
Appendix A

Equations of state

In this chapter we consider the relation between the Poisson relation in thermody-

namics and the adiabatic equation in MHD [10, 12], which are rare to be described

simultaneously in references. Moreover, we will show that the incompressibility

condition can be derived as a singular limit of the adiabatic equation of state.

We define a fluid element as what occupies a local space surrounded by a certain

boundary surfaces. In a plasma, the fluid element consists of innumerable charged

particles, however, from macroscopic viewpoint, the fluid element must be suffi-

ciently small in order to treat the macroscopic quantities as a common value. By

assuming to take such an element for a plasma, we may define the plasma pressure,

volume, and other macroscopic quantities for this element. Rigorously speaking, it

is not evident whether the volume for fluid element is well defined. Since the density

for the element can be defined, we define the volume in terms of local density of

the fluid element. Therefore the volume is considered as a local quantity. More-

over, although the plasma consists of electrons and ions, we do not distinguish the

difference and treat as a single fluid within the context of MHD.

Here we assume that each plasma element is at thermodynamical equilibrium

in every time and every space. For p, V , n, R, T denoting pressure, volume, mol

number of particles in an element, constant of gas, and temperature, respectively,

Boyle-Charles’ law;

pV = nRT (A.1)

is assumed valid for a plasma.

For Q, S describing heat and entropy, the specific heat at constant volume Cv

and that at constant pressure Cp are represented as

Cv =
(∂Q
∂T

)
V
= T

(∂S
∂T

)
V
, (A.2)
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Cp =
(∂Q
∂T

)
p
= T

(∂S
∂T

)
p
. (A.3)

Here the subscripts for partial derivatives represent the fixed variable explicitly.

For x = x(y, z), y = y(z, x), z = z(x, y) and t = t(x, y, z), there are following

relations; (∂x
∂y

)
z

(∂y
∂z

)
x

(∂z
∂x

)
y
= −1, (A.4)(∂x

∂y

)
z
=

(∂x
∂y

)
t
+

(∂x
∂t

)
y

( ∂t
∂y

)
z
. (A.5)

At first, regarding x, y, z, t as S, T , V , p, respectively, in Eq. (A.5), and using

equation of state (A.1) leads straightforwardly to the Mayer’s relation;

Cp − Cv = nR. (A.6)

And next, regarding x, y, z, t as p, V , S, T , respectively, Eq. (A.5) becomes( ∂p

∂V

)
S
=

( ∂p

∂V

)
T
+

( ∂p
∂T

)
V

(∂T
∂V

)
S
. (A.7)

Using Eq. (A.4), we can write the last term as(∂T
∂V

)
S
= −

(∂T
∂S

)
V

( ∂S
∂V

)
T
= − T

Cv

( ∂p
∂T

)
V
= − p

Cv
. (A.8)

In the last form of Eq. (A.8) we used the equation of state (A.1). Substituting this

relation into Eq. (A.5) and using Mayer’s relation (A.6), we obtain( ∂p

∂V

)
S
= − p

V

(
1 +

nR

Cv

)
= − p

V

Cp

Cv
, (A.9)

and integrating this equation leads to the following relation known as Poisson rela-

tion;

pV γ = const, (A.10)

where γ denotes the specific heat ratio γ = Cp/Cv. The relation (A.10) is called

adiabatic law, since variation of the system with a fixed S means no heat conduction

not only between the system and the outer region, but among all fluid elements. In

other words, when the system suffers an adiabatic variation, the Poisson relation is

applicable.

For a mass density of particles ρ, the volume is inversely proportional to the

mass density, V ∝ ρ−1. Since the time derivative of Eq. (A.10) vanishes, the

Poisson relation can be written as

d

dt

(
pρ−γ

)
= 0, (A.11)
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where d/dt = ∂t + v · ∇ and v denotes a fluid velocity. Since we are looking at

a certain fluid element, the time derivative should be taken in Lagrangian way.

Substituting the continuity equation (2.1);

dρ

dt
= −ρ∇ · v, (A.12)

into Eq. (A.11), we obtain the pressure evolution equation (2.3);

dp

dt
+ γp∇ · v = 0. (A.13)

For the degree of freedom of the macroscopic system N , the specific heat at

constant volume is given as Cv = NR/2 from equipartition law of energy. Then the

Mayer’s relation (A.6) yields γ = (N + 2)/N , i.e. for higher N , γ becomes smaller

and approaches to unity. It can be interpreted intuitively that for the system with

a larger degree of freedom, the fluid element can be deformed in a higher degree

of freedom and can escape from the compression when external force is applied.

Therefore, the adiabatic compression needs more pressure in the higher N than the

lower one in order to decrease the same volume of the fluid element.

Following the above discussion, we can define the incompressibility condition as

a singular limit of the adiabatic relation for the ideal gas (A.13). Incompressible

fluid is that, the fluid element does not suffer any compression against any strong

external pressure, i.e. n/V does not change for any large p. Even if the fluid element

is deformed when exposed to an external force, however, it cannot be diverse freely

and suffers the tightening from all direction due to its incompressibility, which is

connected with the limitN → 0. This gives a singular limit of the adiabatic equation

of state γ →∞, which leads to the incompressible equation of state as

∇ · v = 0. (A.14)

By replacing the adiabatic equation of state (A.13) by the incompressible one (A.14),

we can close the system of MHD equations.

In the same way, we can take the incompressible limit of the solution obtained

by means of the compressible equation of state, however, it should be noted that the

solution is consistent with the original adiabatic equation only in the limit γ → ∞
in the way that

γ(∇ · v)→ −1
p

dp

dt
. (A.15)

This is the case discussed in Sec. 4.3. The limit γ →∞ corresponds to the situation

where the sound wave will be excluded by putting vs → ∞. Considering the fact
that the phase velocity of the sound wave is much faster in the less compressible

water than in the more compressible atmosphere, this result can be acceptable.



122 Appendix A: Equations of state

It is also noted that the condition of isothermal variation is obtained from Eq.

(A.1) as T = const. Sometimes the anisotropic variation is considered. Such a case

is discussed in Refs. [10, 12].


