
Appendix B

Spectral theory

This chapter is devoted to the explanation of mathematical background of the spec-

tral theory. Spectral theory of linear operators is quite widely used in linear stabil-

ity or linear wave analyses in plasma physics. The mathematical basis is, however,

rarely quoted in literatures, which might lead to the improper understanding of the

complicated phenomena of plasmas.

The examples described here might be somewhat trivial, at least in mathematics.

However, detailed analyses of basic problems may sometimes help the physicists for

better understandings. First, we will review the spectral theory of finite dimensional

linear matrix operator, which has been completed due to the great works by Jordan.

Next, we will treat infinite dimensional differential operator, which is, in any sense,

far from complete theory unlike the finite dimensional one. Since whole part of this

thesis is devoted to the analyses of such infinite dimensional operators, we will focus

on the simple description here and explain the basis of well-known methods widely

used in literatures.

B.1 Finite dimensional operators

Let us first describe the complete classification of the finite dimensional operators.

The finite dimensional operators can be classified in a suitable way for the spectral

theory as follows;

1. Hermitian (selfadjoint) matrix

All eigenvectors can be taken orthogonal and all eigenvalues are real.

2. Normal matrix (commutable with its adjoint)

All eigenvectors can be taken orthogonal, but some eigenvalues are complex.
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Figure B.1: Classification of finite dimensional linear matrix operators.

3. Semi-simple matrix

Eigenvectors cannot be taken orthogonal, but linear space is spanned only by

eigenvectors.

4. Jordan matrix

Eigenvectors are not enough to span whole linear space.

The schematic view is shown in Fig. B.1. In general, any finite dimensional matrix

operator belongs to one of the above sets. We can recognize how small is the region

occupied by the Hermitian operators in the whole linear operators even in the finite

dimensional case. In some sense, there may expand rich varieties of unknown sea

out of Hermitian operators.

B.1.1 Spectral resolution of Hermitian matrices

Here we will discuss the solution of the abstract Schrödinger type evolution equation

i∂tψ = Aψ, (B.1)

where the generator A is assumed a Hermitian matrix defined in N ( ∈ N) dimen-

sional vector space V = CN . The definition of Hermitian matrix will be given later.

The scalar product for two elements φ,ψ ∈ V is defined as

(φ |ψ) =
N∑
j=1

φ̄jψj , (B.2)

where φj (ψj) denotes the j-th component of the vector φ (ψ). Then the vector

space V is found to be an N dimensional Hilbert space. Here, the bar denotes the

complex conjugate.
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An eigenvector ϕ of the matrix A is defined by a nonzero element of V which

satisfies

Aϕ = λϕ, (B.3)

where λ ∈ C is called the eigenvalue. Then, the zero vector and the totality of ϕ,

which belong to the eigenvector corresponding to the eigenvalue λ, are denoted as

W . This constitutes the A-invariant subspace of V . HereW is called an eigenspace

corresponding to the eigenvalue λ.

Adjoint matrix A∗ is a matrix which satisfies

(A∗φ |ψ) = (φ | Aψ), (B.4)

for any φ,ψ ∈ V . The A∗ is represented by the complex conjugate of the transposed

matrix. Hermitian (selfadjoint) matrix is the one which satisfiesA∗ = A. It is readily
shown that all eigenvalues of the Hermitian matrix are real.1 Moreover, it is known

that all eigenvectors can be taken orthogonal and the totality of eigenspaces span

the original vector space:

V =W 1 ⊕W 2 ⊕ · · · ⊕WN , (B.5)

where ⊕ denotes the direct orthogonal sum of the eigenspaces. It is noted that

normal matrices also allow the orthogonal decomposition of the vector space V by

their eigenvectors, however, the semi-simple matrices allow the decomposition

V =W 1 +̇W 2 +̇ · · · +̇WN , (B.6)

where +̇ denotes the simple direct sum in which eigenspaces may not be orthogonal.

The spectral resolution of the Hermitian matrix A will be described with use of
the commutability with its adjoint.2 Let Pn be the projection operator from V onto

W n, then it will be expressed as

Pn = ϕn(ϕn| · ), (B.7)

where ϕn ∈ V denotes the normalized eigenvector of the operator A which cor-

responds to the eigenvalue λn. Here the dimension of the eigenspace W n is as-

sumed as unity for simplicity. It is noted that Eq. (B.7) is sometimes expressed as

Pn = |ϕn)(ϕn| in the quantum mechanics context by following Dirac [8]. It is shown
that any Hermitian operator A will be expressed in terms of the projector as

A =
N∑

n=1

λnPn, (B.8)

1For any eigenvalue λ and the corresponding eigenvector ϕ, (ϕ | Aϕ) = λ(ϕ |ϕ) holds. On the
other hand, (ϕ | Aϕ) = (Aϕ |ϕ) = λ̄(ϕ |ϕ) also holds, which supports λ = λ̄.

2Therefore, the following orthogonal spectral resolution is applicable to more general normal
matrix which satisfies A∗A = AA∗.
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which is called a spectral resolution of the Hermitian matrix operator A. Here the
resolution of identity can be produced as

N∑
n=1

Pn = I, (B.9)

where I denotes the identity matrix, and the orthogonality of the projector

PiPj = 0 (i �= j) (B.10)

holds due to the orthogonality of the eigenvectors.

Based on the above knowledges, we can solve Eq. (B.1) by means of spectral res-

olution method. Substituting the spectral resolution (B.8) into original Schrödinger

type equation (B.1) leads to

i∂tψ =

N∑
n=1

λnPnψ

=
N∑

n=1

λnϕn(ϕn |ψ). (B.11)

Taking the scalar product of both sides with ϕi (i ∈ N) gives

i∂t(ϕi|ψ) = λi(ϕi|ψ), (B.12)

due to the orthogonality of eigenvectors. Equation (B.12) is readily solved and we

obtain the time evolution of each ‘mode’ as

(ϕi|ψ)(t) = e−iλit(ϕi|ψ)(0) (B.13)

Substituting it into resolution of ψ(t)

ψ(t) =
N∑

n=1

Pnψ(t)

=

N∑
n=1

ϕn(ϕn|ψ)(t), (B.14)

we obtain the general solution as

ψ(t) =
N∑

n=1

ϕne
−iλit(ϕi|ψ)(0). (B.15)

Since the whole linear vector space V is spanned by only eigenfunctions with real

eigenvalues for the Hermitian matrix A, the time evolution is written in the form of
the superposition of simple harmonic oscillators (eigenmodes).

It is noted that, up to semi-simple matrix, this method works with slight modi-

fications. The time evolution of the whole system is determined by the exponential

function with eigenvalues of the operator as its exponent, even though the orthogo-

nality of eigenmodes may not follow in the case of semi-simple matrix.
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B.1.2 Algebraic instability of Jordan matrices

In this section, the pathology of applying the spectral resolution for Jordan matrices

is shown. We will invoke here a different method from the previous section. Since

finite dimensional matrix operator is a bounded one, we can define the exponential

function of the operator as

eA = I +A+ 1

2!
A2 + · · · , (B.16)

where I denotes the identity matrix. It is shown that this expression gives a conver-
gent series. Using the exponential function of the matrix, we can write the solution

of the original Schrödinger equation (B.1) as

ψ(t) = e−itAψ(0). (B.17)

If A were a Hermitian (semi-simple) matrix, the linear space V would be spanned

by eigenvectors. Therefore, the expansion

e−itA = e−iλte−it(A−λI)

= e−iλt
[
I − it(A− λI)− t2

2
(A− λI)2 + · · ·

]
, (B.18)

applied for the component of the eigenspace corresponding to the eigenvalue λ, would

give no contribution except for the first term in the square bracket. It made the

problem possible to represent the whole dynamics of the system by the superposition

of exponential time evolution.

However, the eigenvectors are not enough, in general, to span the whole linear

space V for the Jordan matrix. Let ϕ be one of eigenvectors in a wider sense

belonging to the eigenvalue λ, and (A− λI)nϕ vanishes at first for n ∈ N (n > 1).

That is shown as

(A− λI)jϕ
{
�= 0 for j < n

= 0 for j ≥ n
. (B.19)

Suppose that the initial condition is taken as ϕ. From the expressions shown in

Eqs. (B.17) and (B.18), we have

ψ(t) = e−iλte−it(A−λI)ϕ

= e−iλt

n−1∑
j=0

(−it)j
j!

(A− λI)jϕ.

Thus, the fastest growing mode of the eigenvector in a wider sense belonging to the

eigenvalue λ shows divergence of the dependence t(n−1)e−iλt, which corresponds to

an instability even if the eigenvalue λ is real. The algebraic growth of amplitudes is

called ‘secularity.’
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B.2 Differential operator

In this section, we will show an example of spectral resolution for the differential

operator corresponding to Schrödinger equation, and compare two widely used meth-

ods for the spectral analysis, i.e. Fourier transformation and Laplace transformation.

Difficulties of constructing the complete spectral theory for differential operators are

coming from the infinity of their dimensions, which leads to the appearance of con-

tinuous spectra, and unboundedness of their spectra. However, we will not discuss

such difficulties in this section. For readers who are interested in such profound

problems, several mathematical books are useful [28, 11, 6]. It is also noted that the

following discussions may not follow with the terminology of modern mathematics.

B.2.1 Spectral resolution

First, we will consider the one dimensional Laplacian operator

A = ∂2
x, (B.20)

defined in the Sobolev space H1
0 [0, 1]. Here, H

1
0 [0, 1] denotes the set of the once dif-

ferentiable functions f(x) defined in the region x ∈ [0, 1] which satisfies the boundary
condition f(0) = f(1) = 0. The scalar product in this functional space is defined by

(u | v) =
∫ 1

0

ūv dx, (B.21)

for the elements u, v ∈ H1
0 [0, 1], where the bar denotes the complex conjugate. It

is readily shown that the operator A is Hermitian (selfadjoint) in this functional

space.

Since
d2

dx2
sin(nπx) = −(nπ)2 sin(nπx) (B.22)

holds, the eigenvalues of the operator A are

λn = −(nπ)2 (n ∈ N), (B.23)

and the corresponding normalized eigenfunctions are

un =
√
2 sin(nπx). (B.24)

It is known that this set of eigenfunctions un constitutes a complete orthogonal

basis in H1
0 [0, 1] with the scalar product (B.21). Therefore, an arbitrary function

φ ∈ H1
0 [0, 1] will be expanded as

φ(x) =

∞∑
n=1

anun(x), (B.25)
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where an is given by

an = (un |φ). (B.26)

It is noted here that the operator

Pn = |un)(un| = un(x)

∫ 1

0

un(x) · dx (B.27)

describes the projection from H1
0 [0, 1] onto the subspace spanned by |un) and the

spectral resolution of A is denoted as

A =
∞∑
n=1

λnPn, (B.28)

which shows the formal equivalence between the matrix representation and the dif-

ferential one in quantum mechanics [8, 22]. Furthermore,

∞∑
n=1

Pn = 1 (B.29)

is called the resolution of identity for the operator A, which is obtained from the

Parseval’s equality

‖φ‖2 =

∞∑
n=1

|(un |φ)|2, (B.30)

where ‖φ‖ = (φ |φ) denotes the norm of the element φ. The possibility of con-

structing the resolution of identity by means of eigenfunctions is guaranteed only

for Hermitian operators (von Neumann theorem). Although this resolution is not

always expressed by the summation — in general, the Hermitian operator of the

Hilbert space contains the continuous spectra, we have taken such a space for sim-

plicity. In the extension of the previous sections, it is quite natural to consider that

non-Hermitian operators may include eigenfunctions in a wider sense.

Based on the above knowledges, we can solve the following time evolution equa-

tion (Schrödinger equation for a free particle);

i∂tψ = ∂2
xψ, (B.31)

by means of the spectral resolution of the operator A. Expanding ψ by the eigen-
functions un of the operator A as

ψ(x, t) =

∞∑
n=1

an(t)un(x), (B.32)

and substituting it into Eq. (B.31), we have

∞∑
n=1

(i∂tan − λnan)un = 0. (B.33)
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Since un is orthogonal for different n, the equation can be decomposed into the one

for each ‘mode’ to give

i∂tan = λnan, (B.34)

which leads to the solution of each mode as

an(t) = an(0)e
−iλnt. (B.35)

Thus, the general solution for an arbitrary initial perturbation ψ(x, 0) can be ob-

tained as

ψ(x, t) =
∞∑
n=1

√
2an(0)e

in2π2t sin(nπx), (B.36)

where an(0) is obtained by

an(0) = (un |ψ(x, 0)). (B.37)

B.2.2 Fourier transformation

Let us solve the Schrödinger equation (B.31) by means of the Fourier transformation.

This method is intrinsically parallel to the spectral resolution.

Fourier transformation is formally defined as

ψ̂(k, ω) =

∫ 1

0

∫ ∞

−∞
ψ(x, t) e−i(kx−ωt) dt dx, (B.38)

where the inversion will be given by

ψ(x, t) =
1

2π

∑
k

∫ ∞

−∞
ψ̂(k, ω) ei(kx−ωt) dω, (B.39)

where the inversion with respect to k is expressed by the discrete summation since

we have taken the finite domain [0,1]. The wave number k is chosen as

k = nπ (n ∈ N). (B.40)

We will apply the Fourier transformation to the Schrödinger equation and obtain

(ω + k2)ψ̂(k, ω) = 0, (B.41)

which is readily solved for ψ̂ to give

ψ̂(k, ω) = δ(ω + k2). (B.42)

The relation

ω = −k2, (B.43)
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denoting the singularity of ψ̂, is called the ‘dispersion relation’ since only these

values which satisfy Eq. (B.43) will give the contribution when inverted.

The way of solving the initial value problem is described as follows. Since an

initial perturbation can be spatially Fourier transformed as

â(k) =

∫ 1

0

ψ(x, 0) e−ikx dx, (B.44)

the solution will be given by the superposition of singular eigenfunction ψ̂(k, ω)

multiplied by â(k), which leads to

ψ(x, t) =
∑
k

∫ −∞

∞
â(k)δ(ω + k2) ei(kx−ωt) dω

=

∞∑
n=1

ân exp[i(nπx+ n2π2t)], (B.45)

where we have defined ân = â(k) with the relation (B.40). This expression exactly

coincides with the solution obtained by the spectral resolution (B.36) by taking the

real part of Eq. (B.45).

It should be noted that the Fourier transformation in time corresponds to the

expression with whole superposition on the spectra, which now has a discrete sum

of projections onto point eigenvalues.

B.2.3 Laplace transformation

Here we will solve the same Schrödinger equation (B.31) with an another method,

i.e. Fourier transformation in space and Laplace transformation in time.

Fourier-Laplace transformation of the perturbed field is defined as

ψ̃(k, s) =

∫ 1

0

∫ ∞

0

ψ(x, t) e−ikx−st dt dx, (B.46)

where the real part of s is chosen to be larger than any temporal singularity of the

function ψ(t) for the convergence of the integration. The inversion will be given by

ψ(x, t) =
1

2πi

∑
k

∫ s0+i∞

s0−i∞
ψ̃(k, s) eikx+st ds, (B.47)

where s0 = Re(s) > 0 and k satisfies the condition (B.40).

The Fourier-Laplace transformation of the Schrödinger equation (B.31) gives

isψ̃ = −k2ψ̃ + iψ̄(k, 0), (B.48)
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which leads to

ψ̃(k, s) =
ψ̄(k, 0)

s− ik2
. (B.49)

Here ψ̄(k, 0) denotes the spatially Fourier transformed initial value

ψ̄(k, 0) =

∫ 1

0

ψ(x, 0) e−ikx dx. (B.50)

By inverting Eq. (B.49), we obtain

ψ(x, t) =
1

2πi

∑
k

∫ s0+i∞

s0−i∞

ψ̄(k, 0)

s− ik2
eikx+st ds,

=

∞∑
n=1

ψ̄(k, 0) exp[i(nπx+ n2π2t)], (B.51)

which again coincides with the previous two methods.

It is noted that the Laplace transformation method in time corresponds to the

expression with whole integration around the spectra, which is now rewritten by the

discrete sum of independent eigenmodes due to Cauchy’s integral theorem.


