
Appendix C

Electrostatic oscillations in an

unmagnetized plasma

C.1 Langmuir oscillation

Let us first derive the dispersion relation of plasma oscillations by means of the fluid

description. The governing equations for describing the one dimensional electrostatic

oscillation (electron plasma oscillation) in an cold unmagnetized plasma are

∂tn+ ∂x(nv) = 0, (C.1)

mn(∂tv + v∂xv) = qnE, (C.2)

ε0∂xE = qn. (C.3)

Assuming the static homogeneous background plasma and linearizing Eqs. (C.1)-

(C.3) for a plane wave with the dependence ei(kx−ωt) yields

−iωn1 + ikn0v1 = 0, (C.4)

−iωmv1 = qE1, (C.5)

ikε0E1 = qn1. (C.6)

Combining Eqs. (C.5) and (C.6), we obtain

v1 =
q2

ε0mωk
n1. (C.7)

Substituting Eq. (C.7) into Eq. (C.4) leads to the dispersion relation

ω = ±ωp = ±

√
n0q2

ε0m
, (C.8)

which is called a plasma oscillation.
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134 Appendix C: Electrostatic oscillations in an unmagnetized plasma

It is known that the dispersion effect appears due to the finite electron pressure.

Here we modify the equation of motion (C.2) as

mn(∂tv + v∂xv) = qnE − ∂xp, (C.9)

and add the adiabatic pressure equation

∂tp+ v∂xp+ γp∂xv = 0, (C.10)

as a closure of the fluid model. Linearizing these equations with the same plane

wave dependence ei(kx−ωt), we have

−iωmn0v1 = qn0E1 − ikp1, (C.11)

−iωp1 + ikγp0v1 = 0. (C.12)

Substituting Eq. (C.12) into Eq. (C.11) and using Eq. (C.6) leads to

v1 =
ωn0q

2

kε0(ω2mn0 − k2γp0)
n1. (C.13)

Plugging Eq. (C.13) into (C.4) yields the dispersion relation

ω2 = ω2
p + k2 γp0

mn0
,

= ω2
p + k2γT0

m
, (C.14)

where we have used the fact that the electron pressure can be expressed by p = nT .

Equation (C.14) explicitly shows the dispersion effect coming from the ∇p term in

the equation of motion coupled with the adiabatic pressure equation.

C.2 Vlasov-Poisson system

The governing equations for describing Landau damping of one dimensional electro-

static oscillation (electron plasma oscillation) are

∂tf + v∂xf +
qE

m
∂vf = 0, (C.15)

ε0∂xE = q

∫ +∞

−∞
f dv, (C.16)

where f denotes the particle distribution function defined in the phase space, E

the electric field, q and m the electric charge and mass of a particle (electron),

ε0 the vacuum susceptibility, respectively. Here x (v) denotes the coordinate space

(velocity space) variable. Let us assume here that the background plasma is spatially
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homogeneous and electrically neutral (E = 0). For linearizing Eqs. (C.15) and

(C.16), we can define a wave number k in the x direction. Combining these two

equations with eliminating electric field yields

∂tf1 + ikvf1 −
iq2

ε0mk
(∂vf0)

∫ +∞

−∞
f1 dv = 0, (C.17)

where the subscripts 0 and 1 denote the equilibrium and the perturbation of distri-

bution function, respectively. The distribution function f1 belongs to L
1(R) in the

velocity space. Hereafter, we will omit the subscript 1 for simplicity.

Defining the Laplace transformation of the perturbed fields as

ψ̃(s) =

∫ ∞

0

ψ(t) e−st dt, (C.18)

where the real part of s is chosen to be larger than any temporal singularity of the

function ψ(t) for the convergence of the integration. The inversion will be given by

ψ(t) =
1

2πi

∫ s0+i∞

s0−i∞
ψ̃(s) est ds, (C.19)

where s0 = Re(s) > 0.

Transforming Eq. (C.17) by multiplying e−st and integrating with respect to

time, we obtain

(s+ ikv)f̃ − iq2

ε0mk
(∂vf0)

∫ +∞

−∞
f̃ dv = f(v, t = 0). (C.20)

Let us try an another calculation for comparison which can be seen in the litera-

ture [12]. Transforming Eqs. (C.15) and (C.16) by multiplying e−st and integrating

with respect to time yield

(s+ ikv)f̃ +
q

m
Ẽ∂vf0 = f(0), (C.21)

ikε0Ẽ = q

∫ +∞

−∞
f̃ dv, (C.22)

where the subscript 0 denotes the equilibrium field. The perturbations are Laplace

transformed here. The initial condition for the electric field should be related with

the distribution function through Poisson equation at t = 0 as

ikε0E(0) = q

∫ +∞

−∞
f(v, 0) dv. (C.23)

Dividing Eq. (C.21) by (s− ikv) and plugging it into Eq. (C.22) lead to[
1 +

q2

ε0mk

∫ +∞

−∞

∂vf0

is− kv
dv

]
Ẽ =

q

ε0k

∫ +∞

−∞

f(0)

is− kv
dv. (C.24)
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The time evolution of the electric field can be obtained by inverting the Laplace

transformation expressed in Eq. (C.19). From Eq. (C.24), we formally obtain

E(t) =
1

2πi

∫ s0+i∞

s0−i∞

q

ε0k

∫ +∞

−∞

f(0)

is− kv
dv

1 +
q2

ε0mk

∫ +∞

−∞

∂vf0

is− kv
dv

est ds. (C.25)

C.3 Spectrum of operators in Vlasov-Poisson sys-

tem

The operator in the evolution equation (C.17) consists of two parts. In this subsec-

tion, we will discuss the properties of each part separately. The evolution equation

for the perturbed distribution function is written as

i∂tf = kvf −
ω2

p

k
(∂vf0)

∫ +∞

−∞
f dv, (C.26)

where we have normalized the equilibrium distribution function as

f0(v)→ n0f0(v). (C.27)

C.3.1 Ballistic response

The first operator kv is the multiplication operator which gives rise to continuous

spectrum on the whole real axis of λ, where λ is the spectrum of the operator defined

by

λf = kvf. (C.28)

The spectra given by this multiplication operator are continuous ones and their

generalized eigenfunctions are

f = δ(v − λ/k), (C.29)

where corresponding eigenvalues are

λ = kv. (C.30)

The initial value problem of the multiplication operator is readily solved as

f(v, t) = e−ikvtf(v, 0), (C.31)
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which is called the ballistic response of the plasma, since it describes the free stream-

ing of particles with keeping their memory of initial disturbances [19]. The distri-

bution function does not lose the initial memory f(v, 0), however, if we observe the

integrated physical quantities such as density, there appears continuum damping

given by

n(t) =

∫ ∞

−∞
f(v, t) dv

t→∞→ 0, (C.32)

due to Riemann-Lebesgue theorem [28].

C.3.2 Operator (∂vf0)
∫
· dv

Let us consider here the spectrum of the second operator (∂vf0)
∫
· dv in Eq. (C.26),

which denotes the combination of linear functional and multiplication. Since the

definite integral with respect to v and the multiplication of the function (∂vf0)(v)

does not commute, this operator is non-Hermitian. The spectral problem is written

as

λf = −
ω2

p

k
h(v)

∫ ∞

−∞
f dv, (C.33)

where we have introduced h(v) = ∂vf0. Since the definite integral gives just a

constant, it is clear that the eigenfunction is written as

f = ah(v), (C.34)

where a is assumed as a constant coefficient. The eigenvalue is proportional to the

integral of f . Suppose ∫ ∞

−∞
h(v) dv = c (C.35)

with a real number c, then we have the eigenvalue

λ = −
ω2

p

k
ac. (C.36)

For an equilibrium distribution function f0 which gives a finite c (positive or nega-

tive), the spectrum of this operator continuously occupies the whole real axis, and

all eigenfunctions are parallel and integrable. It is clear that such eigenfunctions

will not span any physical linear space. However, to complete it is so difficult that

we do not discuss how to solve this problem.

It seems strange that the eigenvalue depends on the magnitude of eigenfunction

itself. In a realistic situation, however, we have to choose f0(v) as a member of a

certain linear functional space, e.g. L1(R), thus∫ ∞

−∞
h(v) dv =

∫ ∞

−∞
∂vf0 dv (C.37)

= [f0(v)]
∞
−∞ (C.38)
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holds. Consequently, the eigenvalue becomes zero if we take integrable f0(v).

C.4 Cold plasma with f0(v) = n0δ(v)

Let us consider the cold electron plasma in this section by assuming

f0(v) = n0δ(v). (C.39)

In order to formulate the Hilbert space with following the discussion of Sec. 7.6, we

have to include δ′(v) term in f(v, t) as

f(v, t) = α(t)δ(v) + β(t)δ′(v) + ϕ(v, t). (C.40)

Here prime denotes the derivative with respect to its argument and ϕ(v, t) denotes

the continuous part of the perturbed distribution function, respectively. Then, the

Laplace transformed equation (C.20) will give for the continuous part,

(s+ ikv)ϕ̃(v, s) = ϕ(v, 0). (C.41)

There appear couplings between singular surface wave parts. Using the formula

vδ′(v) = −δ(v), we obtain
sα̃(s)− ikβ̃(s) = α(0) (C.42)

for the δ(v) component and

sβ̃(s)−
iω2

p

k
α̃(s)−

iω2
p

k

∫ ∞

−∞
ϕ̃(v, s) dv = β(0) (C.43)

for the δ′(v) component, respectively. Multiplying (iω2
p/k) on Eq. (C.42) and s on

Eq. (C.43), and adding each other, we obtain

(s2 + ω2
p)β̃(s)−

isω2
p

k

∫ ∞

−∞
ϕ̃(v, s) dv =

iω2
p

k
α(0) + sβ(0). (C.44)

From this equation,

β̃(s) =
1

(s− iωp)(s+ iωp)

[
iω2

p

k
α(0) + sβ(0) +

isω2
p

k

∫ ∞

−∞

ϕ(v, 0)

s+ ikv
dv

]
, (C.45)

is given, where we have used Eq. (C.41). It is noted that this system also contains

the resonance where the energy is transferred from the continuous spectrum to the

point spectrum (surface wave). Inverting this expression, we obtain

β(t) =
iωp

k
α(0) sin(ωpt) + β(0) cos(ωpt)

+
1

2πi

∫ s0+i∞

s0−i∞

isω2
p/k

(s− iωp)(s+ iωp)

∫ ∞

−∞

ϕ(v, 0)

s+ ikv
dv ds. (C.46)
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On the other hand, if we partially integrate the denominator of Eq. (C.25) as∫
∂vf0

is− kv
dv =

n0

k

∫
δ′(v)

v − (is/k) dv

=
n0

k

[
δ(v)

v − (is/k)

]+∞

−∞
+
n0

k

∫
δ(v)

[v − (is/k)]2 dv

= −n0k

s2
, (C.47)

then the denominator of Eq. (C.25) will have zeros for

1 +
q2

ε0mk

∫ +∞

−∞

∂vf0

is− kv
dv = 0. (C.48)

This gives

s± = ±iωp (C.49)

in the complex s-plane. In this case, we can formally rewrite E(t) by substituting

Eq. (C.47) into Eq. (C.25) as

E(t) =
1

2π

∫ s0+i∞

s0−i∞

s2est

(s− iωp)(s+ iωp)

q

ε0k

∫ +∞

−∞

f(0)

s+ ikv
dv ds. (C.50)

We consider the completely cold plasma by assuming

f(x, v, 0) = n̂1e
ikxδ(v), (C.51)

where n̂1 denotes the real number expressing the amplitude of the initial disturbance.

Then, the integration with respect to v is easily carried out,

E(t) =
n̂1e

ikx

2π

q

ε0k

∫ s0+i∞

s0−i∞

sest

(s− iωp)(s+ iωp)
ds. (C.52)

This expression gives the simple oscillation

E(t) =
iq

ε0k
n̂1e

ikx cos(ωpt) (C.53)

which exactly coincides with the analysis based on the fluid description.

On the other hand, if we introduce a finite temperature in the initial perturbation

as

f(x, v, 0) = n̂1e
ikxF (v), (C.54)

where F (v) denotes arbitrary analytic function. In this case, we can commute the

integration with respect to v and s in Eqs. (C.46) and (C.50), and obtain the formal

resonance which corresponds to the second order pole where

v = ±ωp

k
, (C.55)

is satisfied. By performing the integration with respect to s, we may be able to

write the explicit form which only contains the integration with respect to v.
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C.5 General continuous profile f0(v)

In the case where f0(v) is a continuous function, van Kampen [90] and Case [49] have

found the complete set of eigenfunctions. According to these references, all eigen-

values are real continuous ones in the case of Maxwellian equilibrium distribution,

although the system may contain some complex point spectra in general. Construc-

tion of the propagator semi-group for the Vlasov-Poisson generator including such

general distribution functions is discussed in Ref. [58]. Since the non-Hermitian

operator (∂vf0)
∫
· dv gives fairly close effect to the inhomogeneous terms with its

rank unity, they could have found those eigenfunctions by introducing the normal-

ization of f in a tricky way. It is concluded that Landau’s exponential damping for

Maxwellian distribution function f0(v) does not denote a spectra of the operator,

but just a consequence of the phase mixing damping due to the superposition of the

continuous spectra.

It is pointed out by Weitzner [148, 149] that the Landau’s prescription of taking

a detour at the pole is not appropriate in general even though phase mixing will

surely cause sometimes non-exponential Landau damping [in the sense of Eq. (C.32)].

However, it is experimentally confirmed to be exponential [102]. There might be

something which we do not understand yet. It is also noted that a spatially inhomo-

geneous density profile will give rise to another continuous spectra in the coordinate

space [39, 117].


