

Region with a Reentrant
Corner
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Chapter 2

The DtN Finite Element
Method

2.1 The eigenvalue problem of the linear wa-

ter wave

We consider the eigenvalue problem of the linear water wave, which is also
called the sloshing problem:

(P )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = 0 in Ω,

∂u

∂n
= αu on Γ0,

∂u

∂n
= 0 on Γ1,

where, as described in Section 1.1, Ω denotes the region of the water at rest,
Γ0 the surface of the water at rest, Γ1 the rigid wall in contact with the water
at rest, g the acceleration of gravity, and n the outward unit normal vector on
the boundary of Ω. In this chapter, Ω is assumed to be a bounded polygonal
domain of R

2, and then Ω represents the cross section of a three-dimensional
water region which is uniform in a certain horizontal direction.

In the investigation of earthquake-resistant design methods of liquid stor-
age tanks, problem (P ) arises sometimes in a two-dimensional water re-
gion with reentrant corners. For example, Choun–Yun [20] make a two-
dimensional sloshing analysis of rectangular liquid storage tanks with a sub-
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merged structure as illustrated in Fig. 2.1, and discuss the effect of the sub-
merged structure on the sloshing response under seismic loading.

Ω

Γ

Γ1

0

a submerged structure

Figure 2.1: A rectangular liquid storage tank with a submerged structure.

When we solve problem (P ) in a nonconvex water region as shown in Fig.
2.1 by the standard finite element method, the convergence of approximate
solutions can be slow due to the boundary singularity of the solution to
problem (P ). As a numerical method to overcome this defect of the standard
finite element method, we have the DtN finite element method.

We make an error analysis of the DtN finite element method applied to
problem (P ) in nonconvex water regions.

For the sake of brevity, we consider the case when Ω has only one reentrant
corner on the rigid wall Γ1. So, from now on, we will assume the following
assumption:

Hypothesis 1 The domain Ω is contained in the half plane
{(x1, x2) ∈ R2 | x2 < 0} in fixed Cartesian coordinates. The boundary Γ0 is
the intersection of the boundary ∂Ω and the line x2 = 0, and has a positive
1-dimensional Lebesgue measure. The boundary ∂Ω is a polygon, and has
only one reentrant corner on Γ1 (see Fig. 2.2).

Remark 2.1 The assumption that the boundary has only one reentrant cor-
ner is not crucial. The results which are described in this paper are easily
extended to the case of a finite number of reentrant corners.
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Ω

Γ

Γ1

0

Figure 2.2: A region of the water at rest.

We now introduce the weak formulation of the problem (P ):

(Π)

{
Find {α, u} ∈ R × {H1(Ω) \ {0}} such that

a(u, v) = α〈γ0u, γ0v〉 for all v ∈ H1(Ω),

where

a(v, w) =

∫
Ω

∇v · ∇w dx, v, w ∈ H1(Ω),

〈Φ, Ψ〉 =

∫
Γ0

ΦΨ dγ, Φ, Ψ ∈ L2(Γ0),

and γ0 is the trace operator from H1(Ω) into L2(Γ0).
Here we readily see that (Π) has the trivial eigenvalue and that the corre-

sponding eigenvectors are constant. Moreover, (Π) has a countable sequence
of positive eigenvalues. To show this fact, we write (Π) in a different form.
For this purpose, we prepare the following spaces:

V =

{
v ∈ H1(Ω) |

∫
Γ0

γ0v dγ = 0

}
,

X =

{
Φ ∈ L2(Γ0) |

∫
Γ0

Φ dγ = 0

}
.

Note that there are constants C(Ω) and C(Ω) such that

(2.1) C(Ω)2‖v‖2
1,Ω ≤ a(v, v) + 〈γ0v, γ0v〉 ≤ C(Ω)2‖v‖2

1,Ω
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for all v ∈ H1(Ω). This implies that V is a Hilbert space equipped with the
inner product a(·, ·). Hence we can define the linear operator B : V −→ V
such that

a(Bu, v) = 〈γ0u, γ0v〉 for all u, v ∈ V.

From this definition, we can see that B is a nonnegative selfadjoint operator.
Furthermore, B is a compact operator since γ0 : V −→ X is a compact
operator. From these properties of B, it follows that the spectrum σ(B) of
B consists of zero and a countable sequence of positive eigenvalues which
converge to zero:

β1 ≥ β2 ≥ · · · ↘ 0,

i.e., σ(B) = {0}∪ {βi}∞i=1. Then, zero is an eigenvalue of B. We note that α
is a positive eigenvalue of (Π) if and only if β = 1/α is a positive eigenvalue
of B. Therefore, (Π) can be written in the following form:{

Find {β, u} ∈ {R \ {0}} × {V \ {0}} such that

Bu = βu in V.

From the above discussion, we can conclude that (Π) has the countable se-
quence of eigenvalues:

0 = α0 < α1 ≤ α2 ≤ · · · ↗ +∞,

where αi = 1/βi (i = 1, 2, . . .).

2.2 The DtN operator and the reduced prob-

lem

Let O, and ω (∈ (π, 2π]), be the vertex, and the angle, of the reentrant
corner, respectively. Let Da be the disc with radius a and center O. Let
Ωs = Da ∩ Ω. For sufficiently small a we can assume that Ωs is represented
in the following fashion:

Ωs = {(r, θ) | 0 < r < a, 0 < θ < ω} ,
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where (r, θ) are appropriate polar coordinates with origin O. Define the
artificial boundary Γa through

Γa = {(a, θ) | 0 < θ < ω} .

As a matter of fact, we understand that Γa is contained in Ω, and that
∂Ωs \ Γa is a portion of the boundary ∂Ω. We call Ωs the singular domain,
and introduce the regular domain Ωr through

Ωr =
(
Ωs

)c ∩ Ω.

Namely we have a domain decomposition of Ω with Ωs and Ωr (see Fig. 2.3).
Hereafter we fix a so small that the above domain decomposition may hold
good.

Ω

Γ

Γ1

0

ω

Ω
Γa

s

r

ο

Figure 2.3: Domain decomposition of Ω.

It is well known that on Assumption 1, each of the eigenvectors of (Π)
belongs to H2(Ωr), but does not necessarily belong to H2(Ωs) (see Grisvard
[59], [60]).

Here we consider the following boundary value problem:

(G; Φ)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = 0 in Ω,

∂u

∂n
= Φ on Γ0,

∂u

∂n
= 0 on Γ1.
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The weak formulation of the problem (G; Φ) is:

(G; Φ)

{
Find u ∈ V such that

a(u, v) = 〈Φ, γ0v〉 for all v ∈ V.

For each Φ ∈ X, the mapping

v −→ 〈Φ, γ0v〉

is a continuous linear form on V , and hence, by Riesz’ theorem, the problem
(G; Φ) has a unique solution.

We can reduce this problem to a problem on the regular domain by impos-
ing a boundary condition on the artificial boundary. This boundary condi-
tion is expressed through a pseudo-differential operator. Let us introduce this
pseudo-differential operator. Let u be the solution of (G; Φ). Let ϕ = u|Γa

and us = u|Ωs. Then us is a solution of the following problem:

(L; ϕ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δus = 0 in Ωs,

∂us

∂n
= 0 on Γ1 ∩ ∂Ωs,

us = ϕ on Γa.

The weak formulation of the problem (L; ϕ) is described as follows:

(L; ϕ)

⎧⎪⎪⎨⎪⎪⎩
Find us ∈ H1(Ωs) such that

as(us, v) = 0 for all v ∈ Vs,

us = ϕ on Γa,

where

Vs =
{
v ∈ H1(Ωs) | v = 0 on Γa

}
,

as(v, w) =

∫
Ωs

∇v · ∇w dx, v, w ∈ H1(Ωs).

By Riesz’ theorem the problem (L; ϕ) has the unique solution for every ϕ ∈
γaH

1(Ωs), where γa is the trace operator from H1(Ωs) into L2(Γa). Define
the inner product of L2(Γa) by

(ϕ, ψ) =

∫ ω

0

ϕ(θ)ψ(θ) a dθ, ϕ, ψ ∈ L2(Γa).
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Then the solution us can be expanded into

(2.2) us(r, θ) =
∞∑

n=0

(ϕ, Cn)
(r

a

)μn

Cn(θ) in H1(Ωs),

where μn = nπ/ω (n = 0, 1, 2, . . .) and

C0 =

√
1

aω
, Cn(θ) =

√
2

aω
cos(μnθ) (n = 1, 2, . . .).

We now define the linear operator Λ on L2(Γa) with the domain:

D(Λ) =

{
ϕ ∈ L2(Γa) |

∞∑
n=1

λ2
n|(ϕ, Cn)|2 < ∞

}
through the formula:

Λϕ =
∞∑

n=1

λn(ϕ, Cn)Cn, ϕ ∈ D(Λ),

where λn = μn/a. This operator can be considered as a nonnegative self-
adjoint operator acting in the Hilbert space L2(Γa), and is called the DtN
operator associated with the problem (L; ϕ). Roughly speaking, it trans-
forms a sufficiently smooth function ϕ defined on Γa to the outward normal
derivative on Γa with respect to Ωs of the solution of the problem (L; ϕ).
Using the DtN operator, we can reduce the problem (G; Φ) to the following
problem:

(Gr; Φ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δu = 0 in Ωr,

∂u

∂n
= Φ on Γ0,

∂u

∂n
= 0 on Γ1,r,

∂u

∂n
= −Λu on Γa,

where Γ1,r = Γ1 ∩ ∂Ωr , and ∂/∂n is the outward normal derivative with
respect to the regular domain Ωr. It should be noted that the boundary
condition on Γa is nonlocal.
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Now we define, for each s ≥ 0, the fractional power Λs, of Λ, with the
domain:

D(Λs) =

{
ϕ ∈ L2(Γa) |

∞∑
n=1

λ2s
n |(ϕ, Cn)|2 < ∞

}

through the formula:

Λsϕ =
∞∑

n=1

λs
n(ϕ, Cn)Cn, ϕ ∈ D(Λs).

Then D(Λs) is a Hilbert space equipped with the norm ‖ϕ‖s,Γa = {(ϕ, ϕ) +
(Λsϕ, Λsϕ)}1/2. We shall use the semi-norm |ϕ|s,Γa = (Λsϕ, Λsϕ)1/2.

To pose the weak formulation of the problem (Gr; Φ), we define the bilin-
ear form t(·, ·) by

t(v, w) = ar(v, w) + l(γav, γaw), v, w ∈ H1(Ωr),

where

ar(v, w) =

∫
Ωr

∇v · ∇w dx, v, w ∈ H1(Ωr),

l(ϕ, ψ) = (Λ1/2ϕ, Λ1/2ψ) =

∞∑
n=1

λn(ϕ, Cn)(ψ, Cn), ϕ, ψ ∈ D(Λ1/2),

and we also denote by γa the trace operator from H1(Ωr) into L2(Γa). The
bilinear form t(·, ·) is well defined because of the relation

(2.3) D(Λ1/2) = γaH
1(Ωr).

This relation follows from the fact that D(Λ1/2) = γaH
1(Ωs) (see [127]) and

(2.4) γaH
1(Ωr) = γaH

1(Ωs).

The equality (2.4) follows from the continuation theorem (e.g., Theorem
1.4.3.1 of Grisvard [59], Théorèm 3.9 of Nečas [110]) since each of the bound-
aries of Ωr and Ωs is a Lipschitz boundary. We next define

Vr =

{
v ∈ H1(Ωr) |

∫
Γ0

γ0v dγ = 0

}
,
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where we also denote by γ0 the trace operator from H1(Ωr) into L2(Γ0). Since
the inequality (2.1), replaced Ω, and a(·, ·), with Ωr, and ar(·, ·), respectively,
also holds good, we have

(2.5) ‖v‖1,Ωr ≤ C(Ωr)|v|1,Ωr

for all v ∈ Vr. This implies that Vr is a Hilbert space equipped with the inner
product ar(·, ·). We can now describe the weak formulation of the problem
(Gr; Φ) as follows:

(Gr; Φ)

{
Find u ∈ Vr such that

t(u, v) = 〈Φ, γ0v〉 for all v ∈ Vr.

This problem has the unique solution for every Φ ∈ X since the bilinear form
t(·, ·) is coercive on Vr: t(v, v) ≥ |v|21,Ωr

for all v ∈ Vr.
We can now see that (G; Φ) is equivalent to (Gr; Φ). Namely, we can

state the following proposition.

Proposition 2.1 For each Φ ∈ X, let u be the solution of (G; Φ). Let
ur = u|Ωr and us = u|Ωs. Then ur is the solution of the problem (Gr; Φ), and
us can be expressed in the following form:

us(r, θ) =
∞∑

n=0

(u|Γa, Cn)
(r

a

)μn

Cn(θ) in Ωs.

Conversely, let ur be the solution of (Gr; Φ) and let

u =

⎧⎪⎪⎨⎪⎪⎩
ur in Ωr,

∞∑
n=0

(γaur, Cn)
(r

a

)μn

Cn(θ) in Ωs,

then u is the solution of (G; Φ).

A proof of Proposition 2.1 is presented in the authors’ report [93]. In the
proof, the following lemma plays an essential role.

Lemma 2.1 For each ϕ ∈ γaH
1(Ωs), let u be the solution of (L; ϕ). Then

we have

(2.6) as(u, v) = l(ϕ, γav) for all v ∈ H1(Ωs).
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Proof. For every ϕ ∈ γaH
1(Ωs), let u be the solution of (L; ϕ). For every

v ∈ H1(Ωs), let w be the solution of (L; γav). Then we have v −w ∈ Vs, and
hence we get

(2.7) as(u, v) = as(u, w).

Let

Ξn(r, θ) =
(r

a

)μn

Cn(θ) (n = 1, 2, . . .),

then we have

as(Ξn, Ξm) = λnδnm (n, m = 1, 2, . . .).

Therefore, it follows easily from (2.2) that

(2.8) as(u, w) =

∞∑
n=1

λn(ϕ, Cn)(γav, Cn) = l(ϕ, γav).

From (2.7) and (2.8), we obtain (2.6).

In the same manner as above, we can also reduce the problem (P ) to the
following problem:

(Pr)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δu = 0 in Ωr,

∂u

∂n
= αu on Γ0,

∂u

∂n
= 0 on Γ1,r,

∂u

∂n
= −Λu on Γa,

and then we can describe the weak formulation of the problem (Pr) as follows:

(Πr)

{
Find {α, u} ∈ R × {H1(Ωr) \ {0}} such that

t(u, v) = α〈γ0u, γ0v〉 for all v ∈ H1(Ωr).

By the same argument as was described in Section 2.1, we can see that (Πr)
has a countable sequence of nonnegative eigenvalues. Moreover, we see from
Proposition 2.1 that (Π) is equivalent to (Πr).
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2.3 The discrete approximation problem and

main theorems

In this section we describe how to approximate the eigenvalues and the corre-
sponding eigenvectors of (Πr) by using the finite element method, and state
main theorems of this paper, which are concerned with error estimates for
approximate eigenvalues and eigenvectors.

Let W h be a finite dimensional subspace of H1(Ωr). Applying the finite
element method directly to (Πr), we get the discrete approximation problem:{

Find {αh, uh} ∈ R ×
{
W h \ {0}

}
such that

t(uh, vh) = αh〈γ0u
h, γ0v

h〉 for all vh ∈ W h.

However, we can not compute this problem because t(·, ·) involves an infinite
series. Therefore, to obtain approximate solutions of (Πr), we have to replace
the bilinear form t(·, ·) by the bilinear form tM(·, ·) defined by

tM(v, w) = ar(v, w) + lM(γav, γaw),

where

lM(ϕ, ψ) =

M∑
n=1

λn(ϕ, Cn)(ψ, Cn), ϕ, ψ ∈ L2(Γa).

We solve the following discrete approximation problem:

(ΠMh
r )

{
Find {αMh, uMh} ∈ R ×

{
W h \ {0}

}
such that

tM(uMh, vh) = αMh〈γ0u
Mh, γ0v

h〉 for all vh ∈ W h.

Suppose that W h contains the constant functions and that dim γ0W
h =

Nh + 1. Then the problem (ΠMh
r ) has nonnegative eigenvalues:

0 = αMh
0 < αMh

1 ≤ αMh
2 ≤ . . . ≤ αMh

Nh .

When getting an eigenvector uMh
r of (ΠMh

r ), we define an approximate eigen-
vector in the whole domain Ω through the following formula:

(2.9) uMh =

⎧⎪⎪⎨⎪⎪⎩
uMh

r in Ωr,

M∑
n=0

(γau
Mh
r , Cn)

(r

a

)μn

Cn(θ) in Ωs.
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Let
{
W h| h ∈ (0, h̄]

}
be a family of finite dimensional subspaces of H1(Ωr).

We will hereafter make the following assumption.

Hypothesis 2 The family
{
W h| h ∈ (0, h̄]

}
satisfies the following condi-

tion:

(H)

{
There is a constant C1 such that for each u ∈ H2(Ωr) and h ∈ (0, h̄],

inf
wh∈W h

‖u − wh‖1,Ωr ≤ C1h‖u‖2,Ωr .

For every h ∈ (0, h̄], W h contains the constant functions.

On Assumptions 1 and 2, we can obtain error estimates for the approx-
imate eigenvectors, which will be described in Theorems 2.1 and 2.2, and
an error estimate for the approximate eigenvalues, which will be described
in Theorem 2.3. To state these theorems, we prepare some notations. Let
α1, α2, . . . be the positive eigenvalues of (Π) ordered by increasing magni-
tude taking account of multiplicities. For i ∈ N, suppose αki

is a positive
eigenvalue of (Π) with multiplicity qi, i.e., suppose

αki−1 < αki
= αki+1 = · · · = αki+qi−1 < αki+qi

= αki+1
.

Here ki is the lowest index of the ith distinct positive eigenvalue. Let
V (i) be the space of eigenvectors of (Π) corresponding to αki

. For each
i ∈ N, there is h̄i ∈ (0, h̄] such that Nh ≥ ki + qi − 1 for all h ∈ (0, h̄i],
where dim γ0W

h = Nh + 1. For all h ∈ (0, h̄i], V Mh
r (i) is the direct

sum of the spaces of eigenvectors of (ΠMh
r ) corresponding to the eigenval-

ues {αMh
ki

, αMh
ki+1, . . . , αMh

ki+qi−1}. We will hereafter discuss for fixed i ∈ N.

Theorem 2.1 Suppose that the domain Ω satisfies Assumption 1, and that
the family

{
W h| h ∈ (0, h̄]

}
satisfies Assumption 2. Let u1, u2, . . . , uqi

be
any orthonormal basis for V (i) with respect to a(·, ·). Then for sufficiently
large integer M and for sufficiently small h ∈ (0, h̄i], there is an orthonormal
basis uMh

r,1 , uMh
r,2 , . . . , uMh

r,qi
for V Mh

r (i) with respect to tM (·, ·) such that if
we define the approximate eigenvectors uMh

l (l = 1, 2, . . . , qi) in the whole
domain Ω as (2.9), then for each s > 0,

(2.10) |ul − uMh
l |1,Ωr + |ul − uMh

l |1,Ωs ≤ CsM
−s + Ch (l = 1, 2, . . . , qi),

where Cs and C are constants independent of M and h.
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Theorem 2.2 Suppose that the domain Ω satisfies Assumption 1, and that
the family

{
W h| h ∈ (0, h̄]

}
satisfies Assumption 2. For sufficiently large

integer M and for sufficiently small h ∈ (0, h̄i], let uMh
r,1 , uMh

r,2 , . . . , uMh
r,qi

be any orthonormal basis for V Mh
r (i) with respect to tM (·, ·). We define the

approximate eigenvectors uMh
l (l = 1, 2, . . . , qi) in the whole domain Ω as

(2.9). Then there is an orthonormal basis u
(Mh)
1 , u

(Mh)
2 , . . . , u

(Mh)
qi for V (i)

with respect to a(·, ·) such that for each s > 0,

|uMh
l −u

(Mh)
l |1,Ωr + |uMh

l −u
(Mh)
l |1,Ωs ≤ CsM

−s +Ch (l = 1, 2, . . . , qi),

where Cs and C are constants independent of M and h.

Theorem 2.3 Suppose that the domain Ω satisfies Assumption 1, and that
the family

{
W h| h ∈ (0, h̄]

}
satisfies Assumption 2. Let αki

be the ith distinct
positive eigenvalue of (Π) with multiplicity qi. For sufficiently large integer
M and for sufficiently small h ∈ (0, h̄i], let αMh

1 , αMh
2 , . . . , αMh

Nh be the
positive eigenvalues of (ΠMh

r ) ordered by increasing magnitude taking account
of multiplicities. Then, for each s > 0,

(2.11) |αki
− αMh

ki+l−1| ≤ CsM
−s + Ch2 (l = 1, 2, . . . , qi),

where Cs and C are constants independent of M and h.

Remark 2.2 To construct the family
{
W h| h ∈ (0, h̄]

}
which satisfies As-

sumption 2, we need to consider curved elements (see Zlámal [144]) since
the artificial boundary Γa is a circular arc. We can construct such a family
in the following. Let T h be a triangulation of Ωr whose elements are curved
elements near Γa. Every curved element has two vertices b0, b2 on Γa, and

one vertex b1 in Ωr. Its boundary consists of the arc
�

b0b2⊂ Γa and of the
line segments b0b1 and b1b2 (see Fig. 2.4). Let T h

0 be the set of all curved

elements belonging to T h. Let T̂ be a reference triangle. For each T ∈ T h
0 ,

let x : T̂ −→ T be the map defined by (4) of [144]. We define

W h =
{
vh ∈ C0(Ωr) | vh|T ◦ x ∈ P1(T̂ ) for T ∈ T h

0 ,

vh|T ∈ P1(T ) for T ∈ T h \ T h
0

}
,

where P1(T ) is the set of all polynomials of degree ≤ 1 on T . Then W h ⊂
H1(Ωr) and contains the constant functions. Assume a family of triangu-
lations {T h | h ∈ (0, h̄]} is regular in the sense of Ciarlet [21]. Namely,
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h = max
T∈T h

hT , and there exists a constant σ such that

hT

ρT

≤ σ for all T ∈
⋃

0<h≤h̄

T h.

Here, for every element T with vertices b0, b1, and b2, the quantities hT ,
and ρT , are the diameters of the circumscribed, and the inscribed, circles of
the triangle b0b1b2, respectively. Then, according to Theorem 2 of [144], the
family

{
W h| h ∈ (0, h̄]

}
satisfies the condition (H).

Ω

Γ

1

0

b

a

r

b

b

T
2

Figure 2.4: Curved element T .

2.4 Preliminary consideration for error esti-

mate

Lemma 2.2 There exists a constant ζ such that for every v ∈ Vr,

(2.12) |γav|1/2,Γa ≤ ζ |v|1,Ωr.

Proof. Since γa : H1(Ωr) −→ D(Λ1/2) is a closed operator, it follows from
(2.3) and the closed graph theorem that γa ∈ L(H1(Ωr), D(Λ1/2)). Hence
we can see from (2.5) that we have (2.12).
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This lemma implies that the norms ‖ · ‖t (= t(·, ·)1/2) and ‖ · ‖tM (=
tM(·, ·)1/2) on Vr are equivalent to | · |1,Ωr , i.e., for all v ∈ Vr,

(2.13) |v|1,Ωr ≤ ‖v‖tM ≤ ‖v‖t ≤ Cζ|v|1,Ωr ,

where Cζ =
√

1 + ζ2. From (2.13), it is immediate that

(2.14) ‖v‖t ≤ Cζ‖v‖tM .

We will hereafter take t(·, ·) to be the inner product on Vr.
As mentioned in Section 2.2, for every Φ ∈ X, the problem (Gr; Φ) has the

unique solution u. Hence, there is a linear bounded operator Gr : X −→ Vr

such that GrΦ = u.

Lemma 2.3 For each Φ ∈ X, let u be the solution of (Gr; Φ), i.e., u = GrΦ,
then γau ∈ D(Λs) for every s ≥ 0. In addition, γaGr ∈ L(X, D(Λs)) for
each s ≥ 0.

Proof. For each Φ ∈ X, let u be the solution of (Gr; Φ). Let ϕ = γau. We
choose a positive number b such that b > a and b is sufficiently close to a.
Let Γb be the artificial boundary with radius b. Let ϕb = u|Γb

and

Cb
0 =

√
1

bω
, Cb

n(θ) =

√
2

bω
cos μnθ (n = 1, 2, . . .).

Let (·, ·)b denote the inner product of L2(Γb). Then, by Proposition 2.1, we
have

ϕ(θ) =

∞∑
n=0

(ϕb, Cb
n)b

(a

b

)μn

Cb
n(θ).

Hence ϕ is an even function of class C∞, which implies that ϕ ∈ D(Λs) for
s ≥ 0.

Further, since γaGr : X −→ D(Λs) is a closed operator, it follows from
the closed graph theorem that γaGr ∈ L(X, D(Λs)).

2.4.1 Estimate for the truncation error

We define the linear operator Br : Vr −→ Vr such that

t(Bru, v) = 〈γ0u, γ0v〉 for all u, v ∈ Vr.
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By the same argument as that for B in Section 2.1, we can see that Br is a
compact, nonnegative selfadjoint operator on Vr and that the problem (Πr)
can be written in the following form:{

Find {β, u} ∈ {R \ {0}} × {Vr \ {0}} such that

Bru = βu in Vr.

Then α is a positive eigenvalue of (Πr) if and only if β = 1/α is a positive
eigenvalue of Br.

Further, we define BM
r ∈ L(Vr) such that

tM(BM
r u, v) = 〈γ0u, γ0v〉 for all u, v ∈ Vr.

In this subsection, we derive an estimate for ‖Br − BM
r ‖L(Vr).

We here define the bilinear form rM(·, ·) by

rM(v, w) =

∞∑
n=M+1

λn(γav, Cn)(γaw, Cn) for all v, w ∈ H1(Ωr).

We will write rM(v) instead of rM(v, v)1/2.

Proposition 2.2 Let u be the solution of (Gr; Φ), then for every s ≥ 0,

(2.15) rM(u) ≤ (λM+1)
−s|γau|s+1/2,Γa.

Proof. By Lemma 2.3, γau ∈ D(Λs) for all s ≥ 0. Therefore we have

∞∑
n=M+1

λn|(γau, Cn)|2

=

∞∑
n=M+1

1

λs
n

λs+1
n |(γau, Cn)|2

≤ (λM+1)
−s

( ∞∑
n=M+1

λ2s+1
n |(γau, Cn)|2

)1/2( ∞∑
n=M+1

λn|(γau, Cn)|2
)1/2

.

This yields (2.15).

We next define QM ∈ L(Vr) through the following identity:

tM(QMu, v) = t(u, v) for all u, v ∈ Vr.
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Then we have

(2.16) BM
r = QMBr,

and

(2.17) tM((I − QM)u, v) = −rM(u, v) for all u, v ∈ Vr.

Proposition 2.3 For each s > 0, there is a constant Cs independent of M
such that

(2.18) ‖Br − BM
r ‖L(Vr) ≤ Cs(λM+1)

−s.

Proof. Step 1. There is a constant C ′ independent of M such that for every
v ∈ Vr,

(2.19) ‖(I − QM )v‖t ≤ C ′rM(v).

Indeed, from (2.14) and (2.17), we have

‖(I − QM)v‖2
t ≤ C2

ζ ‖(I − QM )v‖2
tM

= −C2
ζ rM(v, (I − QM)v)

≤ C2
ζ r

M(v)‖(I − QM)v‖t.

This shows (2.19).
Step 2. For each s > 0, there is a constant C ′′

s independent of M such
that for every v ∈ Vr,

(2.20) rM(Brv) ≤ C ′′
s (λM+1)

−s‖v‖t.

In fact, we have γaBr = γaGrγ0. Hence, it follows from Lemma 2.3 that we
have γaBr ∈ L(Vr, D(Λs+1/2)). Furthermore, from Proposition 2.2, we get

rM(Brv) ≤ (λM+1)
−s‖γaBrv‖s+1/2,Γa

≤ (λM+1)
−s‖γaBr‖L(Vr , D(Λs+1/2))‖v‖t.

Thus we see that (2.20) holds.
Step 3. It follows from (2.16), (2.19), and (2.20) that for every v ∈ Vr,

(2.21) ‖(Br−BM
r )v‖t = ‖(I−QM )Brv‖t ≤ C ′rM(Brv) ≤ C ′C ′′

s (λM+1)
−s‖v‖t.

From (2.21), we can obtain (2.18).
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2.4.2 Estimate for the discretization error

As mentioned in Section 2.3, we assume that the family
{
W h| h ∈ (0, h̄]

}
of finite dimensional subspaces of H1(Ωr) satisfies Assumption 2. Let V h =
W h ∩ Vr (0 < h ≤ h̄). Then we see that the family

{
V h| h ∈ (0, h̄]

}
satisfies

the following condition:

(H ′)

{
There is a constant C ′

1 such that for each u ∈ H2(Ωr) ∩ Vr and

h ∈ (0, h̄], inf
vh∈V h

‖u − vh‖1,Ωr ≤ C ′
1h‖u‖2,Ωr .

In addition, if dim γ0W
h = Nh + 1, then we have dim γ0V

h = Nh.
We define the linear operator BMh

r : Vr −→ V h such that

tM(BMh
r u, vh) = 〈γ0u, γ0v

h〉 for all u ∈ Vr and for all vh ∈ V h.

Then, since BMh
r is an operator of finite rank on Vr, BMh

r is a compact
operator on Vr. The spectrum σ(BMh

r ) of BMh
r consists of zero and positive

eigenvalues:

βMh
1 ≥ βMh

2 ≥ · · · ≥ βMh
Nh ,

i.e., σ(BMh
r ) = {0} ∪ {βMh

i }Nh

i=1. Then zero is an eigenvalue of BMh
r . Note

that αMh is a positive eigenvalue of (ΠMh
r ) if and only if βMh = 1/αMh is a

positive eigenvalue of BMh
r . Hence we can write (ΠMh

r ) in the following form:{
Find {βMh, uMh} ∈ {R \ {0}} × {Vr \ {0}} such that

BMh
r uMh = βMhuMh.

We will derive an estimate for ‖BM
r −BMh

r ‖L(Vr) under the condition (H ′).
Now, let P Mh : Vr −→ V h be the orthogonal projection with respect to

tM(·, ·), then we have

(2.22) BMh
r = P MhBM

r .

Proposition 2.4 For each s > 0, we have

(2.23) ‖BM
r − BMh

r ‖L(Vr) ≤ Cs(λM+1)
−s + Ch,

where Cs and C are constants independent of M and h.
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Proof. By (2.22), (2.14), and (2.13), we have, for every v ∈ Vr,

‖BM
r v − BMh

r v‖t(2.24)

= ‖(I − P Mh)BM
r v‖t

≤ Cζ‖(I − P Mh)BM
r v‖tM

= Cζ inf
vh∈V h

‖BM
r v − vh‖tM

≤ Cζ

{
‖(Br − BM

r )v‖tM + inf
vh∈V h

‖Brv − vh‖tM

}
≤ Cζ

{
‖(Br − BM

r )v‖t + Cζ inf
vh∈V h

‖Brv − vh‖1,Ωr

}
.

We here note that

(2.25) Br ∈ L(Vr, H2(Ωr)).

In fact, for every v ∈ Vr, Brv is the solution of the problem (Gr; γ0v). Hence,
we can see from Proposition 2.1 that Brv can be extended into Ω such that
it is the solution of the problem (G; γ0v). This implies that by Assumption 1
we have Brv ∈ H2(Ωr) (see [59], [60]). Therefore, applying the closed graph
theorem, we obtain (2.25).

From (2.24), (2.25), (H ′), and Proposition 2.3, we have

‖BM
r v − BMh

r v‖t

≤ Cζ

{
‖Br − BM

r ‖L(Vr)‖v‖t + CζC
′
1h‖Br‖L(Vr , H2(Ωr))‖v‖t

}
≤ Cζ

{
Cs(λM+1)

−s + CζC
′
1h‖Br‖L(Vr , H2(Ωr))

}
‖v‖t.

This implies (2.23).

2.5 Proof of the main theorems

In this section, we prove the theorems described in Section 2.3.
We first note that as a consequence of Propositions 2.3 and 2.4, we get

the following proposition.

Proposition 2.5 For each s > 0, we have

‖Br − BMh
r ‖L(Vr) ≤ Cs(λM+1)

−s + Ch,

where Cs and C are constants independent of M and h.
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To get estimates for the rate of convergence of eigenvalues and eigenvec-
tors of BMh

r to those of Br, we use Lemmas 2.4, and 2.5, which are obtained
by specializing Theorems 7.1, and 7.3, of Babuška and Osborn [4] to our case,
respectively. For U and W closed subspaces of Vr, we define the gap between
U and W ,

δ̂(U, W ) = max(δ(U, W ), δ(W, U)),

where

δ(U, W ) = sup
u∈U

‖u‖t=1

dist(u, W ).

Let β1, β2, . . . be the positive eigenvalues of Br ordered by decreasing mag-
nitude taking account of multiplicities. Let βMh

1 , βMh
2 , . . . , βMh

Nh be the pos-
itive eigenvalues of BMh

r ordered by decreasing magnitude taking account of
multiplicities. Then we have βj = 1/αj (j = 1, 2, . . .) and βMh

j = 1/αMh
j

(j = 1, 2, . . . , Nh). Let Vr(i) be the space of eigenvectors of Br correspond-
ing to the ith distinct positive eigenvalue βki

. Then, from Proposition 2.1,
we see Vr(i) = {vr = v|Ωr ∈ Vr | v ∈ V (i)}.

Lemma 2.4 (Babuška and Osborn) There is a constant C such that for
sufficiently large integer M and for sufficiently small h ∈ (0, h̄i],

δ̂(Vr(i), V Mh
r (i)) ≤ C‖Br − BMh

r ‖L(Vr(i), Vr),

where C is independent of M and h.

Lemma 2.5 (Babuška and Osborn) Let u1, . . . , uqi
be any orthonormal

basis for Vr(i) with respect to t(·, ·). Then there is a constant C such that for
sufficiently large integer M and for sufficiently small h ∈ (0, h̄i],

|βki
− βMh

ki+j−1|(2.26)

≤ C

{
qi∑

l,m=1

|t((Br − BMh
r )ul, um)|

+‖Br − BMh
r ‖L(Vr(i), Vr)‖Br − (BMh

r )∗‖L(Vr(i), Vr)

}
(j = 1, 2, . . . , qi),

where C is independent of M and h, and (BMh
r )∗ is the adjoint operator of

BMh
r on Vr with respect to the inner product t(·, ·).
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In addition, to prove Theorem 2.1, we quote Proposition 4.1 of Fu [38],
and Lemma 3.4 of Bramble and Osborn [14], as Lemmas 2.6, and 2.7, respec-
tively, and note Remark 2.3.

Lemma 2.6 (Fu) Let E be an inner product space, and let e1, e2, . . . , em

be mutually orthonormal in E. Suppose f1, f2, . . . , fm are elements of E
satisfying

m∑
j=1

‖fj − ej‖ < 1,

where ‖ · ‖ denotes the norm of E. Then {f1, f2, . . . , fm} forms a linearly
independent set.

Lemma 2.7 (Bramble and Osborn) Let E be an inner product space with
inner product (·, ·) and norm ‖ · ‖. Let m be a positive integer. There is a
constant Cm such that for f1, f2, . . . , fm any linearly independent set in E
and g1, g2, . . . , gm the corresponding Gram-Schmidt orthonormalization, we
have

max
1≤j≤m

‖fj − gj‖ ≤ Cm max
1≤j, k≤m

|(fj, fk) − δjk|.

Remark 2.3 Let u be an eigenvector of (Π). Then, by Lemma 2.1, we have

a(u, v) = t(u, v)

for all v ∈ H1(Ω). In addition, let uMh
r be an eigenvector of (ΠMh

r ), and let
uMh be the approximate eigenvector in Ω defined by (2.9). Then, by Lemma
2.1, we also have

ar(u
Mh, v) + as(u

Mh, v) = tM (uMh, v)

for all v ∈ H1(Ω).

Proof of Theorem 2.1. Let u1, u2, . . . , uqi
be any basis for V (i) such that

a(ul, um) = δlm.
Step 1. In this step, we show that there exists a basis uMh

r,1 , uMh
r,2 , . . . , uMh

r,qi

for V Mh
r (i) such that tM(uMh

r,l , uMh
r,m) = δlm and

(2.27) |ul − uMh
r,l |1,Ωr ≤ CsM

−s + Ch (l = 1, 2, . . . , qi),
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where Cs and C are constants independent of M and h.
According to Remark 2.3, we have

t(ul, um) = a(ul, um) = δlm.

Let EMh : Vr −→ V Mh
r (i) be the orthogonal projection with respect to

tM(·, ·), and let vMh
l = EMhul (l = 1, 2, . . . , qi).

Step 1.1. For each s > 0, we have

(2.28) ‖ul − vMh
l ‖tM ≤ C(1)

s (λM+1)
−s + C(2)h (l = 1, 2, . . . , qi).

Indeed, we have

‖ul − vMh
l ‖tM ≤ inf

vh∈V Mh
r (i)

‖ul − vh‖t ≤ δ̂(Vr(i), V Mh
r (i)),

and hence, by Lemma 2.4, we have

‖ul − vMh
l ‖tM ≤ C‖Br − BMh

r ‖L(Vr(i), Vr).

From this inequality and Proposition 2.5, we get (2.28).
Step 1.2. From (2.14) and (2.28), if M is sufficiently large and if h is

sufficiently small, then we have

qi∑
l=1

‖ul − vMh
l ‖t < 1.

Then Lemma 2.6 implies that vMh
l (l = 1, 2, . . . , qi) are mutually linearly

independent.
Step 1.3. Let

{
uMh

r,l

}qi

l=1
be the Gram-Schmidt orthonormalization of{

vMh
l

}qi

l=1
with respect to tM (·, ·). Then we show

(2.29) ‖vMh
l − uMh

r,l ‖t ≤ C(3)

[
max
1≤l≤qi

‖ul − vMh
l ‖t + max

1≤l≤qi

{
rM(ul)

}2
]

.

In fact, it follows from (2.14) and Lemma 2.7 that for l = 1, 2, . . . , qi,

(2.30) ‖vMh
l − uMh

r,l ‖t ≤ CζCqi
max

1≤l, m≤qi

|tM(vMh
l , vMh

m ) − δlm|.

In addition, since t(ul, um) = δlm,

|tM(vMh
l , vMh

m ) − δlm| = |tM(vMh
l , vMh

m ) − t(ul, um)|(2.31)

= |tM(vMh
l , um) − tM (ul, um) − rM(ul, um)|

≤ ‖vMh
l − ul‖t + rM(ul)r

M(um).
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Combining (2.30) and (2.31), we get (2.29).
Step 1.4. From (2.29), we have, for l = 1, 2, . . . , qi,

‖ul − uMh
r,l ‖t ≤ ‖ul − vMh

l ‖t + ‖vMh
l − uMh

r,l ‖t(2.32)

≤ (C(3) + 1) max
1≤l≤qi

‖ul − vMh
l ‖t + C(3) max

1≤l≤qi

{
rM(ul)

}2
.

By Proposition 2.2, we have, for each s > 0,

(2.33) rM(ul) ≤ (λM+1)
−s‖γa‖L(Vr(i), D(Λs+1/2))‖ul‖t (l = 1, 2, . . . , qi).

From (2.32), (2.28), and (2.33), we see that (2.27) holds good.
Step 2. Let uMh

s,1 , uMh
s,2 , . . . , uMh

s,qi
be the approximate eigenvectors on Ωs

defined by (2.9). In this step, we show that there exist constants Cs and C
independent of M and h such that

(2.34) |ul − uMh
s,l |1,Ωs ≤ CsM

−s + Ch (l = 1, 2, . . . , qi).

By Lemmas 2.1 and 2.2, we have, for l = 1, 2, . . . , qi,

|ul − uMh
s,l |21,Ωs

=

M∑
n=1

λn

∣∣(γa(ul − uMh
r,l ), Cn)

∣∣2 +

∞∑
n=M+1

λn |(γaul, Cn)|2

≤ ζ2
∣∣ul − uMh

r,l

∣∣2
1,Ωr

+ rM(ul)
2.

Hence we see from (2.33) that for every s > 0,

(2.35) |ul − uMh
s,l |21,Ωs

≤ ζ2
∣∣ul − uMh

r,l

∣∣2
1,Ωr

+ (λM+1)
−2s‖γa‖2

L(Vr(i), D(Λs+1/2)).

From (2.35) and (2.27), we obtain (2.34).
Step 3. It follows from (2.27) and (2.34) that (2.10) holds good.

We can also prove Theorem 2.2 in a similar fashion, and here omit its
proof, which is described in [93].

Proof of Theorem 2.3. We prove Theorem 2.3 by using Lemma 2.5. Let
u1, u2, . . . , uqi

be any basis for Vr(i) such that t(ul, um) = δlm.
Step 1. In this step, we show that we can estimate the first term on the

right-hand side of (2.26) as follows:
qi∑

l,m=1

|t((Br − BMh
r )ul, um)|(2.36)

≤ C(1)‖γa‖2
L(Vr(i), D(Λs+1/2))(λM+1)

−2s + C(2)‖BM
r − BMh

r ‖2
L(Vr)
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for every s > 0. To show (2.36), we first note that we have

qi∑
l,m=1

|t((Br − BMh
r )ul, um)|(2.37)

≤
qi∑

l,m=1

{
|t((Br − BM

r )ul, um)| + |t((BM
r − BMh

r )ul, um)|
}

.

Step 1.1. We show that for each s > 0 and for every l, m = 1, 2, . . . , qi,
we have

(2.38) |t((Br − BM
r )ul, um)| ≤ C(3)‖γa‖2

L(Vr(i), D(Λs+1/2))(λM+1)
−2s.

In fact, by (2.16), we have

(2.39) t((Br − BM
r )ul, um) = βki

t((I − QM)ul, um).

Noting that

t((I − QM )ul, um)

= −tM((I − QM)ul, (I − QM )um) + tM((I − QM )ul, um),

we see from (2.17) and (2.19) that

t((I − QM )ul, um)(2.40)

≤ ‖(I − QM)ul‖tM‖(I − QM )um‖tM + |rM(ul, um)|
≤ ((C(4))2 + 1)rM(ul)r

M(um),

where C(4) is the constant introduced in (2.19). Hence, from (2.39), (2.40),
and (2.33), we get (2.38).

Step 1.2. For every l, m = 1, 2, . . . , qi, we have

(2.41) |t((BM
r − BMh

r )ul, um)| ≤ 1

βki

‖BM
r − BMh

r ‖2
L(Vr).
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The reason for this inequality is the following. By (2.22) and (2.16), we have

t((BM
r − BMh

r )ul, um) = t((I − P Mh)BM
r ul, um)

=
1

βki

t((I − P Mh)BM
r ul, Brum)

=
1

βki

tM((I − P Mh)BM
r ul, QMBrum)

=
1

βki

tM((I − P Mh)BM
r ul, (I − P Mh)BM

r um)

≤ 1

βki

‖BM
r − BMh

r ‖2
L(Vr).

Step 1.3. From (2.37), (2.38), and (2.41), we obtain (2.36).
Step 2. We can estimate the second term on the right-hand side of (2.26)

as follows:

‖Br − BMh
r ‖L(Vr(i), Vr)‖Br − (BMh

r )∗‖L(Vr(i), Vr)(2.42)

≤ ‖Br − BMh
r ‖L(Vr)‖(Br − BMh

r )∗‖L(Vr)

= ‖Br − BMh
r ‖2

L(Vr).

Step 3. From (2.26), (2.36), and (2.42), it follows that

|βki
− βMh

ki+j−1|
≤ C(1)‖γa‖2

L(Vr(i), D(Λs+1/2))(λM+1)
−2s + C(2)‖BM

r − BMh
r ‖2

L(Vr)

+C(5)‖Br − BMh
r ‖2

L(Vr)

for j = 1, 2, . . . , qi. Hence, using Propositions 2.4 and 2.5, we have the
validity of (2.11).

2.6 Numerical results

To carry out numerical experiments, we chose a water region Ω and a water
surface Γ0 as follows:

Ω = {(x1, x2) | − 2 < x1 < 3, −2 < x2 < 0} \ S

and

Γ0 = {(x1, 0) | − 2 < x1 < 0, 0 < x1 < 3},
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where S = {(0, x2) | − 1 ≤ x2 ≤ 0}, and (x1, x2) are appropriate Cartesian
coordinates (see Fig. 2.5). We seek approximate eigenvalues and approxi-
mate eigenvectors of (Π) by two different methods: the DtN method and a
standard finite element method using piecewise linear continuous functions.
Then we observe the rates of convergence for the approximate solutions ob-
tained by each method. Our calculations were executed by using FORTRAN
77 on a HP 9000 with double precision arithmetic.

Ω

Γ
1

0

x

r

S
x

2

Γ1

(-2, 0) (0, 0) (3, 0)

(-2, -2) (3, -2)

(0, -1)

Figure 2.5: The region of the water at rest.

2.6.1 Rates of convergence for the standard finite ele-

ment method

When we try to measure the rate of convergence, we can not calculate the
errors between the exact solutions and their approximate solutions since we
can not analytically know the exact solutions of (Π). Hence we measure the
rate of convergence by the following method.

Let us choose triangulations Th with h = h̄/2j (j = 0, 1, 2, . . .) such
that for each h = h̄/2j (j = 0, 1, 2, . . .), the triangulation Th/2 is obtained
by subdividing each triangle of Th into the four congruent triangles. Let
{αh, uh} be an approximate eigenpair associated with the triangulation Th.
Then, we choose uh such that |uh|1,Ω = 1 and limx1→+0 uh(x1, 0) > 0. We
substitute the following value:

eh = |αh − αh/2|
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for the error between the approximate eigenvalue αh and the exact eigenvalue.
We likewise calculate

eh = |uh − uh/2|1,Ω

as a substitute for the error of the approximate eigenvector. This method of
measurement is based on the study of Kurata and Ushijima [96], where they
discussed the adequacy of this method.

We adopted the triangulation shown in Fig. 2.6 as an initial triangula-
tion Th̄. Rates of convergence for approximate eigenvalues, and approximate
eigenvectors, are shown in Figs. 6, and 7, respectively. The lines in those
figures are the graphs of the linear functions y = px+q which are least square
approximations to the data of the errors eh and the mesh lengths h which are
plotted in log-log scale. In the figures, m denotes a modal number, and the
gradient p of each line is written in parentheses. These figures show that for
m = 1, 2, the rates of convergence for the approximate solutions are slower
than those expected in the case when the domain is a convex polygon. This
result suggests that the eigenvectors of the first and second modes do not
belong to H2(Ω).

Figure 2.6: A triangulation of the water region.
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2.6.2 Rates of convergence for the DtN finite element
method

In practical computations, we approximate the artificial boundary by using a
polygonal line since the artificial boundary is a circular arc. We consider the
polygonal line ΓK

a which consists of K equal line segments. Let Ω̂K denote the

polygonal domain bounded by ΓK
a and ∂Ωr \ Γa. The domain Ω̂K is divided

into triangles. Then, assume that every nodal point on ΓK
a is a vertex of ΓK

a

(see Fig. 2.9). We seek approximate solutions by a finite element method
using piecewise linear continuous functions.

By the same method as was mentioned in the previous subsection, we
measure rates of convergence for the DtN method. Then we need to pay
attention to the subdivision of triangles having two vertices on Γa. Let b0,
b1, and b2 be the vertices of such a triangle. We subdivide the triangle b0b1b2

into the four triangles shown in Fig. 2.11, where the point b′1 is the midpoint

of the circular arc
�

b0b2, and the points b′0, and b′2, are the midpoints of the
line segments b1b2, and b0b1, respectively.

We adopted the triangulation shown in Fig. 2.9 as an initial triangulation.
When computing the bilinear form lM , we chose M such that M = K, where
K is the number of the division of the artificial boundary. As substitutes for
errors between exact solutions and their approximate solutions, we calculate
the following values:

|α2M
2K − αM

K |,
{
|u2M

2K − uM
K |2

1,bΩ2K
+ |ũ2M

2K − ũM
K |21,Ωs

}1/2

,

where {αM
K , uM

K } is an approximate eigenpair associated with a triangulation

of Ω̂K , and

ũM
K (r, θ) =

M∑
n=0

(K+1∑
j=1

uM
K (bj)ϕ̂j, Cn

)(r

a

)μn

Cn(θ) in Ωs,

where bj (j = 1, 2, . . . , K + 1) denote the nodal points on Γa, and ϕ̂j (j =
1, 2, . . . , K + 1) are piecewise linear continuous functions on Γa satisfying
ϕ̂j(bk) = δjk. Then we choose uM

K such that

{|uM
K |2

1,bΩK
+ |ũM

K |21,Ωs
}1/2 = 1 and lim

x1→+0
uM

K (x1, 0) > 0.

Rates of convergence for approximate eigenvalues, and approximate eigen-
vectors, are shown in Figs. 10, and 11, respectively. Comparing these figures
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with Figs. 6 and 7, we see that for m = 1, 2, the rate of convergence for
the DtN method is better than that for the standard finite element method.
When M−1 is proportional to the mesh length h, (2.11) with s = 2 predicts
that the rate of convergence for the approximate eigenvalue is h2, and (2.10)
with s = 1 predicts that the rate of convergence for the approximate eigen-
vector in the energy norm is h1. The numerical results are consistent with
our theoretical results, although in our theoretical analysis, we do not take
account of the effect of the approximation of the artificial boundary. The
numerical results suggest that the approximation of the artificial boundary
mentioned above does not deteriorate the rates of convergence in comparison
with those stated in our theorems. However it has not been theoretically
analyzed yet.

2.7 Conclusions

We have applied the DtN finite element method to the eigenvalue problem
of the linear water wave (the sloshing problem) in a water region with a
reentrant corner. We have established error estimates for approximate eigen-
values and eigenvectors which imply that the DtN finite element method
improves the rates of convergence which deteriorate due to the corner singu-
larity. Such an improvement was observed the numerical examples in Section
2.6.

We can also apply the DtN finite element method to the water wave
radiation problem. This topic is investigated in Lenoir–Tounsi [99] for two
dimensional case, and in Seto [117] for three dimensional case. Lenoir–Tounsi
[99] have derived an error estimate including the truncation error as well as
the discretization error. For the three dimensional problem, such an error
estimate is yet to be established.
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Figure 2.7: Convergence behaviors of eigenvalues obtained by the standard
finite element method.
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Figure 2.8: Convergence behaviors of eigenvectors obtained by the standard
finite element method.
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Figure 2.9: The polygonal domain Ω̂K (K = 16) and its triangulation.
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Γ
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0

2

1

Figure 2.10: Subdivision of a triangle near the artificial boundary.
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Figure 2.11: Convergence behaviors of eigenvalues obtained by the DtN finite
element method.
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Figure 2.12: Convergence behaviors of eigenvectors obtained by the DtN
finite element method.
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Part II

The Exterior Helmholtz
Problem
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Chapter 3

The DtN Finite Element
Method

3.1 The exterior Helmholtz problem

We consider the exterior Helmholtz problem:

(3.1)⎧⎪⎪⎨⎪⎪⎩
−Δu − k2u = f in Ω,

u = 0 on γ,

lim
r−→+∞

r
d−1
2

(
∂u

∂r
− iku

)
= 0 (the outgoing radiation condition),

where the wave number k is a positive constant, Ω is an unbounded domain
of Rd (d = 2 or 3) with sufficiently smooth boundary γ, f is a given datum,
r = |x| for x ∈ Rd, and i =

√
−1. Assume that O ≡ Rd \ Ω is a bounded

open set and that f has a compact support.
We first introduce a theorem concerning the well-posedness of problem

(3.1).

Theorem 3.1 For every compactly supported f ∈ L2(Ω), problem (3.1) has
a unique solution in H2

loc(Ω), where

Hm
loc(Ω) = {u | u ∈ Hm(B) for all bounded open set B ⊂ Ω} (m ∈ N).

Proof. See [112, 115].
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3.2 The DtN formulation

To reduce the computational domain to a bounded domain, we introduce an
artificial boundary Γa = {x ∈ Rd | |x| = a}, where a is a positive number
such that O ∪ supp f ⊂ Ba ≡ {x ∈ Rd | |x| < a}. Then the bounded
computational domain is defined by Ωa = Ω ∩ Ba (see Fig. 3.1), and further
the reduced problem is as follows:

(3.2)

⎧⎪⎨⎪⎩
−Δu − k2u = f in Ωa,

u = 0 on γ,
∂u

∂n
= −Su on Γa,

where n is the unit normal vector on Γa, toward infinity, and S is the DtN
operator corresponding to the outgoing radiation condition. The boundary
condition imposed on Γa of (3.2) is called the exact DtN boundary condition.
The DtN operator S is defined as follows: for every Dirichlet datum ϕ on Γa,

Γ

Ω

γ
Ο

a

a

Figure 3.1: Artificial boundary Γa and computational domain Ωa.

Sϕ =
∂ue

∂ne

∣∣∣∣
Γa

(Neumann datum),

where ne is the unit normal vector on Γa, toward the origin, and ue is the
solution to the following problem:⎧⎪⎪⎨⎪⎪⎩

−Δue − k2ue = 0 in Rd \ Ba,
ue = ϕ on Γa,

lim
r−→∞

r
d−1
2

(
∂ue

∂r
− ikue

)
= 0.
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We present an analytical representation of the DtN operator. Using an
analytical representation of ue by separation of variables, we can write down
the DtN operator S as follows. In the two-dimensional case,

(3.3) Sϕ(θ) =
∞∑

n=−∞
−k

H
(1)′
n (ka)

H
(1)
n (ka)

ϕnYn(θ),

where θ denotes the angular variable of an (r, θ) polar coordinate system,

H
(1)
n are the cylindrical Hankel functions of the first kind of order n, the

prime on H
(1)
n denotes differentiation with respect to the argument, Yn are

the circular harmonics defined by

Yn(θ) =
einθ

√
2π

and ϕn are the Fourier coefficients defined by

(3.4) ϕn =

∫ 2π

0

ϕ(θ)Yn(θ) dθ.

In the three-dimensional case,

Sϕ(θ, φ) =
∞∑

n=0

n∑
m=−n

−k
h

(1)′
n (ka)

h
(1)
n (ka)

ϕm
n Y m

n (θ, φ),

where θ, φ denote the angular variables of an (r, θ, φ) spherical coordinate

system, h
(1)
n are the spherical Hankel functions of the first kind of order n,

Y m
n are the spherical harmonics defined by

Y m
n (θ, φ) =

√
(2n + 1)

4π

(n − |m|)!
(n + |m|)!P

|m|
n (cos θ) eimφ,

where P m
n are the associated Legendre functions, and ϕm

n are the Fourier
coefficients defined by

(3.5) ϕm
n =

∫ 2π

0

dφ

∫ π

0

ϕ(θ, φ)Y m
n (θ, φ) sin θ dθ.

Now we define the Sobolev space Hs(Γa) (s > 0) by

Hs(Γa) =
{
ϕ ∈ L2(Γa) | ‖ϕ‖s,Γa < ∞

}
,
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where ‖ · ‖s,Γa is the norm of Hs(Γa) defined by

‖ϕ‖2
s,Γa

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a

∞∑
n=−∞

(1 + n2s)|ϕn|2 if d = 2,

a2

∞∑
n=0

n∑
m=−n

(1 + n2s)|ϕm
n |2 if d = 3.

We here note that the DtN operator S is a bounded linear operator from
H1/2(Γa) into H−1/2(Γa) (see [105]), where H−1/2(Γa) is the set of all bounded
semilinear forms on H1/2(Γa).

To formulate a weak form of problem (3.2), we introduce the following
sesquilinear forms:

a(u, v) =

∫
Ωa

(
∇u · ∇v − k2uv

)
dx + s(u, v) for u, v ∈ H1(Ωa),

s(u, v) = 〈Su, v〉H−1/2(Γa)×H1/2(Γa)(3.6)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

−ka
H

(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a) if d = 2,

∞∑
n=0

n∑
m=−n

−ka2 h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a) if d = 3,

where un(a) and um
n (a) are the Fourier coefficients of u|Γa defined by (3.4)

and (3.5), respectively. Then a weak form of (3.2) is written as follows: find
u ∈ V such that

(3.7) a(u, v) = (f, v)

for all v ∈ V , where

V =
{
v ∈ H1(Ωa) | v = 0 on γ

}
,

(u, v) =

∫
Ωa

uv dx for u, v ∈ L2(Ωa).

For every f ∈ L2(Ωa), problem (3.7) has a unique solution which is the
restriction to Ωa of the solution of problem (3.1) (see [105, 74, 81]).
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3.3 The DtN finite element method and its

error estimates

We discretize problem (3.7) by using the finite element method to obtain
approximate solutions to problem (3.7) (or (3.1)). We introduce a family
{Vh | h ∈ (0, h̄]} of finite dimensional subspaces of V , and assume that this
family satisfies the following condition: there exist an integer p ≥ 2 and a
constant C > 0 such that for all 0 < h ≤ h̄ and for every u ∈ V ∩ Hp′(Ωa)
(2 ≤ p′ ≤ p),

(3.8) inf
vh∈Vh

‖u − vh‖1,Ωa ≤ Chp′−1‖u‖p′,Ωa ,

where C is independent of h and u. For examples of such a family, see
[21, 144].

Now since the sesquilinear form s involves the infinite series, we have to
truncate it in practice. So we practically solve the following problem: find
uN

h ∈ Vh such that

(3.9) aN (uN
h , vh) = (f, vh) for all vh ∈ Vh,

where, for N ∈ N,

aN(u, v) =

∫
Ωa

(
∇u · ∇v − k2uv

)
dx + sN(u, v) for u, v ∈ H1(Ωa),

sN(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
|n|<N

−ka
H

(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a) if d = 2,

N−1∑
n=0

n∑
m=−n

−ka2 h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a) if d = 3.

Theorem 3.2 Let k be an arbitrary positive number and f an arbitrary
function of L2(Ω) with compact support. Assume that O ∪ supp f ⊂ Ba0

(a0 < a). Let u be the solution of problem (3.1). Assume that there exists
an integer l ≥ 2 such that u ∈ H l(Ωa). Then there exist a γ0 > 0 such that
for every (h, N) ∈ (0, h̄] × N satisfying h + N−1 ≤ γ0, problem (3.9) has a
unique solution uN

h , and moreover, if d = 2, then we have

‖u − uN
h ‖1,Ωa(3.10)

≤ C

(
hm−1‖u‖m,Ωa + N−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

)
,
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‖u − uN
h ‖0,Ωa(3.11)

≤ C(h + N−1)

(
hm−1‖u‖m,Ωa + N−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

)
,

where m = min{p, l}, s is an arbitrary real number ≥ 1/2,

(3.12) RN(u; s, a0) =

⎛⎝a0

∑
|n|≥N

n2s|un(a0)|2
⎞⎠2

,

and positive constants γ0 and C depend on k, a0, and Ωa, but are independent
of h, N , s, f , u, and uN

h . If d = 3, then (3.10) and (3.11) hold by replacing

H
(1)
N by h

(1)
N , and (3.12) by

RN(u; s, a0) =

(
a2

0

∑
n≥N

n∑
m=−n

n2s|um
n (a0)|2

)2

.

Before starting to prove Theorem 3.2, we introduce the following inequal-
ities associated with the trace theorem:

(3.13) ‖v‖m−1/2,Γa ≤ C‖v‖m,Ωa for all v ∈ Hm(Ωa) (m = 1, 2),

where C is a positive constant depending on Ωa, but independent of v, and
the following sesquilinear form on H1(Ωa):

rN(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
|n|≥N

−ka
H

(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a) if d = 2,

∑
n≥N

n∑
m=−n

−ka2 h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a) if d = 3.

Note here that we have

s(u, v) = sN(u, v) + rN(u, v) for u, v ∈ H1(Ωa).

Proof. We prove only in the case when d = 2, because the proof of the case
when d = 3 is exactly same.
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We first assume that problem (3.9) has a solution uN
h . We postpone

proving the well-posedness of problem (3.9) until completion of the derivation
of (3.10) and (3.11).

Set eN
h = u − uN

h . Then we have

(3.14) aN(eN
h , vh) + rN(u, vh) = 0

for all vh ∈ Vh. Note the following identical equation:

‖eN
h ‖2

1,Ωa
= aN(eN

h , eN
h ) + (k2 + 1)‖eN

h ‖2
0,Ωa

− sN (eN
h , eN

h ).

Taking the real part of this identity, we can get

‖eN
h ‖2

1,Ωa
= Re

{
aN(eN

h , eN
h )
}

+ (k2 + 1)‖eN
h ‖2

0,Ωa
− Re

{
sN(eN

h , eN
h )
}

.

By virtue of Lemma A.1, we have

(3.15) ‖eN
h ‖2

1,Ωa
≤ Re

{
aN (eN

h , eN
h )
}

+ (k2 + 1)‖eN
h ‖2

0,Ωa
.

Step 1. We show that for an arbitrary ε > 0, there exists a positive
constant C3(ε) such that

|aN(eN
h , eN

h )|(3.16)

≤ ε‖eN
h ‖2

1,Ωa

+C3(ε)

⎧⎨⎩h2m−2‖u‖2
m,Ωa

+ N−2s+1

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2 [

RN(u; s, a0)
]2⎫⎬⎭ ,

where s is an arbitrary number ≥ 1/2 and C3(ε) depends on k, a0, and Ωa,
but is independent of h, N , s, u, and uN

h . By (3.14), we have, for all vh ∈ Vh,

aN(eN
h , eN

h ) = aN (eN
h , u − vh) + rN(u, uN

h − vh)

= aN (eN
h , u − vh) + rN(u, u − vh) − rN(u, eN

h ).

Thus, by using the trigonometric inequality, the Schwarz inequality, Lemma
A.6, and the trace inequality (3.13), we get

|aN(eN
h , eN

h )| ≤ |eN
h |1,Ωa |u − vh|1,Ωa + k2‖eN

h ‖0,Ωa‖u − vh‖0,Ωa(3.17)

+C(k, a)‖eN
h ‖1/2,Γa‖u − vh‖1/2,Γa

+|rN(u, u − vh)| + |rN(u, eN
h )|

≤ C(k, Ωa)‖eN
h ‖1,Ωa‖u − vh‖1,Ωa

+|rN(u, u − vh)| + |rN(u, eN
h )|.
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Let us estimate the second term on the right-hand side of (3.17). Since
O ∪ supp f ⊂ Ba0 , the solution u can be analytically represented as follows:

u(r, θ) =

∞∑
n=−∞

H
(1)
n (kr)

H
(1)
n (ka0)

un(a0)Yn(θ) on R
2 \ Ba0 .

This implies

un(a) =
H

(1)
n (ka)

H
(1)
n (ka0)

un(a0)

for all n ∈ Z. Moreover, we can see from the usual regularity argument that
u|Γa0

∈ Hs(Γa0) for all s > 0. Thus, by the trigonometric inequality, Lemmas
A.6 and A.7, the Schwarz inequality, and the trace inequality (3.13), we have,
for every s ≥ 1/2,

|rN(u, u − vh)|(3.18)

≤
∑
|n|≥N

∣∣∣∣∣ka
H

(1)′
n (ka)

H
(1)
n (ka)

∣∣∣∣∣ |un(a)||(u − vh)n(a)|

=
∑
|n|≥N

|n|−s+1/2

∣∣∣∣∣ka

n

H
(1)′
n (ka)

H
(1)
n (ka)

∣∣∣∣∣
∣∣∣∣∣ H(1)

n (ka)

H
(1)
n (ka0)

∣∣∣∣∣ |n|s|un(a0)||n|1/2|(u − vh)n(a)|

≤ C(k, a, a0)N
−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖u − vh‖1/2,Γa

≤ C(k, a0, Ωa)N
−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖u − vh‖1,Ωa,

where (u − vh)n(a) are the Fourier coefficients of u − vh. In exactly the
same way, we can estimate the third term on the right-hand side of (3.17) as
follows:

(3.19) |rN(u, eN
h )| ≤ C(k, a0, Ωa)N

−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN (u; s, a0)‖eN
h ‖1,Ωa .
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Combining (3.17), (3.18), (3.19), and (3.8) leads to

|aN(eN
h , eN

h )| ≤ C(k, a0, Ωa)

[
hm−1‖eN

h ‖1,Ωa‖u‖m,Ωa

+hm−1N−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖u‖m,Ωa

+N−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣ ‖eN
h ‖1,ΩaR

N(u; s, a0)

]
.

Applying the arithmetic-geometric mean inequality to each term on the right-
hand side of the above inequality, we obtain (3.16).

Step 2. We show that there exists a positive constant C4 such that

‖eN
h ‖0,Ωa ≤ C4

[
(h + N−1)‖eN

h ‖1,Ωa(3.20)

+(hN−s+1/2 + N−s−1/2)

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

]
,

where s is an arbitrary number ≥ 1/2 and C4 depends on k, a0, and Ωa, but
is independent of h, N , s, u, and uN

h . Suppose that w ∈ V satisfies

(3.21) a(v, w) = (v, eN
h )

for all v ∈ V . Then w is the incoming solution, that is, w is the restriction
to Ωa of the solution of problem (3.1) where the outgoing radiation condition
is replaced by the incoming radiation condition:

lim
r−→+∞

r
d−1
2

(
∂u

∂r
+ iku

)
= 0

and f = eN
h . Note here that the sesquilinear form s corresponding to the

incoming radiation condition is represented by replacing H
(1)
n by H

(2)
n (the

Hankel function of the second kind) in (3.6). Since Theorem 3.1 also holds
for the incoming problem, we have w ∈ H2(Ωa) and the following a priori
estimate:

(3.22) ‖w‖2,Ωa ≤ C‖eN
h ‖0,Ωa,
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where C is a positive constant independent of eN
h . Taking v = eN

h in (3.21),
we obtain

(3.23) ‖eN
h ‖2

0,Ωa
= a(eN

h , w) = aN (eN
h , w) + rN(eN

h , w).

Subtracting (3.14) from (3.23) gives

‖eN
h ‖2

0,Ωa
= aN(eN

h , w − vh) + rN(eN
h , w) − rN(u, vh)

= aN(eN
h , w − vh) + rN(eN

h , w) + rN(u, w − vh) − rN(u, w).

Employing the argument leading to (3.17), we can get

‖eN
h ‖2

0,Ωa
≤ C(k, Ωa)‖w − vh‖1,Ωa‖eN

h ‖1,Ωa(3.24)

+|rN(eN
h , w)| + |rN(u, w − vh)| + |rN(u, w)|.

Employing an argument similar to the one used in (3.18), we can estimate
the last three terms on the right-hand side of (3.24) as follows:

|rN(eN
h , w)| ≤ C(k, a)N−1‖eN

h ‖1/2,Γa‖w‖3/2,Γa(3.25)

≤ C(k, Ωa)N
−1‖eN

h ‖1,Ωa‖w‖2,Ωa,

|rN(u, w − vh)|(3.26)

≤ C(k, a0, Ωa)N
−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN (u; s, a0)‖w − vh‖1,Ωa ,

|rN(u, w)| ≤ C(k, a, a0)N
−s−1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖w‖3/2,Γa(3.27)

≤ C(k, a0, Ωa)N
−s−1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖w‖2,Ωa.

Collecting (3.24)–(3.27) yields

‖eN
h ‖2

0,Ωa
≤ C(k, a0, Ωa){[

‖eN
h ‖1,Ωa + N−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN (u; s, a0)

]
‖w − vh‖1,Ωa

+

[
N−1‖eN

h ‖1,Ωa + N−s−1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN (u; s, a0)

]
‖w‖2,Ωa

}
.
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Using (3.8) and (3.22), we get

‖eN
h ‖2

0,Ωa
≤ C(k, a0, Ωa){[

‖eN
h ‖1,Ωa + N−s+1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN (u; s, a0)

]
h‖eN

h ‖0,Ωa

+

[
N−1‖eN

h ‖1,Ωa + N−s−1/2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN (u; s, a0)

]
‖eN

h ‖0,Ωa

}
,

and further dividing by ‖eN
h ‖0,Ωa, we obtain (3.20).

Step 3. Let us collect the results above to get (3.10) and (3.11).
Squaring both sides of (3.20) and using arithmetic-geometric mean in-

equality, we have

‖eN
h ‖2

0,Ωa
(3.28)

≤ 2C2
4

{
(h + N−1)2‖eN

h ‖2
1,Ωa

+(hN−s+1/2 + N−s−1/2)2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2 [

RN (u; s, a0)
]2⎫⎬⎭ .

Combining (3.15), (3.16), and (3.28), we get

‖eN
h ‖2

1,Ωa
≤ ε‖eN

h ‖2
1,Ωa

+C3(ε)

⎧⎨⎩h2m−2‖u‖2
m,Ωa

+ N−2s+1

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2 [

RN(u; s, a0)
]2⎫⎬⎭

+C5

{
(h + N−1)2‖eN

h ‖2
1,Ωa

+(hN−s+1/2 + N−s−1/2)2

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2 [

RN (u; s, a0)
]2⎫⎬⎭ ,

where C5 = 2(k2 + 1)C2
4 . This implies{

1 − ε − C5(h + N−1)2
}
‖eN

h ‖2
1,Ωa

≤ C6(ε)

⎛⎝h2m−2‖u‖2
m,Ωa

+ N−2s+1

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2 [

RN(u; s, a0)
]2⎞⎠ ,
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where C6(ε) = C3(ε) + (h̄ + 1)2, and further, by taking ε = 1/2,{
1

2
− C5(h + N−1)2

}
‖eN

h ‖2
1,Ωa

≤ C7

⎛⎝h2m−2‖u‖2
m,Ωa

+ N−2s+1

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2 [

RN(u; s, a0)
]2⎞⎠ ,

where C7 = C6(1/2). For every {h, N} ∈ (0, h̄] × N satisfying

1

2
− C5(h + N−1)2 ≥ 1

4
,

which is equivalent to

h + N−1 ≤ 1√
4C5

≡ γ0,

we have (3.10). Further, from (3.20) and (3.10), we can derive (3.11).
Step 4. We finally show the well-posedness of problem (3.9). For this

purpose, it is sufficient to prove uniqueness of the solution of problem (3.9)
since Vh is finite dimensional. Thus, assume now that uN

h ∈ Vh is a solution
of problem (3.9) with f = 0. Since the solution u of problem (3.7) with f = 0
is identically zero, it follows from (3.10) (or (3.11)) that uN

h = 0. Therefore
we can conclude that problem (3.9) is well-posed when h + N−1 ≤ γ0.

Remark 3.1 Since we have, for each x > 0,

H
(1)
N (x) ∼ −i

√
2

πN

( ex

2N

)−N

(N −→ +∞)

(see [1]), we obtain

(3.29)

∣∣∣∣∣ H(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣ ∼ (a0

a

)N

(N −→ +∞).
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Figure 3.2: (a0/a)N and
∣∣∣H(1)

N (ka)/H
(1)
N (ka0)

∣∣∣ for k = 10, 20, 30, 40, when

a = 1.0 and a0 = 0.5.

3.4 Conclusions

Error estimates of the DtN finite element method applied to the exterior
Helmholtz problem have been established in the H1- and L2-norms. The er-
ror estimates include the effect of truncation of the DtN boundary condition
as well as that of the finite element discretization. To get a sharp estimate
of the error caused by the truncation, we have proved a new property of the
Hankel functions in Lemma A.7. The error estimate (3.10) and the asymp-
totic behaviour (3.29) imply that, for sufficiently large N , the truncation
error in the H1-norm exponentially decreases as N increases. Further Fig.
3.2 suggests that we must take many terms in the truncated DtN bound-
ary condition for large wave number k. Such a tendency is observed in the
numerical examples of Grote–Keller [63].

We finally remark that analogous error estimates can also be established
when the modified DtN boundary condition proposed in [63] is employed.
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Chapter 4

The Controllability Method

4.1 An exact controllability problem

To numerically solve problem (3.7), we consider to use the controllability
method. In this chapter, we rewrite problem (3.7) as follows: find U ∈ V
such that

(4.1) a(U, v) − k2(U, v) + s(U, v) = (F, v)

for all v ∈ V , where F ∈ L2(Ωa),

a(u, v) =

∫
Ωa

∇u · ∇v dx for u, v ∈ H1(Ωa),

(u, v) =

∫
Ωa

uv dx for u, v ∈ L2(Ωa),

s(u, v) = 〈Su, v〉H−1/2(Γa)×H1/2(Γa) for u, v ∈ H1(Ωa).

In the controllability method, we capture the solution to problem (4.1) as
a solution to the following exact controllability problem: find u = {u0, u1} ∈
E such that there exists a function u : [0, T ] −→ H1(Ωa) satisfying

(4.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2
t u − Δu = F (x)e−ikt in Ωa × (0, T ),

u = 0 on γ × (0, T ),
∂u

∂n
+

∂u

∂t
= −Su − iku on Γa × (0, T ),

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in Ωa,
u(x, T ) = u0(x), ∂tu(x, T ) = u1(x) in Ωa,
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where T = 2π/k and E = V ×L2(Ωa) with V = {u ∈ H1(Ωa) | u = 0 on γ}.
We here remark that imposing the boundary condition:

(4.3)
∂u

∂n
+

∂u

∂t
= −Su − iku

on Γa in problem (4.2) is our idea for getting the solution to problem (4.1)
by using the controllability method.

4.2 Discussion of the uniqueness for problem

(4.2)

We first describe the well-posedness of the wave equation with the DtN
boundary condition:

(4.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2
t u − Δu = F (x)e−ikt in Ωa × (0, ∞),

u = 0 on γ × (0, ∞),
∂u

∂n
+

∂u

∂t
= −Su − iku on Γa × (0, ∞),

u(x, 0) = u0(x) in Ωa,
∂tu(x, 0) = u1(x) in Ωa.

Our analysis relies on the semigroup theory. So we transform problem (4.4)
to a system of first order. We define a linear operator A : D(A)(⊂ E) −→ E
as follows:

D(A) =

{
u = {u0, u1} ∈

(
H2(Ωa) ∩ V

)
× V | ∂u0

∂n
+ u1 = −Su0 − iku0 on Γa

}
and

Au = {u1, Δu0}

for every u = {u0, u1} ∈ D(A). Problem (4.4) can be written as follows:

(4.5)

{
dũ

dt
(t) = Aũ(t) + F e−ikt for t ∈ (0, ∞),

ũ(0) = u,

where ũ(t) = {u(t), ∂tu(t)}, F = {0, F} and u = {u0, u1}.
We have the following theorem concerning the well-posedness:
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Theorem 4.1 The linear operator A is the infinitesimal generator of a
semigroup of class C0.

We can prove this theorem, following an idea of Ikawa [82]. Its proof will be
described in Appendix B.

We denote by etA the semigroup generated by A. Then, by Duhamel’s
principle, the generalized solution of (4.5) can be written as follows: for every
u ∈ E,

(4.6) ũ(t) = etAu +

∫ t

0

e(t−s)AF e−iks ds.

Now we can write problem (4.2) as a system of first order: find u ∈ E
such that there exists a function ũ : [0, T ] −→ E satisfying

(4.7)

⎧⎪⎨⎪⎩
dũ

dt
(t) = Aũ(t) + F e−ikt in (0, T ),

ũ(0) = u,
ũ(T ) = u.

Since the solution to problem (4.5) can be written as (4.6), we can see that
the uniqueness of the solution to problem (4.7) is equivalent to the condition
that eTA − I : E −→ E is one-to-one, where I is the identity operator. A
sufficient condition for this condition is: for every u = {u0, u1} ∈ E,

(4.8) lim
t−→∞

‖etAu‖E = 0

with

‖u‖E =

(∫
Ωa

{
|∇u0|2 + |u1|2

}
dx

)1/2

,

that is, the energy in Ωa converges to zero as time tends to infinity. We
expect (4.8) to be true; however, it has not been proved yet.

4.3 Uniqueness of the solution to semi-discrete

problems of problem (4.2)

In this section, we discuss the uniqueness of the solution to a semi-discrete
problem of problem (4.2). We introduce a family {Vh | h ∈ (0, h̄]} of finite
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dimensional subspaces of V such that for all 0 < h ≤ h̄ and for every u ∈
V ∩ H2(Ωa),

(4.9) inf
vh∈Vh

‖u − vh‖H1(Ωa) ≤ Ch‖u‖H2(Ωa),

where C is a positive constant independent of h and u. If d = 2, such a
family {Vh | h ∈ (0, h̄]} can be constructed by using the curved elements
due to Zlámal [144]. (Since γ and Γa are curvilinear boundaries, we need to
consider the curved elements.)

To derive a semi-discrete problem of (4.7), we first formulate a weak
problem of (4.2): find u = {u0, u1} ∈ E such that there exists a function
u : [0, T ] −→ V satisfying

(4.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(∂2

t u(t), w) + 〈∂tu(t), w〉 + ã(u(t), w) = (F, w)e−ikt

for all w ∈ V and for all t ∈ (0, T ),

u(0) = u0, ∂tu(0) = u1,
u(T ) = u0, ∂tu(T ) = u1,

where

ã(u, v) = a(u, v) + s(u, v) + ik〈u, v〉 for u, v ∈ H1(Ωa),

〈u, v〉 =

∫
Γa

uv dγ for u, v ∈ L2(Γa).

A semi-discrete problem of (4.10) associated with Vh is as follows: find uh =
{uh0, uh1} ∈ Eh ≡ Vh×Vh such that there exists a function uh : [0, T ] −→ Vh

satisfying

(4.11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(∂2

t uh(t), wh) + 〈∂tuh(t), wh〉 + ã(uh(t), wh) = (F, wh)e
−ikt

for all wh ∈ Vh and for all t ∈ (0, T ),

uh(0) = uh0, ∂tuh(0) = uh1,
uh(T ) = uh0, ∂tuh(T ) = uh1.

To transform problem (4.11) to a system of first order, we define an operator
Ah : Vh −→ Vh by

(Ahuh, vh) = ã(uh, vh)
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for all uh, vh ∈ Vh, and an operator Bh : Vh −→ Vh by

(Bhuh, vh) = 〈uh, vh〉

for all uh, vh ∈ Vh. Using these operators, we define an operator Ah : Eh −→
Eh by

Ahuh =

[
O I

−Ah −Bh

] [
uh0

uh1

]
for uh =

[
uh0

uh1

]
∈ Eh.

Besides, let Fh ∈ Vh be the orthogonal projection of F to Vh with respect to
(·, ·), and let F h = {0, Fh}. Then we can rewrite problem (4.11) as follows:
find uh ∈ Eh such that there exists a function ũh : [0, T ] −→ Eh satisfying

(4.12)

⎧⎪⎨⎪⎩
dũh

dt
(t) = Ahũh(t) + F he

−ikt in (0, T ),

ũh(0) = uh,
ũh(T ) = uh.

This is a semi-discrete problem of (4.7).
We here note that problem (4.12) has a solution if Vh sufficiently ap-

proximates to V . This fact can be understood in the following way. Let us
consider a discrete problem of (4.1): find Uh ∈ Vh such that

(4.13) a(Uh, vh) − k2(Uh, vh) + s(Uh, vh) = (F, vh)

for all vh ∈ Vh. For the well-posedness of this problem, we have the following
theorem:

Theorem 4.2 If the family {Vh | h ∈ (0, h̄]} satisfies (4.9), then there exists
an h0(k) ∈ (0, h̄] depending on the wave number k such that for every 0 <
h ≤ h0(k), problem (4.13) has a unique solution.

(For a proof of this theorem, see [105].) If Uh ∈ Vh is the solution to problem
(4.13), then uh = {Uh, −ikUh} is a solution to problem (4.12). This fact can
be understood by the same argument as in the preceding section. Therefore
we can conclude that for every 0 < h ≤ h0(k), problem (4.12) has a solution.

Now we give a necessary and sufficient condition for the uniqueness of the
solution to problem (4.12) in the following proposition.
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Proposition 4.1 Problem (4.12) has a unique solution if and only if

(4.14) ikl /∈ σ(Ah) for all l ∈ Z,

where σ(Ah) is the set of all eigenvalues of the operator Ah.

Proof. We can easily see that problem (4.12) has a unique solution if and
only if

(4.15) 1 /∈ σ(eTAh),

where etAh (t ≥ 0) is the semigroup generated by Ah. By the spectral
mapping theorem, we have

(4.16) σ(eTAh) = eTσ(Ah),

where eTσ(Ah) = {eTλ ∈ C | λ ∈ σ(Ah)}. From (4.16) and the relation
T = 2π/k, it follows that (4.15) is equivalent to (4.14).

We here pose one condition:

Condition 1 Let Λ = {(kl)2 | l ∈ N}. Let λ be any number in Λ. If uh ∈ Vh

vanishes on Γa and satisfies a(uh, vh) = λ(uh, vh) for all vh ∈ Vh, then
uh = 0.

Theorem 4.3 Suppose d = 2. For any wave number k we fix a radius a
(> α0/k) of the artificial boundary, where α0 (≈ 0.088) is the unique positive
root of

(4.17) Im

{
H

(1)′
0 (α)

H
(1)
0 (α)

}
= 2.

Assume that the family {Vh | h ∈ (0, h̄]} satisfies (4.9). Then, for every
h ∈ (0, h0(k)], problem (4.12) has a unique solution if and only if Condition
1 holds, where h0(k) is the constant presented in Theorem 4.2.

Proof of Theorem 4.3. As observed previously, problem (4.12) has a so-
lution for every h ∈ (0, h0(k)]. So it is sufficient to show that for each
h ∈ (0, h0(k)], Condition 1 is equivalent to (4.14).
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First we prove that Condition 1 implies (4.14). Suppose that (4.14) is
false. Then there exists an l ∈ Z such that ikl ∈ σ(Ah). This implies that
there exists a uh ( �= 0) ∈ Vh such that

(4.18) Ah

[
uh

vh

]
= ikl

[
uh

vh

]
.

Eliminating vh from the above identity, we can get for all wh ∈ Vh,

(4.19) −(kl)2(uh, wh)+ ikl〈uh, wh〉+a(uh, wh)+s(uh, wh)+ ik〈uh, wh〉 = 0.

Taking wh = uh in (4.19), we obtain

−(kl)2(uh, uh) + ikl〈uh, uh〉 + a(uh, uh) + s(uh, uh) + ik〈uh, uh〉 = 0.

The real part of this identity is:

(4.20) a(uh, uh) − (kl)2(uh, uh) −
k

a

∞∑
n=−∞

Re

{
H

(1)′
n (ka)

H
(1)
n (ka)

}
|〈uh, Yn〉|2 = 0,

and the imaginary part is:

(4.21)
k

a

∞∑
n=−∞

[
l + 1 − Im

{
H

(1)′
n (ka)

H
(1)
n (ka)

}]
|〈uh, Yn〉|2 = 0.

We consider three cases.
Case 1: l ≤ −1. By Lemma A.2 described in Appendix A, we have

l + 1 − Im

{
H

(1)′
n (ka)

H
(1)
n (ka)

}
< 0 for all n ∈ Z,

and hence, by (4.21), we have 〈uh, Yn〉 = 0 for all n ∈ Z. This yields

(4.22) uh = 0 on Γa.

From (4.19) and (4.22), we have

(4.23) a(uh, wh) = (kl)2(uh, wh) for all wh ∈ Vh.

From (4.22), (4.23) and Condition 1, we have uh = 0 on Ωa. This contradicts
the assumption that uh �= 0. Therefore we can conclude that ikl /∈ σ(Ah).
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Case 2: l = 0. By (4.20), we obtain

a(uh, uh) −
k

a

∞∑
n=−∞

Re

{
H

(1)′
n (ka)

H
(1)
n (ka)

}
|〈uh, Yn〉|2 = 0.

From this identity, Lemma A.1 and the Poincaré inequality, we get uh = 0
on Ωa, and hence 0 /∈ σ(Ah).

Case 3: l ≥ 1. By Lemma A.2, we have

(4.24) l + 1 − Im

{
H

(1)′
n (ka)

H
(1)
n (ka)

}
≥ 2 − Im

{
H

(1)′
0 (ka)

H
(1)
0 (ka)

}
for all n ∈ Z.

From Lemma A.3, we can see that (4.17) has a unique positive root α0 and
that if a > α0/k then

(4.25) Im

{
H

(1)′
0 (ka)

H
(1)
0 (ka)

}
< 2.

Thanks to (4.24) and (4.25), we can show ikl /∈ σ(Ah) by the same argument
as in Case 1.

Next we prove that (4.14) implies Condition 1. Suppose that Condition
1 is false. Then there exist an l ∈ Z and a uh ∈ Vh \ {0} satisfying (4.22)
and (4.23). We then have (4.18) with vh = (ikl)uh, and hence ikl ∈ σ(Ah).
This contradicts (4.14).

We have the following theorem in the three-dimensional case.

Theorem 4.4 Suppose d = 3. Assume that the family {Vh | h ∈ (0, h̄]}
satisfies (4.9). Then, for every h ∈ (0, h0(k)], problem (4.12) has a unique
solution if and only if Condition 1 holds, where h0(k) is the constant presented
in Theorem 4.2.

Proof. Using Lemmas A.4 and A.5 instead of Lemmas A.1 and A.2, respec-
tively, we can prove in the same way as the proof of Theorem 4.3. Then we
note that in Case 3 we do not need the assumption that a > α0/k.

Now we pose a sufficient condition for Condition 1:

Condition 2 Let Λ = (0, ∞). Let λ be any number in Λ. If uh ∈ Vh

vanishes on Γa and satisfies a(uh, vh) = λ(uh, vh) for all vh ∈ Vh, then
uh = 0.

74



We here consider the following two eigenvalue problems:

(4.26)

⎧⎪⎨⎪⎩
−Δu = λu in Ωa,

u = 0 on γ,
∂u

∂n
= 0 on Γa

and

(4.27)

⎧⎨⎩
−Δu = λu in Ωa,

u = 0 on γ,
u = 0 on Γa.

Then Condition 2 can be restated that the discrete problems of (4.26) and
(4.27) associated with Vh have no common eigenpair. We here see from the
unique continuation theorem that problems (4.26) and (4.27) have no com-
mon eigenpair. At present we do not know whether Condition 2 is satisfied or
not in general. But in the next section we give an example where Condition
2 is satisfied.

4.4 An example satisfying condition 1

In this section, we give an example where Condition 2 holds, and hence
Condition 1 also holds. In the example, the domain Ωa is an annular domain:

Ωa = {x ∈ R
2 | a0 < |x| < a},

where a > a0 > 0. Then the boundaries γ and Γa become as follows:

γ = {x ∈ R
2 | |x| = a0} and Γa = {x ∈ R

2 | |x| = a}.

The finite element space Vh is constructed as follows. Let us naturally identify
the domain Ωa with the rectangular domain (a0, a) × (0, 2π) in the polar
coordinates, and consider a subdivision in the radial direction: a0 = r0 <
r1 < · · · < rn ≡ a0 + nΔr < · · · < rN = a, where Δr = (a − a0)/N , and a
subdivision in the angular direction: 0 = θ1 < θ2 < · · · < θm ≡ (m− 1)Δθ <
· · · < θ2M+1 = 2π, where Δθ = π/M . Then Ωa is covered with a mesh as
shown in Fig. 2. For each n = 1, 2, . . . , N , let ϕn be the piecewise linear
continuous function on (a0, a) which satisfies

ϕn(rn′) = δnn′ for n′ = 0, 1, . . . , N,
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where δnn′ denotes Kronecker’s delta. For each m = 1, 2, . . . , 2M , let ψm be
the piecewise linear continuous function on (0, 2π) which satisfies ψm(0) =
ψm(2π) and

ψm(θm′) = δmm′ for m′ = 1, 2, . . . , 2M.

We here define the finite element space Vh as follows:

Vh = span{ϕn(r)ψm(θ) | n = 1, 2, . . . , N, m = 1, 2, . . . , 2M}.

Figure 4.1: Annular domain and its mesh.

Main theorem of this section is the following.

Theorem 4.5 Let Δr (= (a−a0)/N) and Δθ (= π/M) be mesh sizes in the
radial and angular directions, respectively. If Δr and Δθ satisfy the relation

(4.28) Δr <
a0Δθ√

2
,

then Condition 2 holds.

We shall prove this theorem in the remainder of this section.
We consider the discrete problem of (4.26) associated with Vh, which can

be written in the matrix-vector from:

(4.29) Aξ = λBξ,

where A and B are respectively the stiffness and mass matrices, λ is an
eigenvalue and ξ is a corresponding eigenvector. We here notice that the
matrices A and B can be represented in the tensor form:

(4.30) A = Ar ⊗ Bθ + Br ⊗ Aθ
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and

(4.31) B = Cr ⊗ Bθ,

where Ar, Br, Cr, Aθ and Bθ are the matrices defined as follows:

Ar =

(∫ a

a0

ϕ′
j(r)ϕ

′
l(r)r dr

)
1≤j, l≤N

, Br =

(∫ a

a0

ϕj(r)ϕl(r)
dr

r

)
1≤j, l≤N

,

Cr =

(∫ a

a0

ϕj(r)ϕl(r)r dr

)
1≤j, l≤N

, Aθ =

(∫ 2π

0

ψ′
j(θ)ψ

′
l(θ) dθ

)
1≤j, l≤2M

and

Bθ =

(∫ 2π

0

ψj(θ)ψl(θ) dθ

)
1≤j, l≤2M

.

Let us now consider the following eigenvalue problem:

(4.32) Aθζ = μBθζ,

which has a finite sequence of eigenvalues:

(4.33)

0 = μ0 < μ1 = μ2 < · · · < μ2l−1 = μ2l < · · · < μ2M−3 = μ2M−2 < μ2M−1,

and corresponding eigenvectors:

ζ0, ζ1, . . . , ζ2M−1,

which can be chosen to satisfy

(4.34) (Bθζ
l, ζm)R2M = δlm (0 ≤ l, m ≤ 2M − 1),

where (·, ·)R2M is the standard inner product of R
2M . Here, we note that

μ2M−1 is given as follows:

(4.35) μ2M−1 = 12

(
M

π

)2

.

Further, for each m = 0, 1, 2, . . . , 2M − 1, let us consider the following
eigenvalue problem:

(4.36) (Ar + μmBr)η = λCrη.

We then see that it suffices to solve the eigenvalue problems (4.36) in order
to solve the eigenvalue problem (4.29).
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Lemma 4.1 For each 0 ≤ m ≤ 2M − 1, let λm
1 , λm

2 , . . . , λm
N be the eigen-

values of (4.36)m and ηm
1 , ηm

2 , . . . , ηm
N the corresponding eigenvectors which

satisfy

(4.37) (Crη
m
n , ηm

n′)RN = δnn′.

Then the set of all eigenvalues of (4.29) is given by

(4.38) {λm
n | 0 ≤ m ≤ 2M − 1, 1 ≤ n ≤ N},

and an eigenvector of (4.29) corresponding to λm
n is given by

ξm
n = ηm

n ⊗ ζm,

where ζm is an eigenvector of (4.32) corresponding to the eigenvalue μm.
Further, if ζ0, ζ1, . . . , ζ2M−1 satisfy relation (4.34), then we have

(4.39) (Bξm
n , ξm′

n′ )R2MN = δmm′δnn′ .

Proof. Fix m ∈ {0, 1, . . . , 2M − 1}. Let λm
n be an arbitrary eigenvalue of

(4.36)m and ηm
n a corresponding eigenvector. Let ζm be an eigenvector of

(4.32) corresponding to μm. Set ξm
n = ηm

n ⊗ ζm. Then, by (4.30) and (4.31),
we have

Aξm
n = (Ar ⊗ Bθ + Br ⊗ Aθ)(η

m
n ⊗ ζm)

= Arη
m
n ⊗ Bθζ

m + Brη
m
n ⊗ Aθζ

m

= Arη
m
n ⊗ Bθζ

m + Brη
m
n ⊗ μmBθζ

m

= (Ar + μmBr)η
m
n ⊗ Bθζ

m

= λm
n Crη

m
n ⊗ Bθζ

m

= λm
n (Cr ⊗ Bθ)(η

m
n ⊗ ζm) = λm

n Bξm
n .

This shows that λm
n is an eigenvalue of (4.29) and ξm

n is a corresponding
eigenvector.

Next we show (4.39). By (4.31) and by simple calculation, we can get

(Bξm
n , ξm′

n′ )R2MN = (Crη
m
n , ηm′

n′ )RN (Bθζ
m, ζm′

)R2M .

Therefore, by (4.34) and (4.37), we can get (4.39). Relation (4.39) implies
that there exist no eigenvalues of (4.29) except λm

n , that is, the set of all
eigenvalues of (4.29) is given by (4.38).
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We can deduce from Lemma 4.1 that Condition 2 is equivalent to the
condition that for every 0 ≤ m ≤ 2M − 1, there does not exist eigenvector
ηm = [ηm

1 , ηm
2 , . . . , ηm

N ]T of (4.36)m such that ηm
N = 0.

Now let λm be an eigenvalue of (4.36)m and set

Q = Ar + μmBr − λmCr.

Let ηm be an eigenvector of (4.36)m corresponding to λm. Then we have

(4.40) Qηm = o.

We give a sufficient condition for Condition 2 in the following lemma.

Lemma 4.2 Suppose that for each 0 ≤ m ≤ 2M−1 and for every eigenvalue
λm of (4.36)m,

(4.41) qn �= 0 for all n = 1, 2, . . . , N − 1,

where qn are the (n, n + 1)-entries of the matrix Q. Then Condition 2 holds.

Proof. For each 0 ≤ m ≤ 2M − 1, let λm be an arbitrary eigenvalue of
(4.36)m and ηm = [ηm

1 , ηm
2 , . . . , ηm

N ]T a corresponding eigenvector. Then
(4.40) holds. Since Q is a symmetric tridiagonal matrix, it follows from
(4.41) that if ηm

N = 0, then ηm
1 = ηm

2 = · · · = ηm
N−1 = 0. This means that

there exists no eigenvector ηm = [ηm
1 , ηm

2 , . . . , ηm
N ]T of (4.36)m such that

ηm
N = 0. Hence Condition 2 holds.

Lemma 4.3 Let Δr (= (a − a0)/N) and Δθ (= π/M) be mesh sizes in the
radial and angular directions, respectively. If Δr and Δθ satisfy (4.28), then,
for each 0 ≤ m ≤ 2M −1 and for every eigenvalue λm of (4.36)m, qn < 0 for
all 1 ≤ n ≤ N − 1.

Proof. For 1 ≤ n ≤ N − 1, let αn, βn and γn be the (n, n + 1)-entries of the
matrices Ar, Br and Cr, respectively, i.e.,

αn =

∫ a

a0

ϕ′
n(r)ϕ′

n+1(r)r dr, βn =

∫ a

a0

ϕn(r)ϕn+1(r)
dr

r

and

γn =

∫ a

a0

ϕn(r)ϕn+1(r)r dr.
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Then, for all 1 ≤ n ≤ N − 1, we have αn ≤ −a0/(Δr), βn ≤ Δr/(6a0) and
γn > 0. It now follows from (4.33) and (4.35) that

0 ≤ μm ≤ 12

(
M

π

)2

=
12

Δθ2
for all 0 ≤ m ≤ 2M − 1.

Thus, we have, for all 0 ≤ m ≤ 2M − 1, for all eigenvalue λm and for all
1 ≤ n ≤ N − 1,

qn ≡ αn + μmβn − λmγn ≤ 2

a0ΔrΔθ2

(
Δr2 − a2

0

2
Δθ2

)
.

Therefore, if Δr and Δθ satisfy (4.28) then qn < 0.

Proof of Theorem 4.5. Lemmas 4.2 and 4.3 lead us to Theorem 4.5.

Corollary 4.1 If (4.28) is satisfied, then problem (4.13) has a unique so-
lution.

Remark 4.1 Although problem (4.13) is ensured to have a unique solution
for every h ∈ (0, h0(k)] by Theorem 4.2, condition (4.28) is independent of
k.

Corollary 4.2 If a > α0/k and (4.28) are satisfied, then problem (4.12) is
equivalent to problem (4.13). Here a, α0, and k are, respectively, the radius
of the artificial boundary, the unique positive root of (4.17), and the wave
number.

4.5 Procedure of the controllability method

We present a procedure for solving problem (4.11) which is derived from an
idea of Bristeau et al. [16], [17]. In this section we assume that problem (4.11)
has a unique solution and that there exists a finite dimensional subspace Vh

of H1(Ωa; R) such that Vh =
{
vh = vR

h + ivI
h | vR

h , vI
h ∈ Vh

}
, where H1(Ωa; R)

is the real Sobolev space. We identify a complex-valued function u with a
pair {uR, uI} of the real part and the imaginary part of u. Then the space

Eh is identified with Êh ≡ [Vh]
2× [Vh]

2. We define an inner product of Êh by

(uh, vh) bEh
= a(uh0, vh0) + (uh1, vh1)
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for uh = {uh0, uh1}, vh = {vh0, vh1} ∈ Êh, where

a(uh0, vh0) =

∫
Ωa

∇uh0 · ∇vh0 dx =

∫
Ωa

(
∇uR

h0 · ∇vR
h0 + ∇uI

h0 · ∇vI
h0

)
dx

with uh0 = {uR
h0, uI

h0}, vh0 = {vR
h0, vI

h0}, and

(uh1, vh1) =

∫
Ωa

uh1vh1 dx =

∫
Ωa

(
uR

h1v
R
h1 + uI

h1v
I
h1

)
dx

with uh1 = {uR
h1, uI

h1}, vh1 = {vR
h1, vI

h1}.
Under the assumption that a solution to problem (4.11) exists, problem

(4.11) is equivalent to the following minimization problem: find uh ∈ Êh

such that

(4.42) J(uh) = inf
vh∈ bEh

J(vh)

with the functional J : Êh −→ R defined by

J(vh) =
1

2

∫
Ωa

{|∇(vh(T ) − vh0)|2 + |∂tvh(T ) − vh1|2} dx

for vh = {vh0, vh1} ∈ Êh, where vh : [0, T ] −→ [Vh]
2 is the solution to the

following problem:

(Wf ; vh)

⎧⎪⎪⎨⎪⎪⎩
(∂2

t vh(t), wh) + 〈∂tvh(t), wh〉 + a(vh(t), wh)

+〈Ŝvh(t), wh〉 + k〈Rvh(t), wh〉 = (f(t), wh)
for all wh ∈ [Vh]

2 and for all t ∈ (0, T ),
vh(0) = vh0, ∂tvh(0) = vh1,

where

〈vh, wh〉 =

∫
Γa

(
vR

h wR
h + vI

hw
I
h

)
dγ

for vh = {vR
h , vI

h}, wh = {wR
h , wI

h} ∈ [Vh]
2,

Ŝvh = {Re[S(vR
h + ivI

h)], Im[S(vR
h + ivI

h)]}

for vh = {vR
h , vI

h} ∈ [Vh]
2,

R =

[
0 −1
1 0

]
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and f(x, t) = {Re[F (x)e−ikt], Im[F (x)e−ikt]}.
Under the assumption that the solution to problem (4.11) is unique, prob-

lem (4.42) is equivalent to the following problem: find uh ∈ Êh such that

(4.43) 〈J ′(uh), vh〉 bE′
h× bEh

= 0 for all vh ∈ Êh,

where Ê ′
h is the dual space of Êh and 〈·, ·〉

bE′
h× bEh

is the duality pairing between

Ê ′
h and Êh. Calculating the Fréchet derivative, we have, for all uh, vh ∈ Êh,

〈J ′(uh), vh〉 bE′
h× bEh

(4.44)

= a(uh(T ) − uh0, vh(T ) − vh0) + (∂tuh(T ) − uh1, ∂tvh(T ) − vh1),

where uh and vh are the solutions to (Wf ; uh) and (W0; vh), respectively.
Here (W0; vh) is the initial value problem defined by (Wf ; vh) with f ≡ 0.
We here note that uh can be decomposed into

(4.45) uh = ūh + ũh,

where ūh and ũh are the solutions to (W0; uh) and (Wf ; 0), respectively. From
(4.44) and (4.45) we can see that (4.43) can be written as follows:

a(ūh(T ) − uh0, vh(T ) − vh0) + (∂tūh(T ) − uh1, ∂tvh(T ) − vh1)(4.46)

= −a(ũh(T ), vh(T ) − vh0) − (∂tũh(T ), ∂tvh(T ) − vh1)

for all vh = {vh0, vh1} ∈ Êh. We here define a bilinear form a(·, ·) on Êh by

a(vh, wh) = a(vh(T ) − vh0, wh(T ) − wh0)(4.47)

+(∂tvh(T ) − vh1, ∂twh(T ) − wh1)

for vh, wh ∈ Êh, where vh and wh are the solutions to (W0; vh) and (W0; wh),
respectively. Note that a(·, ·) is symmetric and coercive. The coerciveness
follows from the non-negativeness of a(·, ·), the uniqueness of the solution to

problem (4.11) and the finiteness of the dimension of Êh. Further we define

a linear operator Ah on Êh by

(Ahvh, wh) bEh
= a(vh, wh)

for all vh, wh ∈ Êh. Then Ah is symmetric and positive definite. In addition,
we determine an element fh of Êh by

(4.48) (fh, vh) bEh
= −a(ũh(T ), vh(T ) − vh0) − (∂tũh(T ), ∂tvh(T ) − vh1)
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for all vh ∈ Êh, where ũh and vh are the solutions to (Wf ; 0) and (W0; vh),
respectively. Thus we can rewrite (4.46) as follows:

(4.49) Ahuh = fh in Êh.

As a consequence, to get the solution to (4.11), we solve (4.49) by the
CG method [57]. An essential part in the CG algorithm is the computation
of Ahvh (vh ∈ [Vh]

2), which will be explained below.

4.5.1 Computation of Ahvh

The bilinear form a(·, ·) can be rewritten as follows:

a(vh, wh) = a(vh0 − vh(T ), wh0) + (vh1 − ∂tvh(T ), wh1)(4.50)

+(ϕh(0), wh1) − (∂tϕh(0), wh0) + 〈ϕh(0), wh0〉,

for vh, wh ∈ Êh, where vh is the solution to (W0; vh), and ϕh : [0, T ] −→
[Vh]

2 is the solution to the following equation:

(∂2
t ϕh(t), wh) − 〈∂tϕh(t), wh〉 + a(ϕh(t), wh)(4.51)

+〈ŜT ϕh(t), wh〉 + k〈RT ϕh(t), wh〉 = 0

for all wh ∈ [Vh]
2 and for all t ∈ (0, T ), subject to the following conditions:

(4.52) ϕh(T ) = ∂tvh(T ) − vh1

and

(4.53) (∂tϕh(T ), χh) = −a(vh(T ) − vh0, χh) + 〈∂tvh(T ) − vh1, χh〉

for all χh ∈ [Vh]
2, where

ŜT ϕh = {Re[S(ϕR
h − iϕI

h)], − Im[S(ϕR
h − iϕI

h)]}

for ϕh = {ϕR
h , ϕI

h} ∈ [Vh]
2. We then have

(4.54) 〈Ŝwh, ϕh〉 = 〈wh, ŜT ϕh〉
(

= Re

[∫
Γa

S(wR
h + iwI

h)(ϕ
R
h + iϕI

h) dγ

])
for all wh, ϕh ∈ [Vh]

2.
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Identity (4.50) is derived from the next reason. From (4.47) we can easily
get

a(vh, wh) = a(vh0 − vh(T ), wh0) + (vh1 − ∂tvh(T ), wh1)(4.55)

+a(vh(T ) − vh0, wh(T )) + (∂tvh(T ) − vh1, ∂twh(T )).

From (4.51), (4.54) and the fact that wh is the solution to (W0; wh), we have

d

dt
{(ϕh(t), ∂twh(t)) − (∂tϕh(t), wh(t)) + 〈ϕh(t), wh(t)〉} = 0

for all t ∈ [0, T ]. This implies

(ϕh(T ), ∂twh(T )) − (∂tϕh(T ), wh(T )) + 〈ϕh(T ), wh(T )〉(4.56)

= (ϕh(0), wh1) − (∂tϕh(0), wh0) + 〈ϕh(0), wh0〉.

From (4.52) and (4.53) with χh = wh(T ), we can deduce

a(vh(T ) − vh0, wh(T )) + (∂tvh(T ) − vh1, ∂twh(T ))(4.57)

= (ϕh(T ), ∂twh(T )) − (∂tϕh(T ), wh(T )) + 〈ϕh(T ), wh(T )〉.

Combining (4.55), (4.57) and (4.56) leads us to (4.50).
We here note that we can analogously rewrite (4.48) as follows:

(fh, vh) bEh
= a(ũh(T ), vh0) + (∂tũh(T ), vh1)

−(ϕh(0), vh1) + (∂tϕh(0), vh0) − 〈ϕh(0), vh0〉,

where ϕh is the solution to (4.51) subject to ϕh(T ) = ∂tũh(T ) and

(∂tϕh(T ), χh) = −a(ũh(T ), χh) + 〈∂tũh(T ), χh〉

for all χh ∈ [Vh]
2.

From (4.50) we can understand that Ahvh(≡ qh) is calculated with the
following procedure: 1) Solve problem (W0; vh); 2) Solve equation (4.51)
under conditions (4.52) and (4.53); 3) Solve the following elliptic problem:
find qh0 ∈ [Vh]

2 such that

(4.58) a(qh0, χh) = a(vh0 − vh(T ), χh) − (∂tϕh(0), χh) + 〈ϕh(0), χh〉

for all χh ∈ [Vh]
2, where qh0 is the first component of Ahvh; and 4) Set

qh1 = vh1 − ∂tvh(T ) + ϕh(0), where qh1 is the second component of Ahvh.

84



In practical implementation of the above procedure, to solve (W0; vh) and
(4.51) with (4.52) and (4.53), we use the explicit centered finite difference
scheme of second order. For example, application of this scheme with step
size Δt = T/N (N ∈ N) to (W0; vh) leads to:

v0
h = vh0; v1

h − v−1
h = 2Δtvh1;

for n = 0, 1, . . . , N − 1,(
vn+1

h − 2vn
h + vn−1

h

Δt2
, wh

)
+

〈
vn+1

h − vn−1
h

2Δt
, wh

〉
(4.59)

+a(vn
h , wh) + 〈Ŝvn

h , wh〉 + k〈Rvn
h , wh〉 = 0

for all wh ∈ [Vh]
2, where vn

h (n = 1, 2, . . . , N) are approximations to vh(nΔt).
For space discretization, we use the P1 conforming finite element, and

further use the technique of mass lumping to compute the L2(Ωa) inner
product (·, ·) and the L2(Γa) inner product 〈·, ·〉. Using this technique in
(4.53) and (4.59), we can get ∂tϕh(T ) and vn+1

h by solving linear systems
of equations with a diagonal coefficient matrix; then, we need not use any
iterative method. Hence, in the controllability method, we need an iterative
method only when we solve problem (4.58). The coefficient matrix of the
linear system of equations arising from (4.58) is real, symmetric and positive
definite, and hence iterative techniques for solving (4.58) are well established
(see, e.g., [57]).

4.6 Numerical examples

We shall show numerical results for two test problems described below. These
results confirm that we can obtain appropriate numerical solutions by the
controllability method with ABC (4.3). The test problems are the non-
homogeneous Dirichlet boundary value problem in two dimensions:⎧⎪⎪⎨⎪⎪⎩

−ΔU − k2U = 0 in Ω,
U = G on γ,

lim
r−→∞

r
1
2

(
∂U

∂r
− ikU

)
= 0.

When we use ABC (4.3), we replace the exact DtN operator S by the
truncated DtN operator by SN . We choose an N so that Harari–Hughes’
formula N ≥ ka is satisfied.
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As mentioned in the previous section, for the space discretization we use
the P1 conforming finite element, and for the time discretization the explicit
centered finite difference scheme of second order with step size Δt.

4.6.1 Scattering by a disk

We consider a test problem whose exact solution is known analytically. In
the problem, the obstacle O = {x ∈ R2 | |x| < 1}, the wave number k = 1
and the Dirichlet data G is so chosen that the exact solution U(r, θ) =

H
(1)
1 (r) cos θ. The parameters we used are written in Table 1, where Np and

Ne denote the numbers of vertices and elements of the triangulation, respec-
tively. We show contour lines of the real parts of the exact and numerical
solutions in Figs. 3 and 4, respectively. In these figures, we cannot distinguish
the numerical solution and the exact one.

Table 4.1: Parameters for a scattering problem by a disk.
a N Δt Np Ne

2 2 π/100 2176 4096

Figure 4.2: Contour lines of the real part of the exact

4.6.2 Scattering by a Π-shaped open resonator

We compute the scattering of an incident plane wave exp[ik(x1 cos α+x2 sin α)]
by an obstacle, where α is an incident angle and (x1, x2) are the Cartesian
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Figure 4.3: Contour lines of the real part of the numerical solution.

coordinates. The wave number k = 8π and then the wave length λ = 0.25,
where λ = 2π/k. The obstacle is a Π-shaped open resonator (see Figs. 5–7).
The size of its interior rectangle is 4λ × λ and the thickness of the wall is
λ/5. The incident angle α = 30◦. The exact solution of this problem is un-
known analytically. To ascertain whether numerical solutions are valid, we
use artificial boundaries of two sizes and then compare two obtained numeri-
cal solutions with each other. The parameters used in the cases of small and
large artificial boundaries are written in Tables 2 and 3, respectively. Contour
lines of the real part of the scattered wave for each case are displayed in Figs.
5 and 6. The contour lines displayed in Figs. 5 and 6 are displayed together
in Fig. 7, which shows good coincidence of them in the small computational
domain. This result verifies the validity of the numerical solutions.

Table 4.2: Parameters for a scattering problem by a Π-shaped open resonator
in the case of an artificial boundary of a small size.

a N Δt Np Ne

0.75 19 1/400 42648 83808

Table 4.3: Parameters for a scattering problem by a Π-shaped open resonator
in the case of an artificial boundary of a large size.

a N Δt Np Ne

1 26 1/400 77808 153888
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Figure 4.4: Contour lines of the real part of the numerical solution in the
case when the radius of the artificial boundary a = 0.75.

4.7 Conclusions

To verify the validity of the controllability method using the DtN bound-
ary condition, we have first discussed the equivalence between the Helmholtz
problem (4.1) and the exact controllability problem (4.7); however the equiva-
lence has not been proved yet. We have further investigated the equivalence
in discrete level, namely, the equivalence between the discrete Helmholtz
problem (4.13) and the semi-discrete exact controllability problem (4.12).
This equivalence has not been proved yet, either. A sufficient condition for
the equivalence is the uniqueness for the semi-discrete problem (4.12). We
have presented a necessary and sufficient condition (Condition 1) for the
uniqueness (see Theorems 4.3 and 4.4); however this condition has not been
proved for general discrete problems. So we have presented an example where
the condition is satisfied, that is, the equivalence holds.

Other topics concerning the controllability method which are yet to be
done are the following: the mathematical analysis for fully-discrete controlla-
bility problems and the comparison the controllability method with precondi-
tioned iterative methods which solve the system of linear equations obtained
by directly discretizing the Helmholtz problem (4.1) whose coefficient matrix
is non-Hermitian.
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Figure 4.5: Contour lines of the real part of the numerical solution in the
case when the radius of the artificial boundary a = 1.

Figure 4.6: Contour lines of the real parts of the numerical solutions in both
the cases when a = 0.75 and when a = 1.
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Chapter 5

The Fictitious Domain Method

5.1 A fictitious domain formulation

We consider to solve the 3D exterior Helmholtz problem:

(5.1)

⎧⎪⎪⎨⎪⎪⎩
−Δu − k2u = 0 in Ω,

u = g on γ,

lim
r−→+∞

r

(
∂u

∂r
− iku

)
= 0,

where Ω is an unbounded domain of R3 with sufficiently smooth boundary
γ, and O ≡ R

3 \ Ω is assumed to be a bounded domain. As was mentioned
in the previous chapter, this problem is reduced equivalently to the following
problem imposing the DtN boundary condition:

(5.2)

⎧⎪⎨⎪⎩
−Δu − k2u = 0 in Ωa,

u = g on γ.
∂u

∂r
= −Su on Γa,

where S is the DtN operator as usual. A weak formulation of this problem
is as follows: find u ∈ H1(Ωa) such that

(5.3)

{
aΩa(u, v) = 0 for all v ∈ V,

u = g on γ,

where

aΩa(u, v) =

∫
Ωa

(
∇u · ∇v − k2uv

)
dx + s(u, v),
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s(u, v) = 〈Su, v〉H−1/2(Γa)×H1/2(Γa),

V =
{
v ∈ H1(Ωa) | v = 0 on γ

}
.

Note that problem (5.3) has a unique solution for every g ∈ H1/2(γ) (see
[105]).

To solve problem (5.3) by using the fictitious domain method via the
Lagrange multiplier proposed by Glowinski et al. [53, 54] and Hetmaniuk–

Farhat [78], we introduce a rectangular parallelepiped domain Ω̃ enclosing
domain Ωa (see Fig. 5.1), called the fictitious domain, and formulate a prob-

lem on the fictitious domain Ω̃ so that the restriction of its solution to
Ωa coincides with the solution of (5.3). In the formulation of the prob-

γ

ΩΩ
Ο

a

Γa

∼

Figure 5.1: Left: Domain Ωa and boundaries γ and Γa; Right: Fictitious
domain Ω̃.

lem on the fictitious domain, we utilize the technique due to Glowinski et
al. [53, 54] to handle the non-homogeneous Dirichlet boundary condition
on γ, and the technique due to Hetmaniuk–Farhat [78] to handle the DtN
boundary condition on Γa. So we can obtain the following problem: find
{ũ, ue, λΓa , λγ} ∈ H1(Ω̃) × H1(e) × H−1/2(Γa) × H−1/2(γ) such that

(5.4)

⎧⎪⎪⎨⎪⎪⎩
a

eΩ(ũ, v) + 〈λΓa , v〉Γa + 〈λγ, v〉γ = 0 ∀v ∈ H1(Ω̃),
ae(ue, ve) + 〈λΓa , ve〉Γa = 0 ∀ve ∈ H1(e),

〈μΓa, ũ − ue〉Γa = 0 ∀μΓa ∈ H−1/2(Γa),
〈μγ, ũ〉γ = 〈μγ, g〉γ ∀μγ ∈ H−1/2(γ),

where e is the domain depicted in Fig. 5.2, H−1/2(γ) is the dual space of
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H1/2(γ), 〈·, ·〉γ is the duality pairing between H−1/2(γ) and H1/2(γ), and

a
eΩ(u, v) =

∫
eΩ

(
∇u · ∇v − k2uv

)
dx + s(u, v) − ik

∫
Γ

uv dx,

ae(u, v) =

∫
e

(
∇u · ∇v − k2uv

)
dx − ik

∫
Γ

uv dx.

Note that 〈λ, u〉γ is linear in λ and semilinear in u:

〈αλ + βμ, u〉γ = α〈λ, u〉γ + β〈μ, u〉γ,
〈λ, αu + βv〉γ = ᾱ〈λ, u〉γ + β̄〈λ, v〉γ.

e

Γa

Γ

Figure 5.2: Domain e and boundary Γ.

First we assume the existence of a solution of problem (5.4) in the fol-
lowing three propositions, and after establishing these propositions we shall
show the existence in Theorem 5.1.

Proposition 5.1 If ũ ∈ H1(Ω̃) and ue ∈ H1(e) are respectively the first
and second components of a solution of (5.4), then the restriction of ũ to e
is equal to ue, and ue weakly satisfies

(5.5)

⎧⎪⎨⎪⎩
−Δue − k2ue = 0 in e,

ue = ũ on Γa,
∂ue

∂n
− ikue = 0 on Γ,

where n is the unit outward normal vector on Γ, that is to say, ue is the
unique solution of the following weak formulation of (5.5): find ue ∈ H1(e)
such that

(5.6)

{
ae(ue, v) = 0 for all v ∈ Ve,

ue = ũ on Γa,

92



where

Ve =
{
v ∈ H1(e) | v = 0 on Γa

}
.

Proof. It follows from the unique continuation property and the Fredholm
alternative theorem that problem (5.6) has a unique solution (cf. [85, 55]).
From the second equation of (5.4) we can easily see that

(5.7) ae(ue, v) = 0 for all v ∈ Ve.

Further, from the third equation of (5.4), we have

(5.8) ue = ũ on Γa.

Thus, from (5.7) and (5.8), we can see that ue is the unique solution of (5.6).
For every v ∈ Ve, let ṽ be the continuation of v to Ωa ∪ O by zero. Then,

we have ṽ ∈ H1(Ω̃). Taking v = ṽ in the first equation of (5.4), we can get

(5.9) ae(ũ, v) = 0 for all v ∈ Ve.

This implies that ũ = ue on e because the solution of (5.6) is unique.
Now we consider the following eigenvalue problem:

(5.10)

{
−Δu = αu in O,

u = 0 on γ.

We denote by σ the set of all eigenvalues of (5.10).

Proposition 5.2 Assume that k2 ∈ (0, ∞) \ σ and that g ∈ H1/2(γ). If

ũ ∈ H1(Ω̃) is the first component of a solution of (5.4), then the restriction
of ũ to O weakly satisfies

(5.11)

{
−Δu − k2u = 0 in O,

u = g on γ,

that is, ũ|O is the unique solution of the following weak formulation of (5.11):
find u ∈ H1(O) such that

(5.12)

{
aO(u, v) = 0 for all v ∈ H1

0(O),
u = g on γ,

where

aO(u, v) =

∫
O

(
∇u · ∇v − k2uv

)
dx.
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Proof. From the assumption that k2 ∈ (0, ∞) \ σ, we can see that problem
(5.12) has a unique solution for every g ∈ H1/2(γ).

For every v ∈ H1
0 (O), let ṽ be the continuation of v to Ωa ∪ e by zero.

Then, we have ṽ ∈ H1(Ω̃). Taking v = ṽ in the first equation of (5.4), we
can get the first equation of (5.12) with u = ũ. Besides, it follows from the
fourth equation of (5.4) that ũ = g on γ. Therefore, we can conclude that
ũ|O is the unique solution of problem (5.12).

Proposition 5.3 Assume that g ∈ H1/2(γ). If ũ ∈ H1(Ω̃) is the first
component of a solution of (5.4), then the restriction of ũ to Ωa is the unique
solution of problem (5.3).

Proof. Let ue ∈ H1(e) be the second component of the solution of (5.4)
whose first component is ũ. Since it follows from Proposition 5.1 that ũ|e =
ue, we can see from the first and second equations of (5.4) that we have

(5.13) aΩa(ũ, v) + aO(ũ, v) + 〈λγ, v〉γ = 0 for all v ∈ H1(Ba),

where Ba = {x ∈ R3 | |x| < a}. Here we implicitly used the relation

H1(Ba) = {ṽ|Ba | ṽ ∈ H1(Ω̃)}, which follows from the continuation theorem
(see, e.g., [59, Theorem 1.4.3.1], [110, Théorèm 3.9]).

For every v ∈ V , let ṽ be the continuation of v to O by zero. Then, we
have ṽ ∈ H1(Ba). Taking v = ṽ in (5.13) leads us to the first equation of
(5.3) with u = ũ. In addition, it follows from the fourth equation of (5.4)
that ũ = g on γ. Thus, we can understand that ũ|Ωa is the unique solution
of problem (5.3).

Theorem 5.1 Assume that k2 ∈ (0, ∞) \ σ. Then, for every g ∈ H1/2(γ),

problem (5.4) has a unique solution {ũ, ue, λΓa , λγ} ∈ H1(Ω̃) × H1(e) ×
H−1/2(Γa) × H−1/2(γ).

Proof. (Existence) There exists a unique solution uΩa of (5.3) for every
g ∈ H1/2(γ). Further there exists a unique function ue ∈ H1(e) of problem
(5.6) with ue = uΩa on Γa. Since k2 /∈ σ, we have a unique solution uO ∈
H1(O) of problem (5.12). So we define

(5.14) ũ :=

⎧⎨⎩
uO in O,
uΩa in Ωa,
ue in e.
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Then we have ũ ∈ H1(Ω̃) since ue = uΩa on Γa and uΩa = uO = g on γ.
Further, for every g ∈ H1/2(Γa), there exists a vg ∈ H1(e) such that

vg = g on Γa. Then λΓa ∈ H−1/2(Γa) is well defined by

(5.15) 〈λΓa , g〉Γa := −ae(ue, vg)

because this definition does not depend on how to choose vg ∈ H1(e) for each
g ∈ H1/2(Γa). Indeed, if v′

g ∈ H1(e) and vg = g on Γa, then vg − v′
g ∈ Ve and

hence

(5.16) ae(ue, vg − v′
g) = 0

since ue is the solution of (5.6). From (5.16) we can see that the right-hand
side of (5.15) is independent of the choice of vg ∈ H1(e).

In exactly the same way, since for every g ∈ H1/2(γ), there exists a
vg ∈ H1(Ba) such that vg = g on γ, we can define λγ ∈ H−1/2(γ) by

(5.17) 〈λγ, g〉γ := −aΩa(uΩa, vg) − aO(uO, vg).

From definitions (5.15) and (5.17), we have

〈λΓa, v〉Γa = −ae(ue, v) for all v ∈ H1(e),

〈λγ, v〉γ = −aΩa(uΩa, v) − aO(uO, v) for all v ∈ H1(Ba).

These identities yield the first and second equations of (5.4). In addition,

definition (5.14) of ũ ∈ H1(Ω̃) implies the third and fourth equations of (5.4).
Hence we can conclude that {ũ, ue, λΓa , λγ} is a solution of (5.4).

(Uniqueness) The uniqueness of the solution of (5.4) follows from Propo-
sitions 5.1, 5.2 and 5.3 and the uniqueness of the solutions of problems (5.3),
(5.6) and (5.12).

Remark 5.1 The idea of this proof is not new; Glowinski et al. [53] and
Hetmaniuk–Farhat [78] analogously prove the well-posedness of the fictitious
domain problem and its equivalence to the original problem for their problems.

To discretize problem (5.4) by the finite element method, we employ a

uniform tetrahedrization of Ω̃, and a tetrahedrization of e that is locally fit-
ted to Γa, and approximate boundaries γ and Γa by finite triangular patches.
Note that we do not consider any curved triangular patches. Then the ap-
proximate boundaries to γ and Γa are respectively denoted by γη and Γη

a,
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where η is a parameter indicating the size of the triangular patches. We here
introduce finite element spaces: Xh

eΩ
⊂ H1(Ω̃) and Xh

e ⊂ H1(e) that consist
of piecewise linear continuous functions corresponding to the tetrahedriza-
tions, and Mη

Γa
⊂ L2(Γη

a) and Mη
γ ⊂ L2(γη) that consist of piecewise constant

functions corresponding to the triangulations.
A corresponding discrete problem of (5.4) is formulated as follows: find

{ũh, uh
e , λη

Γa
, λη

γ} ∈ Xh
eΩ
× Xh

e × Mη
Γa

× Mη
γ such that

(5.18)⎧⎪⎪⎨⎪⎪⎩
a

eΩ(ũh, vh) + 〈λη
Γa

, vh〉Γη
a
+ 〈λη

γ, vh〉γη = 0 ∀vh ∈ Xh
eΩ
,

ae(u
h
e , vh

e ) + 〈λη
Γa

, vh
e 〉Γη

a
= 0 ∀vh

e ∈ Xh
e ,

〈μη
Γa

, ũh − uh
e 〉Γη

a
= 0 ∀μη

Γa
∈ Mη

Γa
,

〈μη
γ, ũh〉γη = 〈μη

γ, gh〉γη ∀μη
γ ∈ Mη

γ ,

where 〈·, ·〉γη and 〈·, ·〉Γη
a

denote the inner products of L2(γη) and L2(Γη
a),

respectively. This discrete problem can be written in the matrix-vector form:

(5.19)

⎡⎢⎢⎣
A O BT

Γa
BT

γ

O C DT O
BΓa D O O
Bγ O O O

⎤⎥⎥⎦
⎡⎢⎢⎣

ũh

uh
e

λη
Γa

λη
γ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
o
o
o
g

⎤⎥⎥⎦ .

We here remark that if A−1 and C−1 exist, then this linear system is reduced
to the following linear system:

(5.20)

[
BΓaA

−1BT
Γa

− DC−1DT BΓaA
−1BT

γ

BγA
−1BT

Γa
BγA

−1BT
γ

] [
λη

Γa

λη
γ

]
=

[
o
−g

]
.

Mathematical analysis for discrete problem (5.18) and practical compu-
tations of (5.19) or (5.20) have not been done yet.

As a first step of the practical computation, we study how to compute
matrices Bγ, BΓa and D. The way of computation for those matrices are
exactly the same. So, we focus on matrix Bγ in order to present an algorithm
for computing the entries of such matrices.

The approximate boundary is represented as follows:

γη =

M⋃
m=1

Pm,
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where Pm denotes a triangular patch.
Now we introduce the standard basis functions of finite element spaces Xh

eΩ

and Mη
γ : {ϕn}Nn=1 and {ψm}Mm=1, where ϕn is a piecewise linear continuous

function on Ω̃ defined by

ϕn(Qn′) = δnn′ (1 ≤ n, n′ ≤ N ),

where Qn (n = 1, 2, . . . , N ) are the nth nodal point of the tetrahedrization

of Ω̃, and ψm is a piecewise constant function on γη defined by

ψm =

{
1 on Pm,
0 on Pm′ ∀m′ �= m (1 ≤ m, m′ ≤ M).

5.2 Algorithm for computing the constraint

matrix Bγ

The (m, n)-entries, bm,n, of the constraint matrix Bγ are given by

bm,n ≡ 〈ψm, ϕn〉γη =

∫
Pm∩supp ϕn

ϕn dγ.

Since there exist tetrahedral elements Ki (i = 1, 2, . . . , I) such that

supp ϕn =

I⋃
i=1

Ki,

we have

(5.21) bm,n =
I∑

i=1

∫
Pm∩Ki

ϕn dγ.

Note that if the measure of Pm∩Ki is positive, then Pm∩Ki is a polygon, and
ϕn is linear on Pm∩Ki. Thus, to compute the integrals on the right-hand side
of (5.21), we need to examine whether the measure of Pm ∩ Ki is positive
or not, and if the measure is positive then we further need to triangulate

Pm ∩ Ki. Indeed, let
{
T i

j

}Ji

j=1
be a triangulation of Pm ∩ Ki, and let Gi

j be

the barycentre of T i
j . Then we have∫

Pm∩Ki

ϕn dγ =

Ji∑
j=1

ϕn(Gi
j)|T i

j |,
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where |T i
j | is the measure of T i

j . Consequently, we obtain

bm,n =

I∑
i=1

Ji∑
j=1

ϕn(Gi
j)|T i

j |.

Therefore, we can understand that in the construction of an algorithm for
computing the entries of matrix Bγ, it is essential to design a triangulation
algorithm for the intersection of a tetrahedron and a triangle. We shall give
such a triangulation algorithm in Section 5.2.1, and then an algorithm for
computing the entries of matrix Bγ in Section 5.2.2.

5.2.1 Triangulation algorithm for the intersection of a

tetrahedron and a triangle

In this subsection and the next subsection, we do not consider the effect of
numerical errors, which will be discussed in Section 5.2.3.

In what follows, any triangle, tetrahedron and half-space of R3 are con-
sidered as the closed sets.

For an arbitrary triangle P and an arbitrary tetrahedron K, we present
a triangulation algorithm for P ∩ K in the following.

First, we seek the plane Π which contains P . Next, we seek a triangulation
of Π ∩ K by Algorithm A below.

Algorithm A (Triangulation algorithm for the intersection of a
plane and a tetrahedron)

Input: A plane Π and a tetrahedron K.

Output: A triangulation {Tj}J
j=1 of Π ∩ K.

Procedure: Let H be one of the half-spaces of R
3 generated by Π. Count

the number N+ of the vertices of K included in the interior of H , and
the number N0 of the vertices of K lying on Π. For each (N0, N+), the
shape of Π ∩ K is determined as listed in Table 5.1. Seek vertices of
Π ∩ K following Table 5.1, where {v+

n }
N+

n=1, {v0
n}

N0

n=1 and {v−
n }

4−N+−N0

n=1

represent the vertices of K contained in the interior, the boundary and
the exterior of H , respectively.

In the case when N0 = 3, although Π∩K is a triangle in both cases of
N+ = 0 and N+ = 1, we adopt the triangle as an output triangulation
only when N+ = 0. This reason will be described in Remark 5.3.
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Let {T (i)}I
i=1 be the triangulation of Π ∩ K obtained by Algorithm A. If

I = 0, then we stop the procedure for seeking a triangulation of P ∩ K at
this position because |P ∩ K| = 0, which follows from |Π ∩ K| = 0 and
P ∩ K ⊂ Π ∩ K. If I > 0, then we have

P ∩ K = P ∩ (Π ∩ K) =
I⋃

i=1

(P ∩ T (i)),

and hence, to obtain a triangulation of P ∩K, we need to construct a trian-
gulation of P ∩ T (i) for each i = 1, I.

Let us describe a procedure of the triangulation of P∩T (i) in the following.
Let Πk (k = 1, 2, 3) be the planes which include one of the three sides of P
and are perpendicular to Π. Let Hk be the half-space of R3 generated by Πk

whose interior contains the vertex of P which does not lie on Πk (see Fig.
5.3). Then we have

H
Π

k

P

k

Figure 5.3: Triangle P , plane Πk and half-space Hk.

P = Π ∩
(

3⋂
k=1

Hk

)
.

Here recalling T (i) ⊂ Π, we can see that we have

(5.22) P ∩ T (i) = H3 ∩
[
H2 ∩ (H1 ∩ T (i))

]
.

Now we are ready to give a procedure for constructing a triangulation of
P ∩ T (i) based on the right-hand side of (5.22).

First we construct a triangulation of H1 ∩ T (i) by Algorithm B below.

Algorithm B (Triangulation algorithm for the intersection of a half-
space and a triangle)
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Input: A half-space H and a triangle T .

Output: A triangulation {Tj}J
j=1 of H ∩ T .

Procedure: Count the number n+ of vertices of T included in the interior
of H and the number n0 of vertices of T lying on the boundary Π of
H . For each (n0, n+), the shape of H ∩ T is determined as listed in
Table 5.2. Seek vertices of H ∩ T following Table 5.2, where {v+

n }
n+

n=1,

{v0
n}

n0

n=1 and {v−
n }

3−n+−n0

n=1 represent the vertices of T contained in the
interior, the boundary and the exterior of H , respectively.

Let {Tj}J
j=1 be the triangulation of H1 ∩ T (i) obtained by Algorithm B. If

J = 0, then stop seeking a triangulation of P ∩ T (i) because |P ∩ T (i)| = 0,
which follows from |H1 ∩ T (i)| = 0 and P ∩ T (i) ⊂ H1 ∩ T (i). If J > 0, then
we have

H2 ∩ (H1 ∩ T (i)) = H2 ∩
(

J⋃
j=1

Tj

)
=

J⋃
j=1

(H2 ∩ Tj).

Hence, next constructing a triangulation of H2 ∩ Tj for each j = 1, J by
Algorithm B and combining them, we can get a triangulation of H2 ∩ (H1 ∩
T (i)), which is denoted by

{
T ′

j

}J ′

j=1
. If J ′ = 0, then we can see that |P ∩

T (i)| = 0 in the same argument as above, and hence we stop the procedure
for constructing a triangulation of P ∩ T (i) at this position. If J ′ > 0, then
we have

(5.23) H3 ∩ [H2 ∩ (H1 ∩ T (i))] = H3 ∩
(

J ′⋃
j=1

T ′
j

)
=

J ′⋃
j=1

(H3 ∩ T ′
j).

Hence, finally constructing a triangulation of H3∩T ′
j for each j = 1, . . . , J ′ by

Algorithm B and combining them, we can obtain a triangulation of P ∩T (i),
which can be understood from (5.22) and (5.23).

We summarize the above procedure for constructing a triangulation of
the intersection of a tetrahedron and a triangle as Algorithm 1. To avoid
a complicated description, we summarize the procedure for constructing a
triangulation of P ∩ T (i) appearing in the above procedure as Algorithm 2
after describing Algorithm 1.

Algorithm 1
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Input: A triangle P and a tetrahedron K.

Output: A triangulation {Tj}J
j=1 of P ∩ K.

Procedure:

1. Seek the plane Π including P , and then the planes Πk (k = 1, 2, 3)
which include one of the three sides of P and is perpendicular to
Π, and determine the half-space Hk as shown in Fig. 5.3.

2. Construct a triangulation
{
T (i)
}I

i=1
of Π ∩ K by Algorithm A.

3. J := 0.

4. For i = 1, I, carry out the following procedures:

4.1 Construct a triangulation
{
T ∗

j

}J∗

j=1
of P ∩ T (i) by Algorithm

2 described below.

4.2 TJ+j := T ∗
j (j = 1, . . . , J∗); J := J + J∗.

Let us now describe Algorithm 2. The half-space Hk (k = 1, 2, 3) are
obtained from the triangle P at Step 1 of Algorithm 1, and are needed rather
than P in Algorithm 2. Hence we adopt Hk (k = 1, 2, 3) as input data of
Algorithm 2. We shall omit the superscript of T (i) in the following description
of Algorithm 2.

Algorithm 2

Input: Half-spaces Hk (k = 1, 2, 3) and a triangle T．

Output: A triangulation {Tj}J
j=1 of P ∩ T = H3 ∩ [H2 ∩ (H1 ∩ T )].

Procedure:

1. Construct a triangulation
{
T ∗

j

}J∗

j=1
of H1 ∩ T by Algorithm B.

2. J := 0.

3. For j = 1, J∗, carry out the following procedures:

3.1 Construct a triangulation {τl}L
l=1 of H2 ∩T ∗

j by Algorithm B.

3.2 TJ+l := τl (l = 1, L); J := J + L.

4. T ∗
j := Tj (j = 1, . . . , J); J∗ := J .
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5. J := 0.

6. For j = 1, . . . , J∗, carry out the following procedures:

6.1 Construct a triangulation {τl}L
l=1 of H3 ∩T ∗

j by Algorithm B.

6.2 TJ+l := τl (l = 1, L); J := J + L.

Remark 5.2 The number of triangles contained in a triangulation obtained
by Algorithm 2 is less than or equal to 8. This is because the number of
triangles contained in a triangulation obtained by Algorithm B is less than or
equal to 2. Further, since the number of triangles contained in a triangulation
obtained by Algorithm A is less than or equal to 2, we can see that the number
of triangles contained in a triangulation obtained by Algorithm 1 is less than
or equal to 16.

5.2.2 Algorithm for computing the entries of matrix
Bγ

Algorithm 3

Input: A tetrahedrization {Kl}Ll=1 and a triangulation {Pm}Mm=1.

Output：The (m, n)-entry bm,n of matrix Bγ (1 ≤ m ≤ M, 1 ≤ n ≤ N ).

Procedure:

1. bm,n := 0 (1 ≤ m ≤ M, 1 ≤ n ≤ N ).

2. For m = 1, . . . , M, do:

2.1 For Pm, seek planes Π and Πk (k = 1, 2, 3) by the procedure
at Step 1 of Algorithm 1, and determine the half-space Hk as
shown in Fig. 5.3.

2.2 For l = 1, . . . , L, do:

2.2.1 Construct a triangulation {Tj}J
j=1 of Pm ∩Kl by the pro-

cedures at Steps 2–4 of Algorithm 1.

2.2.2 For j = 1, . . . , J , do:

∗ Seek the barycentre Gj of the triangle Tj .

∗ Let nk (k = 1, . . . , 4) be the nodal numbers of vertices
of Kl. Then

bm,nk
:= bm,nk

+ ϕnk
(Gj)|Tj| (k = 1, . . . , 4).
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Remark 5.3 If triangular patch Pm and a face T of tetrahedral element Kl1

are coplanar, there exists the other tetrahedral element Kl2 sharing T as one
of its faces. The plane Π is computed at Step 2.1, and then for each l = l1, l2
at Step 2.2, the case of N0 = 3 in Table 5.1 arises in Algorithm A which
is called in Algorithm 1 at Step 2.2.1. Then, in one case, N+ = 0, and
in the other case, N+ = 1. By outputting T (= Π ∩ Kl1 = Π ∩ Kl2) only
when N+ = 0, we can avoid overadding its contribution to the corresponding
entries of matrix Bγ.

Remark 5.4 To compute the entries of matrix A in (5.19), we must com-
pute

s(ϕp, ϕq) =
∞∑

n=0

n∑
m=−n

−ka2 h
(1)′
n (ka)

h
(1)
n (ka)

(ϕp)
m
n (a)(ϕq)m

n (a) (1 ≤ p, q ≤ N )

with

(5.24) (ϕp)
m
n (a) =

∫ 2π

0

dφ

∫ π

0

ϕp(a, θ, φ)Y m
n (θ, φ) sin θ dθ,

where a is the radius of the artificial boundary Γa. We can compute the
Fourier coefficients (5.24) approximately in the following way: First we ap-
proximate the artificial boundary Γa by finite triangular patches. Next we
approximate the spherical harmonics Y m

n by piecewise constant functions on
the triangulation of Γa. Finally we use Algorithm 3 with an obvious modifi-
cation to compute (5.24) approximately.

5.2.3 The effect of numerical error

In this subsection, we show that Algorithm 3 is numerically robust in the
sense that it always carries out its task ending up with some output (cf.
[122]), if we take two simple measures described below. Then we assume
that neither any tetrahedron of an input tetrahedrization nor any triangle of
an input triangulation degenerates or nearly degenerates. This assumption
is proper, since the use of any degenerate or nearly degenerate elements is
not desirable in the finite element computations. Moreover, the assumption
implies that planes Π and Πk (k = 1, 2, 3) are normally computed at Step
2.1 of Algorithm 3.
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The first measure is taken in the procedure for computing the intersection
of plane Π and a line segment whose endpoints lie in both sides of Π in
Algorithms A and B. Let (x0, y0, z0) and (x1, y1, z1) be the coordinates of
the endpoints of the line segment, and let ax+by+cz+d = 0 be the Cartesian
equation of plane Π. Then compute the point of intersection (x, y, z) by the
following procedure:

1. ti := axi + byi + czi + d (i = 0, 1);

2. t :=
−t0

t1 − t0
;

3.

⎡⎣ x
y
z

⎤⎦ = t

⎡⎣ x1 − x0

y1 − y0

z1 − z0

⎤⎦+

⎡⎣ x0

y0

z0

⎤⎦ .

A remarkable point of this procedure is that we can assure t1 − t0 �= 0
even in floating-point arithmetic. This reason can be understood as follows.
We judge by sign of ti (i = 0, 1) which of the half-spaces generated by Π
contains (xi, yi, zi). Hence, t0 and t1 are mutually different sign floating
point numbers. This implies t1 − t0 �= 0. Therefore, division by zero does not
take place if we seek the point of intersection by the procedure above.

The second measure is taken in Algorithm B. Numerical errors cause a
degenerate triangle to be inputted into Algorithm B (for details, see below).
If a degenerate triangle is inputted, the case of n0 = 3 can occur. So we must
add the case of n0 = 3, and in such a case, we put J = 0, that is, we make
the output triangulation void.

Let us show that if the two measures above are taken, then Algorithm 3
is numerically robust.

First, we consider Algorithms A and B. We note that the main procedure
of these algorithms is to compute the intersection of a plane and a line seg-
ment whose endpoints lie in both sides of the plane. From the assumption
of this subsection, a normal tetrahedron and a normal plane are inputted
into Algorithm A. Therefore, we can see that the first measure prevents
Algorithm A from failing. On the other hand, a degenerate triangle can be
inputted into Algorithm B; however, in such a case, the first and second
measures prevent it from failing as well.

Next, we consider each step of Algorithm 3. Step 2.1 is assumed to work
normally in this subsection. For Step 2.2.1, we have only to consider Steps
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2 and 4.1 of Algorithm 1. As described above, at Step 2 of Algorithm 1,
Algorithm A normally works; however, its output triangulation can include
some degenerate triangles. In the case when some degenerate triangle are
included, they are inputted into Algorithm 2 at Step 4.1 of Algorithm 1, and
then are inputted into Algorithm B at Step 1 of Algorithm 2. In Algorithm
2, Algorithm B plays an essential role. As mentioned above, Algorithm B
does not fail even if a degenerate triangle is inputted into it. Thus, we
can see that any failures do not occur at Step 4.1 of Algorithm 1. This
implies that any failures do not occur at Step 2.2.1 of Algorithm 3. Also,
a triangulation outputted at Step 2.2.1 of Algorithm 3 can include some
degenerate triangles; however, even in such a case, any failures do not occur
at Step 2.2.2 of Algorithm 3 because we only compute the barycentres and
the measures of triangles there.

From the above, we can prove that if the two measures above are taken,
Algorithm 3 does not fail.

Remark 5.5 Although we follow the right-hand side of (5.22) to construct
a triangulation of P ∩ T in Algorithm 2, we can also triangulate P ∩ T by
representing T as the intersection of three half-spaces and Π, that is, by using

T = Π ∩
(

3⋂
k=1

H ′
k

)

and

P ∩ T = H ′
3 ∩ [H ′

2 ∩ (H ′
1 ∩ P )] .

However, since T can be a degenerate triangle, we then can not compute
some of the planes Π′

k := ∂H ′
k. This fact can be the cause of the failure of

the algorithm.

5.3 Simplification of the algorithm

We have seen from the consideration of Section 5.2.3 that the two measures
prevent Algorithm 3 from failing even if some degenerate triangles occur in it.
So, in this section, we simplify Algorithms A and B by allowing their output
triangulations containing some degenerate triangles even if the arithmetic is
exact.
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Although Algorithm A determine its procedure for each case of (N0, N+),
we simplify it by using only N+ to determine the procedure, that is, for
each N+ = 0, 1, . . . , 4, a simplified algorithm executes the procedure for the
case of (N0, N+) = (0, N+) of Algorithm A. Note that in the simplified
algorithm, {v+

n }
N+

n=1 and {v−
n }

4−N+

n=1 in Table 5.1 denote the vertices of K
that are contained in the interior of H and the vertices of K that are not
contained in the interior of H , respectively. This simplified algorithm will be
called Algorithm A∗ in the sequel.

We can analogously give a simplified algorithm of Algorithm B, Algorithm
B∗. For each n+ = 0, 1, . . . , 3, Algorithm B∗ executes the procedure for the
case of (n0, n+) = (0, n+) of Algorithm B. In the Algorithm B∗, {v+

n }
n+

n=1

and {v−
n }

3−n+

n=1 in Table 5.2 represent the vertices of T that are contained in
the interior of H and the vertices of T that are not contained in the interior
of H , respectively.

When we employ Algorithms A∗ and B∗ instead of Algorithms A and
B in Algorithm 3, we shall call such an algorithm Algorithm 3∗. A similar
argument to Section 5.2.3 shows that the first measure prevents Algorithm
3∗ form failing.

In the sequel of this section, we discuss under the assumption that the
arithmetic is executed exactly.

We consider the difference between Algorithms A and A∗ for an input
{K, Π} with tetrahedron K and plane Π.

If the output triangulation of Algorithm A is {Tj}J
j=1, then the output

triangulation of Algorithm A∗ are represented by {Tj}J
j=1 ∪ {T ′

j}J ′
j=1, where

T ′
j are degenerate triangles and J ′ satisfies 0 ≤ J ′ ≤ 2.

If a vertex of K lies on Π and if it becomes a vertex of an output triangle,
then, in Algorithm A, it is directly employed; but, on the other hand, in
Algorithm A∗, it is recomputed by executing the procedure for computing the
point of intersection. Hence, the number of seeking the point of intersection
in Algorithm A∗ is more than that in Algorithm A.

These facts hold between Algorithms B and B∗ as well.
From the argument above, we can conclude that the number of seeking

the point of intersection and the number of triangles generated in the process
of Algorithm 3∗ are more than those in the process of Algorithm 3.

106



5.4 Numerical experiments

In this section, we compare Algorithm 3 with Algorithm 3∗ through numerical
experiments.

In our numerical experiments, as the fictitious domain Ω̃, we choose a
cube with the length 4 of an edge: Ω̃ = (−2, 2)3, and as the obstacle O, we
take the following five kinds of obstacles:

1. Cube: O = (−1, 1)3.

2. Regular icosahedron: it is circumscribed by the unit sphere centered on
the origin, and has the regular triangle with vertices: (0, 0, 1), (s, 0, c)
and (s cos 2π

5
, s sin 2π

5
, c) as one of its faces, where c = cos(2π/5)/[1 −

cos(2π/5)] and s =
√

1 − c2.

3. Sphere: O = {x ∈ R3 | |x| < 1}.

4. Right circular cylinder: O = {x = (x1, x2, x3) ∈ R
3 | x2

1 + x2
3 <

(1/2)2, −1 < x2 < 1}.

5. Regular octahedron: it is circumscribed by the sphere of radius a/
√

2
centered on the origin, and has the regular triangle with vertices:
(a/2, −a/2, 0), (a/2, a/2, 0) and (0, 0, a/

√
2) as one of its faces, where

a = 9/8.

In this numerical experiment, we consider two kinds of tetrahedrizations
of domain Ω̃ and two kinds of triangulations of boundary γ of each obstacle
O, and call the coarser one of these divisions the first divisions, and the other
the second divisions.

The ith (i = 1, 2) division of domain Ω̃ is generated as follows: first

Ω̃ is subdivided into (128 × 2(i−1))3 congruent cubes and next each cube is
subdivided into six tetrahedrons (see Fig. 5.4). We do not describe how
to triangulate boundary γ of each obstacle O in detail; however, we shall
describe the triangulations of γ in Remark 5.6 when O is the cube, because
such triangulations are taken to be special ones which are associated with the
tetrahedrizations of Ω̃. Now let h be the mesh length of Ω̃ in the direction
of each coordinate axis, and let ηmin be the minimum length of the minimum
side of each triangle belonging to the triangulation of γ. In each divisions,
the following relation is satisfied:

ηmin ≥ 2h,
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which is a three dimensional analogue to the result of Girault-Glowinski [44]
for the two dimensional problem. In [44], they state that the mesh size of

γ should be taken slightly larger than that of Ω̃ in order to get appropriate
numerical solutions.

x1x2

x3

Figure 5.4: Tetrahedrization of Ω̃ (also triangulation of γ when O is a cube).

Remark 5.6 When O is the cube, in the ith (i = 1, 2) division of γ, every
face of γ is subdivided into [64 × 2(i−1)]2 right-angled isosceles triangle as
depicted in Fig. 5.4. Further, in both the first and the second divisions, every
triangle P of the triangulation becomes the union of faces of four tetrahedrons
of the tetrahedrization as shown in Fig. 5.5.

P

Figure 5.5: Left: An arbitrary triangular patch P ; Right: P becomes the
union of faces of four tetrahedral elements.

In the numerical experiments, we examine the execution time T [s] of
Algorithms 3 and 3∗, the number L of seeking the point of intersection in
Algorithms 3 and 3∗, and the number Nz of entries of matrix B that are

108



judged to be non-zero. Further, we examine the quantities that will be
explained in the following. For each triangular patch Pm (m = 1, 2, . . . , M),

let {T (m)
j }Jm

j=1 be the triangulation obtained at Step 2.2 of Algorithm 3 (or 3∗).
Note that the triangulation may include some degenerate triangles. Then we
define

J =

M∑
m=1

Jm.

Since J equals the number of computing the barycentre or the measure of the
triangles at Step 2.2.2, we can consider that J is the quantity that strongly
influences the execution time T . Furthermore, as an error, we compute

e =

M∑
m=1

∣∣∣∣∣|Pm| −
Jm∑
j=1

|T (m)
j |
∣∣∣∣∣ ,

where |Pm| denotes the measure of Pm.
In the computations, we used a PC whose CPU is Xeon 3.4GHz and main

memory is 8GB. As an complier, we employed Intel Fortran Compiler ver.
8.1. We computed with double precision arithmetic.

We summarize the numerical results in Tables 5.3 and 5.4, where for each
O, the results for the first division and for the second division are listed in the
upper two rows and the lower two rows, respectively, and in each of those two
rows the results for Algorithm 3 and for Algorithm 3∗ are listed in the upper
row and the lower row, respectively. Further the ratios of J∗/J and L∗/L
are also listed in Table 5.4, where J∗ are L∗ denotes J and L corresponding
to Algorithm 3∗, respectively.

Table 5.3 shows that there are a few cases where Nz of Algorithm 3∗ is
larger than that of Algorithm 3, and that the errors e of these algorithms are
not different from each other.

Table 5.4 illustrates that in the two cases when O is the cube and the
cylinder, Algorithm 3∗ takes more time than Algorithm 3. Especially, in the
case of the cube, the execution time T of Algorithm 3∗ is more than twice
that of Algorithm 3. In the other cases, Algorithm 3∗ takes less time than
Algorithm 3. We can observe that the execution time tends to depend on
the values of J∗/J and L∗/L. These values for the cube is the largest in the
values listed in Table 5.4. The second largest values are for the cylinder.

We can see that if the values of J∗/J and L∗/L is some larger, that
is, if the number of triangles generated in Algorithm 3∗ and the number of
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computing the point of intersection in Algorithm 3∗ are some larger than
those of Algorithm 3, the execution time of Algorithm 3∗ becomes longer
than that of Algorithm 3. One reason why the values of J∗/J and L∗/L
increase seems to be that faces of γ are contained in division faces of the
tetrahedrization of Ω̃. Because such a situation occurs only in the two cases
when O is the cube and the cylinder. Indeed, as described in Remark 5.6,
when O is the cube, every face of γ is contained in a division face of Ω̃.
Also, when O is the cylinder, the two bases of the cylinder are contained in
division faces of Ω̃. Moreover, when O is the cube, every triangular patch
becomes the union of faces of four tetrahedral elements as depicted in Fig.
5.5. We can consider that this fact also causes the values of J∗/J and L∗/L
to increase.

Although the case when O is the cube is an disadvantage example for
Algorithm 3∗, we note that such an example is not meaningful in practical
computations.

One reason why there are cases where the execution time of Algorithm
3∗ is shorter than that of Algorithm 3 is that the number of selectors of the
case construct of the Fortran program for Algorithm 3∗ is less than that of
Algorithm 3.

Although the execution times for Algorithms 3 and 3∗ are almost the
same except for the case of the cube, the execution time of Algorithm 3∗ is
slightly shorter than that of Algorithm 3 in the cases except the two cases
when O is the cube and the cylinder. Further, the program for Algorithm
3∗ is slightly simpler than that for Algorithm 3. Therefore, we can conclude
that the simplified algorithm described in Section 5.3 is effective in practical
computations.

5.5 Conclusions

We have presented a fictitious domain formulation for problem (5.2) to nu-
merically solve the 3D exterior Helmholtz problem. We have shown that
the problem on the fictitious domain method has a unique solution whose
restriction to the original domain Ωa coincide with the solution of (5.2).

Further, we have presented an algorithm for computing the entries of the
constraint matrix arising in the resulting system of linear equations. We
have shown that degenerate triangles generated due to numerical errors do
not cause the algorithm to fail. On the basis of this fact, we have designed
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one simplified algorithm, and have shown its effectiveness through numerical
experiments.

Practical computations in this fictitious domain formulation and the math-
ematical analysis for the associated discrete problem (5.18) are yet to be
done.
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Table 5.1: Shape of Π ∩ K and procedure to output a triangulation {Tj}J
j=1

of Π ∩ K for each (N0, N+).
N0 N+ Π ∩ K J Vertices of Π ∩ K we

need to compute
Vertices of Tj (j =
1, J)

0 0 Empty 0 – –
1 A triangle 1 The point of intersec-

tion pk of the plane Π
and the edge joining v+

1

and v−
k (k = 1, 2, 3)

T1 := {p1, p2, p3}

2 A quadrangle 2 The point of intersec-
tion pkl of the plane Π
and the edge joining v+

k

and v−
l (k, l = 1, 2)

T1 := {p11, p22, p12},
T2 := {p11, p22, p21}

3 A triangle 1 The point of intersec-
tion pk of the plane Π
and the edge joining v+

k

and v−
1 (k = 1, 2, 3)

T1 := {p1, p2, p3}

4 Empty 0 – –
1 0 A point 0 – –

1 A triangle 1 The point of intersec-
tion pk of the plane Π
and the edge joining v+

1

and v−
k (k = 1, 2)

T1 := {v0
1, p1, p2}

2 A triangle 1 The point of intersec-
tion pk of the plane Π
and the edge joining v+

k

and v−
1 (k = 1, 2)

T1 := {v0
1, p1, p2}

3 A point 0 – –
2 0 A line segment 0 – –

1 A triangle 1 The point of intersec-
tion p1 of the plane Π
and the edge joining v+

1

and v−
1

T1 := {v0
1, v0

2 , p1}

2 A line segment 0 – –
3 0 A triangle 1 – T1 := {v0

1, v0
2 , v0

3}
1 A triangle 0 – –
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Table 5.2: Shape of H ∩ T and procedure to output a triangulation {Tj}J
j=1

of H ∩ T for each (n0, n+).
n0 n+ H ∩ T J Vertices of H ∩ T we

need to compute
Vertices of Tj (j =
1, J)

0 0 Empty 0 – –
1 A triangle 1 The point of intersec-

tion pk of the plane Π
and the side joining v+

1

and v−
k (k = 1, 2)

T1 := {v+
1 , p1, p2}

2 A quadrangle 2 The point of intersec-
tion pk of the plane Π
and the side joining v+

k

and v−
1 (k = 1, 2)

T1 := {v+
1 , v+

2 , p1},
T2 := {v+

2 , p1, p2}

3 A triangle 1 – T1 := {v+
1 , v+

2 , v+
3 }

1 0 A point 0 – –
1 A triangle 1 The point of intersec-

tion p1 of the plane Π
and the side joining v+

1

and v−
1

T1 := {v+
1 , v0

1, p1}

2 A triangle 1 – T1 := {v+
1 , v+

2 , v0
1}

2 0 A line segment 0 – –
1 A triangle 1 – T1 := {v+

1 , v0
1, v0

2}
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Table 5.3: Computational results I.
O h ηmin M Nz e
cube 3.125E-2 6.25E-2 12,288 110,592 0.00

110,592 0.00
1.5625E-2 3.125E-2 49,152 442,368 0.00

442,368 0.00
icosahedron 3.125E-2 6.57E-2 5,120 101,580 8.16E-14

101,580 8.16E-14
1.5625E-2 3.29E-2 20,480 405,983 3.12E-13

405,983 3.12E-13
sphere 3.125E-2 6.92E-2 5,120 118,260 9.61E-14

118,260 9.61E-14
1.5625E-2 3.46E-2 20,480 473,290 3.72E-13

473,291 3.72E-13
cylinder 3.125E-2 7.17E-2 1,610 52,613 2.17E-14

52,689 2.17E-14
1.5625E-2 3.53E-2 6,526 212,370 7.01E-14

212,448 7.01E-14
octahedron 3.125E-2 7.03E-2 2,048 41,189 9.96E-15

41,189 9.96E-15
1.5625E-2 3.52E-2 8,192 166,693 3.19E-14

166,693 3.19E-14
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Table 5.4: Computational results II.
O J J∗/J L L∗/L T
cube 49,152 4.5 0 ∞ 0.400

221,184 4,845,568 0.835
196,608 4.5 0 ∞ 1.68
884,736 19,382,272 3.42

icosahedron 261,589 1.0022 2,167,138 1.0012 0.538
262,155 2,169,844 0.534

1,045,836 1.0006 8,615,212 1.0003 2.16
1,046,432 8,618,162 2.14

sphere 312,751 1.0009 2,510,750 1.0008 0.634
313,029 2,512,824 0.633

1,254,046 1.0003 10,048,568 1.0003 2.62
1,254,416 10,051,212 2.60

cylinder 147,627 1.0378 1,057,801 1.0544 0.303
153,207 1,115,366 0.308
610,410 1.0158 4,399,377 1.0211 1.25
620,025 4,492,180 1.27

octahedron 108,830 1.0099 897,990 1.0209 0.239
109,902 916,784 0.236
443,684 1.0035 364,3517 1.0059 0.980
445,234 366,5166 0.976
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Appendix A

Some Properties of the Hankel
Functions

Lemma A.1 For all x > 0 and for all ν ∈ R, we have

Re

{
H

(1)′
ν (x)

H
(1)
ν (x)

}
< 0.

Proof. Since H
(1)
ν (x) = Jν(x)+ iNν(x), where Jν and Nν are the cylindrical

Bessel function and the cylindrical Neumann function of order ν, respectively,
we have

(A.1) Re

{
H

(1)′
ν (x)

H
(1)
ν (x)

}
=

Jν(x)J ′
ν(x) + Nν(x)N ′

ν(x)

J2
ν (x) + N2

ν (x)
.

According to Watson [130, p. 444], we have Nicholson’s formula:

(A.2) J2
ν (x) + N2

ν (x) =
8

π2

∫ ∞

0

K0(2x sinh t) cosh(2νt) dt,

where K0 is the modified Bessel function of the second kind of order zero.
Differentiating (A.2) with x, we obtain

(A.3) Jν(x)J ′
ν(x) + Nν(x)N ′

ν(x) =
8

π2

∫ ∞

0

K ′
0(2x sinh t) sinh t cosh(2νt) dt.

Now we note that we have the following formula:

(A.4) K0(ξ) =

∫ ∞

0

e−ξ cosh t dt for all ξ > 0
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(see Abramowitz and Stegun [1], Watson [130]). Differentiating (A.4) with
ξ, we can get

(A.5) K ′
0(ξ) = −

∫ ∞

0

e−ξ cosh t cosh t dt < 0 for all ξ > 0.

Combining (A.1), (A.3) and (A.5) completes the proof of Lemma A.1.

Lemma A.2 For all x > 0 and for all ν, ν ′ ∈ R satisfying |ν| > |ν ′|, we have

(A.6) 0 < Im

{
H

(1)′
ν (x)

H
(1)
ν (x)

}
< Im

{
H

(1)′
ν′ (x)

H
(1)
ν′ (x)

}
.

Proof. We have the following formulas:

H(1)′
ν (x) = H

(1)
ν−1(x) − ν

x
H(1)

ν (x),

Jν−1(x)Nν(x) − Jν(x)Nν−1(x) = − 2

πx
(see [1]).

Using these formulas, we can get

(A.7) Im

{
H

(1)′
ν (x)

H
(1)
ν (x)

}
=

2

πx

1

J2
ν (x) + N2

ν (x)
> 0.

Now it follows from (A.4) that K0(2x sinh t), being in the integral on the
right-hand side of (A.2), is a positive function of t on (0, ∞). Thus, we can
easily see from (A.2) that for all ν, ν ′ ∈ R satisfying |ν| > |ν ′|,

(A.8) J2
ν (x) + N2

ν (x) > J2
ν′(x) + N2

ν′(x).

From (A.7) and (A.8), we can get (A.6).

Lemma A.3 Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
is a decreasing function in (0, ∞). Further

(A.9) Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
−→ 1 as x −→ +∞

and

(A.10) Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
−→ +∞ as x −→ +0.
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Proof. According to [130], x(J2
0 (x) + N2

0 (x)) is an increasing function in
(0, ∞). This implies that

(A.11) Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
=

2

πx

1

J2
0 (x) + N2

0 (x)

is a decreasing function in (0, ∞).
We have

(A.12) H
(1)
0 (x) ∼

√
2

πx
ei(x−π/4) as x −→ +∞ (see [1]).

Further we can see from (A.11) that

(A.13) Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
=

∣∣∣√ 2
πx

ei(x−π/4)
∣∣∣2∣∣∣H(1)

0 (x)
∣∣∣2 .

From (A.12) and (A.13), we can get (A.9).
Since J0(0) = 1 and N0(x) ∼ (2/π) logx as x −→ +0 (see [1]), we have

x{J2
0 (x)+N2

0 (x)} = xJ2
0 (x)+x

(
2

π
log x

)2 [
N0(x)
2
π

log x

]2
−→ 0 as x −→ +0,

and hence (A.11) yields (A.10).

Lemma A.4 For all x > 0 and for all n ∈ N ∪ {0}, we have

Re

{
h

(1)′
n (x)

h
(1)
n (x)

}
< 0.

Proof. Since

h(1)
n (x) =

√
π

2x
H

(1)
n+1/2(x),

we have

(A.14)
h

(1)′
n (x)

h
(1)
n (x)

= − 1

2x
+

H
(1)′
n+1/2(x)

H
(1)
n+1/2(x)

.

118



Thus, we can see form Lemma A.1 that

Re

{
h

(1)′
n (x)

h
(1)
n (x)

}
= − 1

2x
+ Re

{
H

(1)′
n+1/2(x)

H
(1)
n+1/2(x)

}
< 0.

Lemma A.5 For all x > 0 and for all n ∈ N, we have

0 < Im

{
h

(1)′
n (x)

h
(1)
n (x)

}
< Im

{
h

(1)′
0 (x)

h
(1)
0 (x)

}
≡ 1.

Proof. From (A.14), we can get

Im

{
h

(1)′
n (x)

h
(1)
n (x)

}
= Im

{
H

(1)′
n+1/2(x)

H
(1)
n+1/2(x)

}
.

Thus, by Lemma A.2, we have

0 < Im

{
h

(1)′
n (x)

h
(1)
n (x)

}
< Im

{
h

(1)′
0 (x)

h
(1)
0 (x)

}
for all n ∈ N.

Since h
(1)
0 (x) = −ieix/x, we can see that

Im

{
h

(1)′
0 (x)

h
(1)
0 (x)

}
≡ 1.

Lemma A.6 For each x > 0, there exists a positive constant C such that

(A.15)

∣∣∣∣∣ 1

1 + |n|
H

(1)′
n (x)

H
(1)
n (x)

∣∣∣∣∣ ≤ C for all n ∈ Z,

(A.16)

∣∣∣∣∣ 1

1 + n

h
(1)′
n (x)

h
(1)
n (x)

∣∣∣∣∣ ≤ C for all n ∈ N ∪ {0},

where C depends on x, but is independent of n.
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Proof. For proofs of (A.15) and (A.16), see [105] and [81], respectively.

Lemma A.7 For any r1 > r2 > 0,
∣∣∣H(1)

ν (r1)/H
(1)
ν (r2)

∣∣∣ is a decreasing func-

tion of ν on [0, ∞), and further
∣∣∣h(1)

n (r1)/h
(1)
n (r2)

∣∣∣ is a decreasing sequence

of n ∈ N ∪ {0}.

Proof. We first prove the former assertion. We write

F (ν; r) =
∣∣H(1)

ν (r)
∣∣2.

From Nicholson’s formula:

(A.17) F (ν; r) =
8

π2

∫ ∞

0

K0(2r sinh t) cosh(2νt) dt (ν ∈ R, r > 0),

we see that, for each r > 0, F (·; r) ∈ C∞(R) and F (·; r) > 0. Thus, it is
sufficient to show that

d

dν

(
F (ν; r1)

F (ν; r2)

)
< 0

for all ν ∈ (0, ∞). This inequality holds if and only if

(A.18)
dF

dν
(ν; r1)F (ν; r2) − F (ν; r1)

dF

dν
(ν; r2) < 0.

Hence, let us prove (A.18) in the following. Differentiating (A.17) with ν
leads to

(A.19)
dF

dν
(ν; r) =

16

π2

∫ ∞

0

K0(2r sinh t)t sinh(2νt) dt.

From (A.17) and (A.19), we have

dF

dν
(ν; r1)F (ν; r2) − F (ν; r1)

dF

dν
(ν; r2)(A.20)

=
128

π4

∫ ∞

0

∫ ∞

0

[K0(2r1 sinh t1)K0(2r2 sinh t2)t1 sinh(2νt1) cosh(2νt2)

−K0(2r2 sinh t1)K0(2r1 sinh t2)t1 sinh(2νt1) cosh(2νt2)] dt1dt2

=
128

π4

∫ ∞

0

dt1∫ t1

0

[K0(2r1 sinh t1)K0(2r2 sinh t2) − K0(2r1 sinh t2)K0(2r2 sinh t1)]

× [t1 sinh(2νt1) cosh(2νt2) − t2 sinh(2νt2) cosh(2νt1)] dt2.
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Here, using Macdnold’s formula (see [130, p. 439]):

K0(X)K0(x) =
1

2

∫ ∞

0

exp

[
− t

2
− X2 + x2

2t

]
K0

(
Xx

t

)
dt

t
(X, x > 0)

and the fact that

(r2
1 sinh2 t1 + r2

2 sinh2 t2) − (r2
1 sinh2 t2 + r2

2 sinh2 t1)

= (r2
1 − r2

2)(sinh2 t1 − sinh2 t2) > 0

for t1 > t2 > 0, we can conclude that

(A.21) K0(2r1 sinh t1)K0(2r2 sinh t2) − K0(2r1 sinh t2)K0(2r2 sinh t1) < 0

for t1 > t2 > 0. Further, we have

t1 sinh(2νt1) cosh(2νt2) − t2 sinh(2νt2) cosh(2νt1)(A.22)

=
1

2
{(t1 − t2) sinh[2ν(t1 + t2)] + (t1 + t2) sinh[2ν(t1 − t2)]} > 0

for t1 > t2 > 0. From (A.20)–(A.22), we deduce (A.18).
We next prove the latter assertion. Since

h(1)
n (r) =

√
π

2r
H

(1)
n+1/2(r),

we have∣∣∣∣∣h(1)
n (r1)

h
(1)
n (r2)

∣∣∣∣∣ =
√

r2

r1

∣∣∣∣∣H
(1)
n+1/2(r1)

H
(1)
n+1/2(r2)

∣∣∣∣∣ .
Hence, it follows from the above result that

∣∣∣h(1)
n (r1)/h

(1)
n (r2)

∣∣∣ is a decreasing

sequence of n ∈ N ∪ {0}.
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Appendix B

Well-posedness of the Wave
Equation with a DtN Boundary
Condition

B.1 Proof of Theorem 4.1

We first state two lemmas concerning properties of σn.

Lemma B.1 We have

σn − |n|
a

∼ k2a

2|n| as n −→ ±∞.

Proof. See [105].

Lemma B.2 For all n ∈ Z, Re(σn) > 0.

Proof. See [93].

Define

Bϕ =
∞∑

n=−∞
Re(σn)ϕnYn for every ϕ ∈ H1/2(Γa).

It follows from Lemma B.1 that B is a bounded linear operator form H1/2(Γa)
into H−1/2(Γa). Further we see from Lemma B.2 that

〈Bϕ, ϕ〉 ≥ 0 for all ϕ ∈ H1/2(Γa).
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The space E becomes a Hilbert space equipped with the inner product:

(u, v)E =

∫
Ωa

∇u0 · ∇v0 dx +

∫
Ωa

u1v1 dx + 〈Bu0, v0〉

for u = {u0, u1}, v = {v0, v1} ∈ E; the associated norm is denoted by ‖ · ‖E.
In order to prove Theorem 4.1, it is sufficient from Hille-Yosida’s theorem

[136] to prove three propositions described below.

Proposition B.1 D(A) is dense in E.

Proposition B.2 There exists a positive constant C such that

(B.1) Re(Au, u)E ≤ C‖u‖2
E for all u ∈ D(A).

Proposition B.3 For every λ ≥ 0, there exists (λ − A)−1 as a bounded
linear operator on E.

Propositions B.1–B.3 will be proved in Subsections B.1.1–B.1.3, respec-
tively.

B.1.1 Proof of Proposition B.1

To prove Proposition B.1, we use the following lemma, whose proof is de-
scribed in [82].

Lemma B.3 For all g ∈ C∞(Γa) and for all ε > 0, there exists a u ∈
C∞

0 (Ωa ∪ Γa) such that

u = 0 on Γa,
∂u

∂n
= g on Γa,

and ‖u‖H1(Ωa) ≤ ε, where

C∞
0 (Ωa∪Γa) = {ϕ ∈ C∞(Ωa) | There exists a ϕ̃ ∈ C∞

0 (Ω) such that ϕ = ϕ̃|Ωa} .

Proof of Proposition B.1. Let {v0, v1} be an arbitrary element of E.
Since [C∞

0 (Ωa ∪ Γa)]
2 is dense in E, there exist {v0j , v1j} ∈ [C∞

0 (Ωa ∪ Γa)]
2

(j = 1, 2, . . .) such that

(B.2) {v0j , v1j} −→ {v0, v1} in E as j −→ ∞.
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Define

(B.3) gj =
∂v0j

∂n
+ v1j + Sv0j + ikv0j on Γa.

Since gj ∈ C∞(Γa), we can see from Lemma B.3 that for each j ∈ N, there
exists a wj ∈ C∞

0 (Ωa ∪ Γa) such that

(B.4) wj = 0 on Γa,
∂wj

∂n
= gj on Γa,

and

(B.5) ‖wj‖H1(Ωa) ≤
1

j
.

It follows from (B.3) and (B.4) that {v0j − wj, v1j} ∈ D(A). Furthermore,
we deduce from (B.2) and (B.5) that

{v0j − wj, v1j} −→ {v0, v1} in E as j −→ ∞.

B.1.2 Proof of Proposition B.2

Proof of Proposition B.2. For every u = {u0, u1} ∈ D(A), by the Green
formula, we can get

(B.6) Re(Au, u)E = −‖u1‖2
L2(Γa) − Re 〈(S − B)u0, u1〉 + k Im 〈u0, u1〉 .

Set ϕ = u0|Γa and ψ = u1|Γa . Then we have

(B.7) −Re 〈(S − B)u0, u1〉 + k Im 〈u0, u1〉 =
∞∑

n=−∞
{k + Im(σn)} Im

(
ϕnψn

)
.

Lemma B.1 implies that there exists a positive constant C0 such that

(B.8) |k + Im(σn)| ≤ C0 for all n ∈ Z.

Combining (B.6)–(B.8) leads to

Re(Au, u)E ≤ C2
0

4
‖u0‖2

L2(Γa).

Thus, by the trace theorem and the Poincaré inequality, we can get (B.1).
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B.1.3 Proof of Proposition B.3

Suppose that u ∈ D(A) satisfies (λ−A)u = f with λ ∈ R and f ∈ E. Then
we have

(B.9)

⎧⎪⎪⎨⎪⎪⎩
−Δu0 + λ2u0 = f1 + λf0 in Ωa,

u0 = 0 on γ,

∂u0

∂n
= −Su0 − iku0 − λu0 + f0 on Γa,

and

(B.10) u1 = λu0 − f0.

Hence, to prove Proposition B.3, we consider the following problem:

(B.11)

⎧⎪⎪⎨⎪⎪⎩
−Δu + λ2u = f in Ωa,

u = 0 on γ,

∂u

∂n
= −Su − iku − λu + g on Γa,

and prove the following proposition.

Proposition B.4 For each λ ≥ 0, for every f ∈ L2(Ωa), and for every
g ∈ H1/2(Γa), problem (B.11) has a unique solution which belongs to H2(Ωa).

We shall prove Proposition B.4 after describing the proof of Proposition
B.3.

Proof of Proposition B.3. Let λ be an arbitrary non-negative number.
We first show that (λ−A) is one-to-one. Suppose that u = {u0, u1} ∈ D(A)
satisfies (λ − A)u = 0, then u0 satisfies (B.11) with f = 0 and g = 0, and
hence it follows from Proposition B.4 that u0 = 0. Thereby (B.10) leads to
u1 = 0.

We next show that (λ − A) is onto. We can see from Proposition B.4
that for every f = {f0, f1} ∈ E, there exists a u0 ∈ H2(Ωa) such that u0

satisfies (B.9). Set u1 = λu0 − f0 ∈ V . Then we can immediately see that
u = {u0, u1} ∈ D(A) and (λ −A)u = f .

Let us now prove Proposition B.4.
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We consider the following problem:

(B.12)

⎧⎪⎪⎨⎪⎪⎩
−Δu = f in Ωa,

u = 0 on γ,

∂u

∂n
+ T u = g on Γa,

where T is the operator defined by

T ϕ =
∞∑

n=−∞

|n|
a

ϕnYn.

Note that T is the DtN operator associated with the exterior Laplace problem
where the solution is required to be bounded at infinity. It is easily seen that
T is a bounded linear operator form H1/2(Γa) into H−1/2(Γa) and satisfies

(B.13) 〈T ϕ, ϕ〉 ≥ 0 for all ϕ ∈ H1/2(Γa).

Lemma B.4 For all f ∈ L2(Ωa) and for all g ∈ H1/2(Γa), problem (B.12)
has a unique solution belonging to H2(Ωa), and further we have the following
a priori estimate:

(B.14) ‖u‖H2(Ωa) ≤ C
{
‖f‖L2(Ωa) + ‖g‖H1/2(Γa)

}
,

where C is a positive constant independent of f and g.

Proof. We present only an outline of the proof. (A complete proof is de-
scribed in [88].) Using the trace theorem, we can see that it suffices to prove
the assertion only in the case when g = 0. It follows from Lax-Milgram’s
lemma that a weak formulation of problem (B.12) with g = 0 has a unique
solution. A harmonic extension of the solution to Ω can be a unique solu-
tion of the exterior Laplace problem on Ω imposing the boundedness of the
solution at infinity. (For the existence and uniqueness of the solution to the
exterior Laplace problem, we refer the reader to [2].) We conclude from the
usual regularity argument that such a harmonic extension belongs to H2

loc(Ω).
Applying the closed graph theorem to the operator G : L2(Ωa) −→ H2(Ωa)
defined by Gf = u, where u is the solution of problem (B.12) with g = 0,
we obtain (B.14) with g = 0.
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For any ε ≥ 0, we consider the following problem:

(Pε)

⎧⎪⎪⎨⎪⎪⎩
Lεu := −Δu + ελ2u = f in Ωa,

u = 0 on γ,

Kεu :=
∂u

∂n
+ T u + εRu = g on Γa,

where R = S − T + ik + λ.

Lemma B.5 Let λ ≥ 0 and 0 ≤ ε ≤ 1. Let f ∈ L2(Ωa) and g ∈ H1/2(Γa).
Assume that u ∈ H2(Ωa) satisfies (Pε). Then there exists a positive constant
C such that

(B.15) ‖u‖H1(Ωa) ≤ C
{
‖f‖L2(Ωa) + ‖g‖L2(Γa)

}
,

where C is independent of λ, ε, f , g, and u.

Proof. By the Green formula, we can get∫
Ωa

|∇u|2 dx + ελ2

∫
Ωa

|u|2 dx + (1 − ε) 〈T u, u〉 + ε{Re 〈Su, u〉 + λ‖u‖2
L2(Γa)}

= Re

∫
Ωa

fu dx + Re 〈g, u〉 .

Lemma B.2 yields

(B.16) Re 〈Su, u〉 ≥ 0.

Thus it follows from (B.13), (B.16), and the conditions of ε and λ that∫
Ωa

|∇u|2 dx ≤ Re

∫
Ωa

fu dx + Re 〈g, u〉 .

Hence we can conclude from the Poincaré inequality and the trace theorem
that (B.15) holds.

Lemma B.6 For every λ ≥ 0, there exists an α > 0 such that if, for an ε1 ∈
[0, 1], problem (Pε1) has a solution belonging to H2(Ωa) for every f ∈ L2(Ωa)
and for every g ∈ H1/2(Γa), then, for each ε satisfying |ε− ε1| < α, problem
(Pε) has a solution belonging to H2(Ωa) for every f ∈ L2(Ωa) and for every
g ∈ H1/2(Γa).
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Proof. For every f ∈ L2(Ωa) and for every g ∈ H1/2(Γa), let u(0) be a
solution of problem (Pε1), which belongs to H2(Ωa). For p = 0, 1, 2, . . ., let
u(p+1) ∈ H2(Ωa) be a solution of the following problem:⎧⎪⎨⎪⎩

Lε1u
(p+1) = (ε1 − ε)λ2u(p) in Ωa,

u(p+1) = 0 on γ,

Kε1u
(p+1) = (ε1 − ε)Ru(p) on Γa.

Then, by Lemma B.5, we have, for every p ∈ N ∪ {0},

(B.17) ‖u(p+1)‖H1(Ωa) ≤ C1

{
|ε1 − ε|λ2‖u(p)‖L2(Ωa) + |ε1 − ε|‖Ru(p)‖L2(Γa)

}
,

where C1 is a positive constant independent of λ, ε, ε1, u(p), and u(p+1).
Lemma B.1 implies that R is a bounded linear operator on L2(Γa). Hence,
it follows from (B.17) and the trace theorem that there exists a positive
constant C2 such that

‖u(p+1)‖H1(Ωa) ≤ C2|ε1 − ε|‖u(p)‖H1(Ωa),

where C2 is independent of ε, ε1, u(p), and u(p+1). This yields

(B.18) ‖u(p+1)‖H1(Ωa) ≤ (C2|ε1 − ε|)p+1‖u(0)‖H1(Ωa).

Set uq =
∑q

p=0 u(p). Then we can see from (B.18) that if C2|ε1 − ε| < 1, then
{uq}∞q=1 is a Cauchy sequence in V . Furthermore we have, for every q ∈ N,⎧⎨⎩

Lε1uq = (ε1 − ε)λ2uq−1 + f in Ωa,
uq = 0 on γ,

Kε1uq = (ε1 − ε)Ruq−1 + g on Γa,

and hence, for any q > q′, uq − uq′ becomes the solution of problem (B.12)
with

f = −ε1λ
2(uq − uq′) + (ε1 − ε)λ2(uq−1 − uq′−1) =: fqq′,

g = −ε1R(uq − uq′) + (ε1 − ε)R(uq−1 − uq′−1) =: gqq′.

Hence, from (B.14), we have, for any q > q′,

(B.19) ‖uq − uq′‖H2(Ωa) ≤ C
{
‖fqq′‖L2(Ωa) + ‖gqq′‖H1/2(Γa)

}
.
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Since R is also a bounded linear operator on H1/2(Γa), (B.19) and the trace
theorem lead to

‖uq − uq′‖H2(Ωa) ≤ C
{
‖uq − uq′‖H1(Ωa) + ‖uq−1 − uq′−1‖H1(Ωa)

}
.

This implies that {uq}∞q=1 is a Cauchy sequence in H2(Ωa) since {uq}∞q=1 is a
Cauchy sequence in V . Then its limit u ∈ H2(Ωa) is a solution of problem
(Pε). We can see from the argument above that if we take α = 1/C2, then
the assertion of Lemma B.6 holds.

Proof of Proposition B.4. Since, by Lemma B.4, problem (Pε) with ε = 0,
i.e., problem (B.12) has a solution belonging to H2(Ωa), Lemma B.6 implies
that problem (Pε) with ε = 1, i.e., problem (B.11) has a solution belonging
to H2(Ωa). The uniqueness of the solution to problem (B.11) follows from
(B.15).
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[45] V. Girault, R. Glowinski, H. López, J. P. Vila, A boundary multi-
plier/fictitious domain method for the steady incompressible Navier-
Stokes equations, Numer. Math. 88 (2001) 75–103.

[46] D. Givoli, Numerical Methods for Problems in Infinite Domains, Studies
in Applied Mechanics 33, Elsevier Scientific Publishing Co., Amsterdam,
1992.

[47] D. Givoli, Exact representations on artificial interfaces and applications
in mechanics, Applied Mechanics Review 52 (1999) 333–349.

[48] D. Givoli, J. B. Keller, Nonreflecting boundary conditions for elastic
waves, Wave Motion 12 (1990) 261–279.

[49] D. Givoli, I. Patlashenko, J. B. Keller, High-order boundary conditions
and finite elements for infinite domains, Comput. Methods Appl. Mech.
Engrg. 143 (1997) 13–39.

[50] D. Givoli, L. Rivkin, J. B. Keller, A finite element method for domains
with corners, Internat. J. Numer. Methods Engrg. 35 (1992) 1329–1345.

[51] D. Givoli, S. Vigdergauz, Finite element analysis of wave scattering from
singularities, Wave Motion 20 (1994) 165–176.

[52] R. Glowinski, T. W. Pan, J. Périaux, A least squares/fictitious domain
method for mixed problems and Neumann problems, Boundary value
problems for partial differential equations and applications, pp. 159–178,
RMA Res. Notes Appl. Math. 29, Masson, Paris, 1993.

[53] R. Glowinski, T. W. Pan, J. Périaux, A fictitious domain method for
Dirichlet problem and applications, Comput. Methods Appl. Mech. En-
grg. 111 (1994) 283–303.

134



[54] R. Glowinski, T. W. Pan, J. Périaux, A fictitious domain method for
external incompressible viscous flow modeled by Navier-Stokes equa-
tions, Finite element methods in large-scale computational fluid dynam-
ics (Minneapolis, MN, 1992), Comput. Methods Appl. Mech. Engrg. 112
(1994) 133–148.

[55] C. I. Goldstein, The finite element method with nonuniform mesh sizes
applied to the exterior Helmholtz problem. Numer. Math. 38 (1981)
61–82.

[56] C. I. Goldstein, A finite element method for solving Helmholtz type
equations in waveguides and other unbounded domains, Math. Comp.
39 (1982) 309–324.

[57] G. H. Golub, C. F. Van Loan, Matrix Computations, Third edition,
Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins
University Press, Baltimore, MD, 1996.

[58] D. Greenspan, P. Werner, A numerical method for the exterior Dirichlet
problem for the reduced wave equation, Arch. Rational Mech. Anal. 23
(1966) 288–316.

[59] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston,
London, Melbourne, 1985.

[60] P. Grisvard, Singularities in Boundary Value Problems, Masson, Paris,
Milan, Barcelone, Bonn, 1992.

[61] M. J. Grote, Nonreflecting boundary conditions for elastodynamic scat-
tering, J. Comput. Phys. 161 (2000) 331–353.

[62] M. J. Grote, Non-reflecting boundary conditions for electromagnetic
scattering, Int. J. Numer. Model. 13 (2000) 397–416.

[63] M. J. Grote, J. B. Keller, On nonreflecting boundary conditions, J.
Comput. Phys. 122 (1995) 231–243.

[64] M. J. Grote, J. B. Keller, Exact nonreflecting boundary conditions for
the time dependent wave equation, SIAM J. Appl. Math. 55 (1995)
280–297.

135



[65] M. J. Grote, J. B. Keller, Nonreflecting boundary conditions for time-
dependent scattering, J. Comput. Phys. 127 (1996) 52–65.

[66] M. J. Grote, J. B. Keller, Nonreflecting boundary conditions for
Maxwell’s equations, J. Comput. Phys. 139 (1998) 327–342.

[67] M. J. Grote, J. B. Keller, Exact nonreflecting boundary condition for
elastic waves, SIAM J. Appl. Math. 60 (2000) 803–819.

[68] M. J. Grote, C. Kirsch, Dirichlet-to-Neumann boundary conditions for
multiple scattering problems, J. Comput. Phys. 201 (2004) 630–650.

[69] T. Hagstrom, S. I. Hariharan, A formulation of asymptotic and exact
boundary conditions using local operators. Absorbing boundary condi-
tions, Appl. Numer. Math. 27 (1998) 403–416.

[70] H. Han, W. Bao, Error estimates for the finite element approximation
of problems in unbounded domains, SIAM J. Numer. Anal. 37 (2000)
1101–1119.

[71] H. Han, W. Bao, Error estimates for the finite element approximation
of linear elastic equations in an unbounded domain, Math. Comp. 70
(2001) 1437–1459.

[72] H. Han, X. Wu, Approximation of infinite boundary condition and its
application to finite element methods, Journal of Computational Math-
ematics 3 (1985) 179–192.

[73] H. Han, X. Wu, The approximation of the exact boundary conditions
at an artificial boundary for linear elastic equations and its application,
Math. Comp. 59 (1992) 21–37.

[74] I. Harari, T. J. R. Hughes, Analysis of continuous formulations under-
lying the computation of time-harmonic acoustics in exterior domains,
Comput. Methods Appl. Mech. Engrg. 97 (1992) 103–124.

[75] J. G. Harris, Linear Elastic Waves, Cambridge Texts in Applied Math-
ematics, Cambridge University Press, Cambridge, 2001.

[76] E. Heikkola, Y. A. Kuznetsov, P. Neittaanmäki, J. Toivanen, Fictitious
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