
Chapter 2

Single fluid

magnetohydrodynamics

2.1 Magnetohydrodynamic equations

At first, we will introduce non-relativistic, single fluid, ideal magnetohydrodynamic

(MHD) equations in SI units. Their derivation and validity are given in many books

(see for example, Refs. [1, 3, 10, 19, 23]). Continuity equation and equation of

motion are written as

∂tρ+∇ · (ρv) = 0, (2.1)

ρ(∂tv + v · ∇v) = j ×B −∇p, (2.2)

where ρ, v, j, B and p are fluid mass density, velocity, current density, magnetic field

and pressure, respectively. Since the time scale of plasma dynamics is considerably

faster than the heat conduction, we may assume that the each fluid element is

insulated against heat exchange with its surroundings and locally in thermodynamic

equilibrium. Consider the plasma as an ideal gas which follows the thermodynamical

equation of state p = nT , where n and T denote the particle number density and

the temperature in units of energy (J), respectively. Then the time evolution of

pressure is shown as,

∂tp+ v · ∇p + γp∇ · v = 0, (2.3)

where γ denotes the specific heat ratio. It is noted that, when we do not treat the

plasma as an ideal gas, e.g. incompressible fluid, we need another equation of state.

These set of equations describe the dynamics of the plasma. We do not consider

non-ideal kinetic effects including viscosity or resistivity of the plasma in this thesis.

For the magnetic field B and the electric field E, we use the Maxwell equations.
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6 Chapter 2: Single fluid MHD

One of them is Faraday’s law,

∇×E = −∂tB, (2.4)

and another is Ampère’s law,

∇×B = µ0j

(
+
1

c2
∂tE

)
, (2.5)

where µ0 is the vacuum permeability, and c is the speed of the light, respectively.

Here we note that Maxwell’s displacement current (in the bracket) will often be

neglected due to the smallness of its correction on MHD dynamics in non-relativistic

regime. It is also related to the Galilei invariance of the equations, which we discuss

in the next section. Since the plasma is assumed to be a perfectly conducting

medium, the plasma resistivity is neglected and Ohm’s law becomes

E + v ×B = 0, (2.6)

which merely implies that the electric field will not appear in the rest frame of the

plasma.

These equations consist a closed set of ideal MHD: i.e. for fourteen independent

variables ρ, v, j, B, p and E, we have fourteen independent equations. In MHD

equations, the Gauss’ law for the electric field is not necessary since each fluid

element is considered to be neutralized and charge separation is not treated. It

is also noted that the Gauss’ law for the magnetic field is considered as an initial

condition. If it is initially satisfied, it will be kept forever as we can see by taking

the divergence of Eq. (2.4)1.

For later applications, let us further manipulate the above equations. Substitut-

ing Ohm’s law (2.6) into Faraday’s law (2.4) leads to the magnetic field induction

equation

∂tB −∇× (v ×B) = 0, (2.7)

which enables us to eliminate the electric field from the governing equations. More-

over, by substituting Ampère’s law (2.5) into the equation of motion (2.2), we can

eliminate the plasma current from governing equations as

ρ(∂tv + v · ∇v) =
1

µ0

(∇×B)×B −∇p, (2.8)

where we have neglected the displacement current in Ampère’s law.

1In two fluid theory, the former Gauss’ law can be also understood as an initial condition. It is
shown by taking the divergence of Eq. (2.5), denoting the electric charge as σ = e(Zni − ne), and
using continuity equations for electrons and ions.
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In summary, the single fluid MHD equations are shown as

∂tρ+∇ · (ρv) = 0, (2.9)

∂tv + v · ∇v =
1

µ0ρ
B · ∇B − 1

ρ
∇
(
p+

B2

2µ0

)
, (2.10)

∂tp+ v · ∇p+ γp∇ · v = 0, (2.11)

∂tB + v · ∇B = −B(∇ · v) +B · ∇v. (2.12)

There are eight independent variables ρ, v, B, and p, and corresponding eight

independent evolution equations.

It is noted that the ideal MHD system has no characteristic scale length in

general. They have two characteristic velocities, namely the Alfvén velocity and

the sound velocity; however, there is no other typical scale. By taking any spatial

scale with proportional to the time scale, we can write the equations into normalized

form in any size. However, if we introduce a certain non-ideal effect, this property

will be broken. For example, the Hall MHD system and the resistive MHD system

contain the ion cyclotron frequency and the resistive diffusion time, respectively.

They introduce the characteristic spatial scale when combined with the velocity

one, namely the ion skin depth and the resistive skin depth.

2.2 Galilei invariance of Maxwell equations

Galilean transformation is defined as a small velocity limit of the Lorentz transfor-

mation [5]. It is clear that the non-relativistic fluid equations are Galilei invariant.

However, the knowledge of relativity theory [25] is useful to show how the electro-

magnetic fields will be Galilean transformed. The Lorentz transformations of the

electromagnetic fields in Gaussian units are given in Ref. [20]. Transformations of

those expressions from Gaussian units to SI units can be done by means of the table

in Ref. [17].

Let the inertial system K∗ be moving with the relative velocity V with respect

to the reference frame K. Then, the electromagnetic fields in the system K∗ will be

expressed in terms of that in the system K as

E∗
⊥ = Γ (E⊥ + V ×B⊥) (2.13)

B∗
⊥ = Γ

(
B⊥ −

1

c2
V ×E⊥

)
, (2.14)

where ⊥ denotes the direction perpendicular to the relative velocity V between

two systems. The parallel component of the field will not be changed. Here Γ =

(1−V 2/c2)−1/2 denotes the Lorentz factor. Charge density σ will be combined with
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the current density j to give a four-vector, therefore, they will be transformed as

σ∗ = Γ
(
σ − 1

c2
j · V

)
(2.15)

j∗ = Γ (j − σV ). (2.16)

Of course, this combination of the transformation will not change Maxwell equations

(including displacement current). With the relativistic equation of motion, they

constitute the Lorentz invariant set of governing equations.

If we take the limit |V /c| � 1, we obtain the following set of Galilean transfor-

mation relationships;

E∗ = E + V ×B, (2.17)

B∗ = B, (2.18)

σ∗ = σ, (2.19)

j∗ = j − σV . (2.20)

In the single fluid MHD equations, however, we have no charge separation which

always give σ = 0 in the non-relativistic limit. Therefore, the current density will not

be changed by the Galilean transformation. From these relations, it is readily shown

that the pre-Maxwell equations (without displacement current) will not change their

forms by the Galilean transformations (2.17)-(2.20). Thus, it is justified that the

displacement current is neglected in the non-relativistic MHD model.

2.3 Conservation of energy

2.3.1 Nonlinear form

We will review the energy conservation relation and consider the effect of neglecting

the displacement current again. Taking the scalar product of Eq. (2.2) with v, the

left hand side leads to

ρv · (∂tv + v · ∇v) = ρ∂t

(1
2
v2

)
+ ρv · (v · ∇v) + v2

2
[∂tρ+∇ · (ρv)]

= ∂t

(1
2
ρv2

)
+∇ ·

(1
2
ρv2v

)
. (2.21)

Here, in the first equality, we have added the left hand side of continuity equation

Eq. (2.1) multiplied by v2/2. In the second equality, we have used the vector relation

v ·∇v = ∇(v2/2)−v× (∇×v). The second term of the right hand side of Eq. (2.2)
will be evaluated as

v · ∇p = 1

γ − 1∂tp+
γ

γ − 1∇ · (pv), (2.22)
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with the adiabatic equation of state (2.3).

The first term of the right hand side of Eq. (2.2) will be evaluated by means of

Maxwell equations. By taking scalar products of Eq. (2.4) with B/µ0 and Eq. (2.5)

with ε0E and adding each other, we obtain

∂t

[(ε0
2
E2

)
+

1

2µ0
B2

]
= − 1

µ0
∇ · (E ×B)− j ·E, (2.23)

where the first term of the right hand side denotes the Poynting vector, and the

second term denotes Joule heat. The first term in the right hand side of equation

of motion (2.2), therefore, will give

v · (j ×B) = −j · (v ×B) = j ·E

= −∂t
[(ε0
2
E2

)
+

1

2µ0
B2

]
− 1

µ0
∇ · (E ×B), (2.24)

where we have used Ohm’s law (2.6) in the second equality, and Eq. (2.23) in the

last.

Adding up equalities (2.21), (2.22), and (2.24), we obtain the following local

energy conservation relation:

∂t

[1
2
ρv2 +

1

γ − 1p+
(ε0
2
E2

)
+

1

2µ0
B2

]
= −∇ ·

[1
2
ρv2v +

1

µ0

E ×B +
γ

γ − 1pv
]
, (2.25)

where the round bracket denotes the contribution of the displacement current. It

is noted that the neglect of the displacement current leads to the exclusion of elec-

tric field energy from the conservation law. This may explain why the governing

equations without displacement current are called ‘magnetofluid’ or ‘magnetohydro-

dynamic’ system of equations.

2.3.2 Linearized form and energy principle for static equi-

libria

Firstly, the physical quantities are divided into the equilibrium and the perturbation

parts as

ψ = ψ0 + ψ1, (2.26)

where subscripts 0 and 1 denote the equilibrium and perturbed quantities, respec-

tively. Magnetohydrodynamic equilibria are defined by stationary class of solutions

of the governing equations given by ∂t = 0. These are expressed by the solutions of
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equations:

∇ · (ρ0v0) = 0, (2.27)

ρ0v0 · ∇v0 = j0 ×B0 −∇p0, (2.28)

v0 · ∇p0 + γp0∇ · v0 = 0, (2.29)

∇× (v0 ×B0) = 0, (2.30)

∇×B0 = µ0j0. (2.31)

It is noted that the magnetic field must also satisfy the divergence free condition

(∇·B0 = 0). In the case of static (v0 = 0) plasma, they can be very much simplified

and give

j0 ×B0 = ∇p0, (2.32)

which reduces to Grad-Shafranov equation in the toroidal axisymmetric case. Gen-

eral analyses of the equilibria with flows become a very profound problems even in

the two dimensional case (see e.g. Ref. [31]); however, it is not the subject of this

thesis. Later, we will discuss the linear spectral analyses for only simplified one

dimensional model equilibria which satisfy the above equations almost trivially.

Suppose that such a static (v0 = 0) equilibrium is obtained, and let us introduce

the displacement vector ξ for describing perturbations by

∂tξ(x, t) = v1(x, t), ξ(x, 0) = 0. (2.33)

Then, we can derive the evolution equation for ξ as

∂2
t ξ = Fξ

=
1

ρ0

[
∇(γp0∇ · ξ + ξ · ∇p0)

+
1

µ0
(∇×B0)× [∇× (ξ ×B0)]

+
1

µ0

[∇× (∇× (ξ ×B0))]×B0

]
. (2.34)

After some tedious manipulations, it can be shown that the force operator F is

Hermitian [10, 21] with respect to the scalar product

〈η | ξ〉 ≡ 1

2

∫
Ω

ρ0η̄ · ξ dV, (2.35)

where the bar denotes the complex conjugate, and Ω denotes the plasma volume

surrounded by a perfectly conducting wall. It is noted that this scalar product leads

to the energy norm which plays a very important role in the later sections.
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Hermiticity of the force operator F allows us to apply the spectral resolution

due to von Neumann theorem [28]. Moreover, we can show the conservation of the

perturbed energy

W =
1

2

∫
Ω

ρ0

(
|∂tξ|2 − ξ̄ · Fξ

)
dV, (2.36)

by multiplying ∂tξ̄ on both sides of Eq. (2.34), ∂tξ on that of the complex conjugate

of Eq. (2.34), and adding each side of equations. The conservation of W may also

be shown with the triangular bracket defined by Eq. (2.35) as

dW

dt
=
d

dt
(〈∂tξ | ∂tξ〉 − 〈ξ | Fξ〉)

= 〈∂2
t ξ | ∂tξ〉+ 〈∂tξ | ∂2

t ξ〉 − 〈∂tξ | Fξ〉 − 〈ξ | F∂tξ〉
= 〈∂2

t ξ − Fξ | ∂tξ〉+ 〈∂tξ | ∂2
t ξ −Fξ〉

= 0, (2.37)

where we have used the Hermiticity of the force operator F in the third equality.

Another important consequence of the Hermiticity is the energy principle [40, 96,

10, 21] which describes the necessary and sufficient condition for the MHD stability

of static equilibria;

δW (ξ, ξ) ≡ −〈ξ | Fξ〉 ≥ 0 (for any ξ) ←→ stable. (2.38)

However, it is noted that the Hermiticity does not hold for shear flow plasmas as

well as neutral fluids. Thus, these advantages for the linear stability theory will be

lost in shear flow systems.

2.4 Magnetohydrodynamic waves in homogeneous

plasmas

Let us review the small amplitude waves in the ideal MHD system for homogeneous

plasmas. If the plasma is flowing with a homogeneous velocity, it generates just a

uniform Doppler shift of wave frequencies. Thus, we consider static plasma here

without loss of generality. Consider the equilibrium magnetic field to be in the z

direction of the Cartesian coordinates as

B0 = (0, 0, B0z). (2.39)

Physical quantities are linearized with respect to perturbations as

ψ = ψ0 + ψ1, (2.40)
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where subscripts 0 and 1 denote the equilibrium and perturbed quantities, respec-

tively. Assume ei(k·x−ωt) dependence for perturbed fields, where k = (0, k⊥, k‖) in

the Cartesian coordinates. Then, Eqs. (2.9)-(2.12) will be combined and written

after linearization as

−iω



ρ

p

vx

vy

vz

Bx

By

Bz


= A



ρ

p

vx

vy

vz

Bx

By

Bz


, (2.41)

where the matrix A is given by

A =



0 0 0 ik⊥ρ0 ik‖ρ0 0 0 0

0 0 0 −ik⊥γp0 −ik‖γp0 0 0 0

0 0 0 0 0
ik‖B0z

µ0ρ0
0 0

0 − ik⊥
ρ0

0 0 0 0
ik‖B0z

µ0ρ0
− ik⊥B0z

µ0ρ0

0 − ik‖
ρ0

0 0 0 0 0 0

0 0 ik‖B0z 0 0 0 0 0

0 0 0 ik‖B0z 0 0 0 0

0 0 0 −ik⊥B0z 0 0 0 0


. (2.42)

Here, we have omitted the subscript 1 denoting perturbed quantities for simplicity.

The matrix A may not seem to be anti-Hermitian due to the asymmetry of the

components A14,15 and A41,51, however, it can be removable due to the vacancy

of the first column. It is also noted that the first and the second row is parallel

with each other. Physically it means that the time evolution equations which show

the continuity and the adiabatic state are not purely independent. One of the two

equations (and thus, one of two physical quantities, namely density or pressure) can

be removable from the system by means of the relation

p = c2sρ
γ, (2.43)

where cs denotes the local phase velocity of the sound wave. After the reduction of

the physical quantities, we can transform the matrix A into anti-Hermitian one by

introducing the appropriate normalizations. Reduced 7 × 7 anti-Hermitian matrix
contains the seven orthogonal eigenvectors and the corresponding eigenvalues. All

eigenvalues of the anti-Hermitian matrix give pure imaginary numbers, namely real

ω’s. Thus, there are seven types of small amplitude waves in the ideal MHD system.
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Alfvén waves Since the vx and Bx components can be easily decoupled from

others in Eq. (2.41), we can readily obtain the Alfvén wave dispersion relation as

ω = ±k‖vA, (2.44)

where the corresponding eigenvectors are written as

(vx, Bx) = (∓1,
√
µ0ρ0), ρ = p = vy = vz = By = Bz = 0. (2.45)

Here the phase velocity of the Alfvén wave is introduced as vA = B0z/
√
µ0ρ0. It

is noted that, since k · v = 0, Alfvén wave shows an incompressible transverse

perturbation of the plasma element.

Entropy wave and Magnetosonic waves The remaining five waves satisfy the

following eigenvalue problem:

−iω


p

vy

vz

By

Bz

 =


0 −ik⊥γp0 −ik‖γp0 0 0

− ik⊥
ρ0

0 0
ik‖B0z

µ0ρ0
− ik⊥B0z

µ0ρ0

− ik‖
ρ0

0 0 0 0

0 ik‖B0z 0 0 0

0 −ik⊥B0z 0 0 0




p

vy

vz

By

Bz

 . (2.46)

The eigenvalues are obtained by means of the sweeping-out method, which leads to

the dispersion relation

ω[ω4 − k2(v2
A + v2

s )ω
2 + k2k2

‖v
2
Av

2
s ] = 0, (2.47)

where vs =
√
γp0/ρ0 denotes the phase velocity of the sound wave. Thus, it is found

that there are an entropy wave which satisfies

ω = 0, (2.48)

and magnetosonic waves which satisfy

ω2 =
1

2

[
k2(v2

A + v2
s )±

√
k4(v2

A + v2
s )

2 − 4k2k2
‖v

2
Av

2
s

]
. (2.49)

Here, two of the magnetosonic waves (+ sign) denote fast waves and the other two

(− sign) denote slow waves, respectively, and k2 = k2
⊥ + k2

‖.

In the case of k‖ = 0 in Eq. (2.47), we obtain the following eigenvalues

ω = 0, (2.50)

ω = 0, (2.51)

ω = ±k⊥
√
v2
A + v2

s , (2.52)
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and the corresponding eigenvectors

ρ �= 0, p �= 0, Bz �= 0, vx = vy = vz = Bx = By = 0, (2.53)

vz �= 0, By �= 0, ρ = p = vx = vy = Bx = Bz = 0, (2.54)

ρ �= 0, p �= 0, vy �= 0, Bz �= 0, vx = vz = Bx = By = 0, (2.55)

respectively. It is noted that the slow waves are degenerated here to give zero

eigenvalues. The fast waves are reduced to a couple of oppositely propagating com-

pressional Alfvén waves.

By putting k⊥ = 0 in Eq. (2.47), we can decouple two magnetosonic waves and

the eigenvalues become

ω = 0, (2.56)

ω = ±k‖vs, (2.57)

ω = ±k‖vA, (2.58)

where the corresponding eigenvectors are shown as

Bz �= 0, ρ = p = vx = vy = vz = Bx = By = 0, (2.59)

ρ �= 0, p �= 0, vz �= 0, vx = vy = Bx = By = Bz = 0, (2.60)

vy �= 0, By �= 0, ρ = p = vx = vz = Bx = Bz = 0, (2.61)

respectively. In this case, the slow waves reduce to the sound waves which propagate

with the same mechanism in neutral fluids. It is noted that the sound waves do not

carry any electric field (E‖ = 0) in the description of single fluid MHD equations.
2

The fast waves reduce to the degenerated shear Alfvén waves whose eigenvalues and

eigenvectors are same as Eqs. (2.44) and (2.45), since x and y directions are not

distinguishable in this situation.

In general, the magnetosonic wave accompanies compression of the plasma,

k · v �= 0. This means that these two branches will be excluded from the sys-

tem by assuming incompressibility on the perturbed velocity. However, as will be

discussed in Sec. 4.3, we should be careful for an additional condition on the original

MHD system. Actually, incompressibility is consistent with the adiabatic pressure

equation only in the limit γ →∞ in the way that

γ(∇ · v)→ −1
p

dp

dt
. (2.62)

The limit γ →∞ corresponds to the situation that the sound wave will be excluded

from the system with vs → ∞. For the mathematical discussions, see Ref. [116]
and the references therein. The problem encountered in the determination of the

pressure for the incompressible fluid is also discussed in Ref. [93].
2On the contrary, in the two fluid theory, electric field plays a role in the propagation of ion

sound waves.
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2.5 Linearized one dimensional reduced magneto-

hydrodynamic equations

In this section, we will consider the linearized one dimensional reduced magnetohy-

drodynamic (RMHD) equations for a low beta static plasma. The first simplification

was done by Strauss [123].

2.5.1 Derivation

Here we will simplify the derivation without discussing the detailed physical situa-

tions. It is noted that the MHD equilibria are described as

j0 ×B0 = ∇p0, (2.63)

where the plasma current density is taken j0 = j0ez with ez denoting the unit vector

in the z direction, and the strong magnetic field is applied in the z direction.

Under the above situation, we may assume that the perturbation fields come

from two dimensional incompressible motions and are written as

v1 = ∇φ× ez, B1 = ∇ψ × ez. (2.64)

Here, φ and ψ denote the stream function and the flux function, respectively. By

assuming ρ = ρ0 = const, the continuity equation becomes a trivial relation. It

is noted that the incompressibility is a valuable relation to assume for the sim-

ple description of (magneto)fluids, however, such a simplification sometimes spoils

physical consistency. Therefore, we have to be careful for introducing additional

constraints. The consistency of the incompressibility assumption is discussed in the

Appendix A and Sec. 4.3.

Taking the curl of the equation of motion (2.10) gives the vorticity evolution

equation;

ρ0∂t(∇× v1) = B0 · ∇j1 +B1 · ∇j0 − j0 · ∇B1 − j1 · ∇B0. (2.65)

Here, the third and the last terms in the right hand side can be omitted when we

take the z component of the vorticity equation. It is because the spatial variation of

the z component in equilibrium and perturbed magnetic fields are negligible under

the application of strong magnetic field B0z. By substituting Eq. (2.64), we can

rewrite Eq. (2.65) in terms of stream function φ and flux function ψ as

∂t∆φ =
1

µ0ρ0
B0 · ∇∆ψ +

1

ρ0
(∇j0 × ez) · ∇ψ, (2.66)



16 Chapter 2: Single fluid MHD

where ∆ = ∂2
x + ∂2

y denotes the two dimensional Laplacian operator in the perpen-

dicular direction of the ambient strong magnetic field (z direction).

Let us now formulate the induction equation. It is noted that the right hand

side of the induction equation (2.7) can be manipulated to give

∇× (v1 ×B0) = ∇× [(∇φ× ez)×B0]

= ∇× [(B0 · ∇φ)ez], (2.67)

where we have assumed that the axial equilibrium magnetic field is homogeneous.

Moreover, by using the relation ∇ψ × ez = ∇× (ψez), Eq. (2.7) leads to

∂t[∇× (ψez)] = ∇× [(B0 · ∇φ)ez]. (2.68)

If we omit the curl operator on both sides of this equation, we obtain

∂tψ = B0 · ∇φ, (2.69)

where it is shown in Ref. [123] that the arbitrariness of the gradient field may be

neglected due to the ambient strong magnetic field B0z.

The somewhat different formalisms which lead to three fields evolution equations

are seen for high beta tokamaks [124] or stellarators [125, 27, 32]. The latter will be

used in the analysis in Chap. 3.

2.5.2 Hermiticity of Alfvén operator

Here we discuss the formal Hermiticity of the Alfvén operator embedded in the

energy norm. First we introduce the matrix representation of the linearized RMHD

equations (2.66) and (2.69). Let B, a, and τA = a
√
µ0ρ0/B be the characteristic

magnetic field strength, scale length, and time scale, respectively. Then the physical

quantities are normalized as

φ→ a2

τA
φ, ψ → aBψ, B0 → BB, j0 →

B

aµ0
j. (2.70)

With a state vector u = T (∆φ, ψ), the evolution equations (2.66) and (2.69) are

combined and written in the operator matrix form as

∂tu = Au, (2.71)

where the operator matrix A is defined as

A =
(

0 B · ∇∆+∇j × ez · ∇
B · ∇∆−1 0

)
, (2.72)

and the superscript T denotes the transpose of the matrix.
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Magnetic derivative operator Let φ and φ∗ be two scalar functions defined in

the plasma domain Ω satisfying the boundary condition

φ = 0, φ∗ = 0 on ∂Ω. (2.73)

Then, it is readily shown that the magnetic derivative operator B · ∇ is anti-

Hermitian with the simple norm

(φ |φ∗) =

∫
φ̄φ∗ dV (2.74)

according to the equality

(φ̄B) · ∇φ∗ = ∇ · (φ̄φ∗B)− [∇ · (φ̄B)]φ∗

= ∇ · (φ̄φ∗B)− (B · ∇φ̄)φ∗,

which comes from Gauss’ law ∇ ·B = 0. It reads as

(φ |B · ∇φ∗) = −(B · ∇φ |φ∗). (2.75)

Norm of state vector u It is clear that Hermiticity condition is not obtained

with the simple norm defined by Eq. (2.74) for the state vector u. We will introduce

a ‘modified norm’ here. Let u = T (∆φ, ψ) and u∗ = T (∆φ∗, ψ∗) be two state vectors.

By taking the metric as

M =

(
−∆−1 0

0 −∆

)
, (2.76)

we can define the formal scalar product as

〈u | u∗〉 ≡ (∆φ | −∆−1 |∆φ∗) + (ψ | −∆ |ψ∗), (2.77)

where ( | ) denotes the simple norm defined by Eq. (2.74). Physically, it is shown

that this metric gives the bilinear form corresponding to perturbed energy as

〈u | u〉 =
∫
∆φ̄(−∆−1)∆φ+ ψ̄(−∆)ψ dV (2.78)

=

∫
|∇φ|2 + |∇ψ|2 dV, (2.79)

where we have omitted the factor 1/2 for simplicity.

Anti-Hermiticity of A with homogeneous B Firstly, we will assume here that

the magnetic field is spatially homogeneous. In this case, the current density j is

eliminated and A becomes

Ah =

(
0 B · ∇∆

B · ∇∆−1 0

)
. (2.80)
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By taking two state vectors u and u∗ as before, we can show the anti-Hermiticity in

the matrix form after careful calculations;

〈u | Ahu
∗〉 ≡

∫
(∆φ̄, ψ̄)MAh

(
∆φ∗

ψ∗

)
dV

= −
∫
(∆φ̄, ψ̄)

(
0 ∆−1B · ∇∆

∆B · ∇∆−1 0

)(
∆φ∗

ψ∗

)
dV

= −
∫
(∆φ̄)(∆−1B · ∇∆ψ∗) + ψ̄(∆B · ∇φ∗) dV

= −
∫
(B · ∇∆−1∆φ̄)(−∆)(ψ∗) + (B · ∇∆ψ̄)(−∆−1)(∆φ∗) dV

=

∫
T

{(
0 −B · ∇∆

−B · ∇∆−1 0

)(
∆φ̄

ψ̄

)}

×
(
−∆−1 0

0 −∆

)(
∆φ∗

ψ∗

)
dV

= −〈Ahu | u∗〉, (2.81)

where we have used the Hermiticity and anti-Hermiticity of the operator ∆ and

B ·∇ with the simple norm, respectively. Since all eigenvalues of the anti-Hermitian
operator are pure imaginary, the time evolution of A will give the simple oscillatory
behavior representing the Alfvén wave. However, it is difficult to check the Her-

miticity for the operator matrix form in the case of inhomogeneous magnetic field.

The reason is the existence of kink instability.

Hermiticity of unified scalar Alfvén operator Let us consider then the unified

scalar Alfvén operator. Combining Eqs. (2.66) and (2.69), we can write the unified

equation for the vorticity ∆φ as

∂2
t∆φ = B · ∇∆B · ∇∆−1(∆φ) + (∇j × ez) · ∇B · ∇∆−1(∆φ). (2.82)

If we just consider the operator

B · ∇∆B · ∇+ (∇j × ez) · ∇B · ∇ (2.83)

for the stream function φ with the simple norm (2.74), it seems Hermitian because

the second term yields a multiplication operator for the one dimensional MHD equi-

librium. However, since Eq. (2.82) is an evolution equation for the vorticity, we

should consider the following generator

Au = B · ∇∆B · ∇∆−1 + (∇j × ez) · ∇B · ∇∆−1, (2.84)

for the vorticity, and we should take the energy norm as discussed in the previous

paragraph. We just consider the one dimensional MHD equilibrium and take B in
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the yz (θz) plane depending only on x (r) in the Cartesian (cylindrical) coordinates.

Then, the operator (∇j × ez) · ∇B · ∇ reduces to a multiplication operator with

wave numbers in y and z (θ and z) directions. By introducing

f(x) = (∇j × ez) · ∇B · ∇. (2.85)

we may simplify the expression of the generator as

Au = B · ∇∆B · ∇∆−1 + f(x)∆−1. (2.86)

With the energy norm by following Eq. (2.77) as

〈∆φ |∆φ∗〉 = (∆φ | −∆−1 |∆φ∗), (2.87)

where ( | ) denoting the simple norm (2.74), the Hermiticity of the operator Au is

shown as

〈∆φ | Au∆φ
∗〉 = −(∆φ |∆−1B · ∇∆B · ∇∆−1∆φ∗)− (∆φ |∆−1f(x)∆−1∆φ∗)

= (B · ∇∆B · ∇∆−1∆φ | −∆−1 |∆φ∗)

+ (f(x)∆−1∆φ | −∆−1 |∆φ∗)

= 〈Au∆φ |∆φ∗〉. (2.88)

Here we have used the Hermiticity and anti-Hermiticity of the operators ∆ andB ·∇
with the simple norm, respectively.

2.6 Spectra of Alfvén waves in static equilibria

A complete spectral ordinary differential equation for studying MHD perturbations

in a static cylindrical plasma (general screw pinch) is derived by Hain and Lüst [76].

Instead of Hain-Lüst equation, we will treat a simpler equation under the assumption

of incompressibility. The spectral properties of the Alfvén wave are focused on in

the slab geometry (Sec. 2.6.1) and in the cylindrical geometry (Sec. 2.6.2). We will

start from the unified scalar Alfvén equation (2.82) without normalization;

∂2
t∆φ =

1

µ0ρ
B · ∇∆B · ∇φ+ 1

ρ
(∇j × ez) · ∇B · ∇φ, (2.89)

where we have omitted the subscript 0 denoting the equilibrium quantities. The

assumptions which we have imposed here are the incompressibility

∇ · v = 0 (2.90)

of the ideal MHD plasma instead of the adiabatic equation of state (2.3), and the one

dimensionality of the static equilibrium. The variation of the equilibrium quantities

are taken in the x (r) direction of the Cartesian (cylindrical) coordinate system.
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2.6.1 Slab geometry — continuous spectra —

The equilibrium magnetic field is assumed as

B = (0, By(x), Bz), (2.91)

with Bz = const in the Cartesian coordinates. From the homogeneity of the equi-

librium quantities in the y and z directions, the wave numbers in both directions

become good quantum numbers and we take k = (0, ky, kz). Since the generator is

Hermitian as shown in Sec. 2.5.2, we may consider the eigenvalue λ of the generator

with replacing ∂t by −iω (λ = −ω2). Then, Eq. (2.89) gives

−ω2
( d2

dx2
− k2

y

)
φ = − F

µ0ρ

( d2

dx2
− k2

y

)
Fφ+

1

µ0ρ

d2F

dx2
Fφ, (2.92)

where we have defined F (x) = k ·B(x). After some manipulations, we obtain the
following eigenmode equation;

d

dx

[
(ω2 − ω2

A)
dφ

dx

]
− k2

y(ω
2 − ω2

A)φ = 0, (2.93)

where ωA(x) = F (x)/
√
µ0ρ.

The singular solution of the spectral equation (2.93) can be obtained as follows.

Since Eq. (2.93) is a Sturmian equation, it should not have any singular solution

except the Alfvén resonance (ω2 − ω2
A = 0). Suppose that ω

2 − ω2
A(x) has the zero

of order h ( ∈ N) at x = xs, i.e.

ω2 − ω2
A(x) = c(x)(x− xs)

h, (2.94)

where c(x) is an analytic function with finite value at x = xs. It is noted that, since

the coefficient of the highest order derivative vanishes at x = xs, it constitutes a

singular point of the spectral equation (2.93). For investigating the behavior of the

solution in the vicinity of the singular point xs, we will take the leading order of the

Taylor expansion (2.94) and substitute it into Eq. (2.93), which yields

d2φ

dx2
+

h

x− xs

dφ

dx
+ k2

yφ = 0. (2.95)

It is clearly seen that the point x = xs is found to be a regular singular point of

the spectral equation (2.93). The behavior of the solution around the singular point

is investigated by means of the Frobenius expansion [16]. There is a logarithmic

singularity in the solution since two solutions of the indicial equation have an integral

difference for any h ∈ N. Therefore, the solution is written in the vicinity of the

regular singular point as

φ(x) = a1g1(x) + a2[g1(x) log |x− xs|+ g2(x)], (2.96)
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where g1(x) and g2(x) are analytic functions with g1(xs) �= 0. The energy norm

(2.77) will be applied to the solution (2.96), which now reads as

〈φ |φ〉 = (φ | −∆ |φ). (2.97)

Thus, it is found that Eq. (2.96) actually gives a non square integrable solution

corresponding to the continuous spectrum.

Furthermore, the fact that Eq. (2.96) is the only solution for the spectral equation

(2.93) is shown as follows. Let ω2
A (ω

2
A) be the lower (upper) bound value of the

Alfvén wave frequency

ω2
A = inf

x∈Ω
ω2

A (ω2
A = sup

x∈Ω
ω2

A), (2.98)

if it exists in the plasma domain Ω. Here we divide the Alfvén singular factor as

ω2 − ω2
A = (ω

2 − ω2
A) + (ω

2
A − ω2

A), (2.99)

and multiply φ̄ denoting the complex conjugate of the stream function φ. Then, the

integrated form of Eq. (2.93) gives

(ω2−ω2
A)

∫
Ω

(∣∣∣∣dφdx
∣∣∣∣2 + k2

y|φ|2
)
dx = −

∫
Ω

(ω2
A−ω2

A)

(∣∣∣∣dφdx
∣∣∣∣2 + k2

y|φ|2
)
dx. (2.100)

Since we have taken the lower bound of ω2
A by ω

2
A, we see that (ω

2
A − ω2

A) ≤ 0 at

any position. Moreover, the large round bracket of the right hand side integrand

denotes the local kinetic energy; i.e. |∇φ|2 ≥ 0. Thus, it is shown that

−
∫

Ω

(ω2
A − ω2

A)

(∣∣∣∣dφdx
∣∣∣∣2 + k2

y|φ|2
)
dx ≥ 0. (2.101)

The right hand side of Eq. (2.100) is shown to be positive and the integral of the

left hand side is also positive, therefore

ω2 ≥ ω2
A (2.102)

must hold. It is concluded that the Alfvén eigenmode equation (2.93) has no eigen-

value lower than the lower bound of the Alfvén continuous spectrum. If we trace

the same discussion on the upper bound ω2
A of the Alfvén continuum, we can also

prove that the Alfvén equation (2.93) does not have any eigenvalue upper than the

upper bound of the continuum. Since it is quite natural to assume that ωA(x) is

a smooth function of x, we may conclude that the slab Alfvén equation has only

Alfvén continuous spectrum. The spectra of Eq. (2.93) is shown as

σc = {ω2 | min
x∈Ω

ω2
A ≤ ω2 ≤ max

x∈Ω
ω2

A}. (2.103)
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It is noted here that a meticulous care should be taken for the norm of the

system. For example, in determining the square integrability of the solution (2.96),

the energy norm (2.97) plays an essential role. If we take a simple norm ( | )
here, then we find that the solution (2.96) does not give non square integrability

since the square of the logarithmic function is integrable around the singular point

x = xs. Furthermore, if we write the equation for the artificially introduced variable

φ† = (ω2 − ω2
A)φ as

d

dx

[
(ω2 − ω2

A)
d

dx

( φ†

ω2 − ω2
A

)]
− k2

yφ
† = 0, (2.104)

in order to eliminate the singularity from the equation, and take the simple norm

( | ) again, we find that even the Alfvén equation can be rewritten in apparently
non-Hermitian form. In this case, we have to take the norm as

〈φ† |φ†〉 = −
∫

φ̄†

ω2 − ω2
A

∆
( φ†

ω2 − ω2
A

)
dx, (2.105)

which recovers the original Hermiticity of the system and the non square integrability

of the solution.

It is also noted that the shear Alfvén continuum is not the only continuum in

the MHD system. Their existence is first conjectured by Grad [74]. Firstly, he

conjectured four branches of such continuum, however, it is clarified later by Appert

et al. that the MHD system contains just two [36, 69]; one is the above shear Alfvén

wave continuum, and the other is related to the sound wave.

2.6.2 Cylindrical geometry

Here the equilibrium magnetic field is assumed as

B = (0, Bθ(r), Bz), (2.106)

with Bz = const in the cylindrical coordinates. Then, we may take the wave number

vector k = (0, m/r, kz) due to the homogeneity of the equilibrium fields in the θ and

z direction. In the same way as in the slab geometry, we replace ∂t by −iω. Then,
Eq. (2.89) becomes

−ω2
[1
r

d

dr

(
r
d

dr

)
− m2

r2

]
φ = −F

[1
r

d

dr

(
r
d

dr

)
− m2

r2

]
Fφ+

m

r

dj

dr
Fφ, (2.107)

where F (r) = k · B(r). Since the relation between the current density and F (r)

differs from the slab geometry due to the curvature effect, we will obtain the following

spectral equation which is different from that in the slab geometry [Eq. (2.93)]

1

r

d

dr

[
r(ω2 − ω2

A)
dφ

dr

]
− m2

r2
(ω2 − ω2

A)φ+
2

r

dF

dr
Fφ = 0, (2.108)
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where, ωA(r) = F (r)/
√
µ0ρ.

Singular solution may be also obtained from the singularity of the equation;

ω2 = ω2
A(r) (∃r ∈ Ω). (2.109)

It is noted that, however, this singularity is no longer regular due to the existence of

the last term of Eq. (2.108). Therefore, we do not have general explicit representation

of the singular solution. Moreover, the last term in Eq. (2.108) admits the point

spectra which is the essential difference from the case in the slab geometry. Namely,

even if ω2 is less than the lower bound of the Alfvén wave frequency ω2
A = inf ω

2
A,

(ω2 − ω2
A)

∫
Ω

r

(∣∣∣∣dφdr
∣∣∣∣2 + m2

r2
|φ|2

)
dr

= −
∫

Ω

r(ω2
A − ω2

A)

(∣∣∣∣dφdr
∣∣∣∣2 + m2

r2
|φ|2

)
dr +

∫
Ω

2F
dF

dr
|φ|2 dr, (2.110)

can be satisfied for an appropriate F satisfying∫
Ω

2F
dF

dr
|φ|2 dr = −

∫
Ω

r(ω2 − ω2
A)

(∣∣∣∣dφdr
∣∣∣∣ + m2

r2
|φ|2

)
dr ≥ 0 (2.111)

for a certain nontrivial eigenfunction φ.

Due to Sturm’s oscillation theorem [16], if the solution for ω2 = 0 satisfying

the boundary condition only on r = 0 have any node in the domain Ω, we will

have unstable eigenvalue ω2 < 0 which also satisfies the boundary condition on the

plasma edge. Furthermore, the number of these point spectra are infinite, which has

a property to accumulate on the edge of the continuum ω2 = ω2
A. This property can

be used in order to judge the stability of the resonant mode which has the edge of

the continuum at ω2
A = 0. When the smallest eigenvalue is positive and the mode

has no resonant surface inside the plasma, the eigenfunction shows a global stable

oscillation, which is called the global Alfvén eigenmode [35].

2.7 Non-Hermiticity in shear flow systems

We will consider the shear flow introduced non-Hermiticity in this section. For

simplicity, we will assume that the plasma is not magnetized and consider the elec-

trostatic response. If we neglect the charge separation of the plasma, the plasma

behaves in the same way as the neutral fluids. The equilibrium velocity field is

assumed as

v0 = (0, v0y(x), 0), (2.112)
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in the Cartesian coordinates. Then, the vorticity equation (2.66) for two dimen-

sional incompressible motion of the plasma will be rewritten in the form of Rayleigh

equation as

(∂t + v0y∂y)∆φ− v′′0y∂yφ = 0. (2.113)

Here, the prime denotes the derivative with respect to x and ∆ = ∂2
x+∂

2
y . Assuming

two dimensional perturbation, the wave number in the y direction becomes a good

quantum number. Equation (2.113) will be written in the form of the Schrödinger

type as

i∂t∆φ = kyv0y∆φ− kyv
′′
0yφ. (2.114)

We can play with Eq. (2.114) on the definition of the norm. If we regard

Eq. (2.114) as a vorticity evolution equation, the generator is written as

L = kyv0y − kyv
′′
0y∆

−1. (2.115)

Firstly, let us see how the simple norm for the vorticity field works. Suppose that

the norm is defined by the enstrophy bilinear form;

〈〈Ψ |Ψ〉〉 = (∆φ |∆φ) =
∫
|∆φ|2 dV, (2.116)

where we have defined Ψ = −∆φ. Then, the first operator in Eq. (2.115) trivially
gives Hermiticity as

〈〈Ψ | kyv0yΨ
∗〉〉 =

∫
kyv0yΨ̄Ψ

∗ dV

= 〈〈kyv0yΨ |Ψ ∗〉〉. (2.117)

The second operator gives non-Hermiticity with the enstrophy norm;

〈〈Ψ | kyv′′0y∆−1Ψ ∗〉〉 = 〈〈∆−1kyv
′′
0yΨ |Ψ ∗〉〉

�= 〈〈kyv′′0y∆−1Ψ |Ψ ∗〉〉. (2.118)

However, if we define the energy norm as

〈∆φ |∆φ〉 = −
∫
(∆φ̄)∆−1(∆φ) dV

=

∫
|∇φ|2 dV, (2.119)

then, the second operator in Eq. (2.115) gives Hermiticity as

〈Ψ | kyv′′0y∆−1Ψ ∗〉 = −
∫

Ψ̄ ∆−1(kyv
′′
0y∆

−1Ψ ∗) dV

= −
∫
(kyv

′′
0y∆

−1Ψ̄)∆−1Ψ ∗ dV

= 〈kyv′′0y∆−1Ψ |Ψ ∗〉, (2.120)
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whereas the first operator gives non-Hermiticity;

〈Ψ | kyv0yΨ
∗〉 = −

∫
Ψ̄ ∆−1(kyv0yΨ

∗) dV

= −
∫
(kyv0y∆

−1Ψ̄)∆∆−1Ψ ∗ dV

= −
∫
(∆kyv0y∆

−1Ψ̄ )∆−1Ψ ∗ dV

= 〈∆kyv0y∆
−1Ψ |Ψ ∗〉. (2.121)

Let us then regard Eq. (2.114) as an evolution equation for the stream function

φ;

i∂tφ = ky∆
−1v0y∆φ− ky∆

−1v′′0yφ. (2.122)

Then, we can readily show that the first operator is non-Hermitian with the energy

norm

〈φ |φ〉 = −
∫

φ̄∆φ dV

=

∫
|∇φ|2 dV, (2.123)

however, it is Hermitian with the enstrophy norm

〈〈φ |φ〉〉 =
∫

φ̄∆2φ dV

=

∫
|∆φ|2 dV. (2.124)

On the other hand, the second operator is Hermitian with the energy norm and non-

Hermitian with the enstrophy norm. It is, therefore, concluded that the Hermiticity

of the operator does not change by the form of the evolution equation if we take the

common norm.

It has been shown that neither energy norm nor enstrophy norm gives Hermiticity

of the combined operator for the vorticity evolution equation (2.114). However, when

v′′0y �= 0 in the domain, we can make them Hermitian by taking the norm

〈〈〈φ |φ〉〉〉 =
∫

1

|v′′0y|
φ̄ φ dV. (2.125)

It is straightforwardly shown that the combined operator is Hermitian with the norm

(2.125) as

〈〈〈Ψ | ky(v0y − v′′0y∆
−1)Ψ ∗〉〉〉 =

∫
kyv0y

v′′0y
Ψ̄Ψ ∗ − Ψ̄ ky∆

−1Ψ ∗ dV

=

∫
ky
v0y′′

(v0y − v′′0y∆
−1)Ψ̄ Ψ ∗ dV

= 〈〈〈ky(v0y − v′′0y∆
−1)Ψ |Ψ ∗〉〉〉, (2.126)
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where we have assumed that v′′0y > 0 for simplicity. In this case, the spectra of the

generator ky(v0y − v′′0y∆
−1) are real, which yields stability of the system. This fact

shows that the shear flow is stable when the system does not contain any inflection

point (Rayleigh’s inflection point theorem [111, 7]).


