
Chapter 3

Non-resonant type pressure driven

instabilities in stellarators

3.1 Introduction

Although Mercier criterion is useful for investigating the pressure driven instabilities

in tokamaks [119] and stellarators [118], it does not predict the limiting conditions

in some cases within the ideal MHD model [107, 108]. For deriving the Mercier

criterion it is assumed that the unstable mode is radially localized near the mode

resonant surface. There is a tendency that the radial mode structure becomes narrow

in the vicinity of the mode resonant surface with the increase of mode number. Even

the interchange mode with m = 1/n = 1 also has a property that the radial mode

structure becomes highly localized near the marginal regime [126], where m (n)

is a poloidal (toroidal) mode number. This result explains why the Mercier limit

correlates with the beta limit due to the interchange instabilities with the low mode

numbers [104, 67]. However, this situation changes substantially, when the pressure

gradient becomes locally flat at the mode resonant surface [144]. Details of pressure

profile effect on the interchange modes will be shown in this paper with use of a

cylindrical plasma model for a low shear stellarator with a magnetic hill.

In order to destabilize the interchange mode, the resonant surface is not always

necessary. It is reasonable that in a low shear region with a steep pressure gradi-

ent, non-resonant modes approximately satisfying the resonant condition are desta-

bilized. First unstable non-resonant resistive modes were shown for a Heliotron-E

plasma with a highly peaked pressure profile [86]. Recently ideal non-resonant modes

were shown unstable in the central region of Heliotron-E [48], which seems consis-

tent with the m = 2/n = 1 mode triggering the sawtooth [156]. It is noted that

non-resonant modes usually have global mode structures, which requires numerical
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analysis to clarify the property. For studying the details of ideal non-resonant insta-

bilities we use a cylindrical plasma model which saves computational time greatly.

Since the non-resonant mode is hard to be excited in a high shear region, our interest

is in a low shear stellarator with a magnetic hill.

It is noted that Fu et al. [67] studied the relation between the Mercier modes

and the low-n modes with a full 3-D stability code for l = 2 stellarators. They found

that the unstable localized low-n modes are correlated with the Mercier criterion.

However, the stability of global-type low-n modes was found to be decorrelated from

that of Mercier modes for the case with a fairly large outward magnetic axis shift.

It seems that the strong poloidal coupling in the toroidal geometry is essential for

this type of unstable mode which may be a tokamak-type ballooning mode. In this

paper our interest is in the decorrelation between the low-n pressure driven modes

and the Suydam modes in the cylindrical model. Thus both the rotational transform

and pressure profiles are important here.

In Sec. 3.2, we derive an eigenmode equation for studying linear interchange

modes in stellarators, which is derived from the reduced MHD equations [125]. In

Sec. 3.3, we first solve the eigenmode equation analytically in the low shear limit, and

discuss about the non-resonant mode. Next we solve the same eigenvalue equation

numerically for a finite shear case in Sec. 3.4. Here we show examples to highlight

various properties for both the resonant and non-resonant modes. Finally in Sec. 3.5,

we summarize the obtained results and give some physical interpretations for the

behavior of non-resonant mode.

3.2 Eigenmode equation

For analyzing pressure driven instabilities in stellarators, we use the ideal reduced

MHD equations which are derived under the specific ordering for stellarators [125].

Intrinsically, stellarator is a three dimensional configuration which is quite difficult

and an open problem as a spectral theory. Here, by averaging in toroidal direction,

we can reduce the problem into two dimensions which is the same as axially sym-

metric systems. This approximation is valid for the modes which have toroidally

global structures and when the toroidal mode coupling do not play a major role.

The equations are written as

∂tψ = B · ∇φ, (3.1)

ρ
d∆φ

dt
= −B · ∇jz +∇κ×∇p · ez, (3.2)

dp

dt
= 0, (3.3)
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where

B · ∇ = B0∂z +∇ψ × ez · ∇, (3.4)

d

dt
= ∂t +∇φ× ez · ∇, (3.5)

κ =
2r cos θ

R0
+
(∇η)2
B2

0

, (3.6)

jz = −∆Az , (3.7)

Az = ψ +
1

2B0
∇〈η〉 × ∇η · ez. (3.8)

Here ψ, φ, κ′, and η denote the poloidal flux function, the stream function, the

averaged curvature of the helical magnetic field, and the magnetic field potential

due to helical coils, respectively. Bars denote the averaged equilibrium quantities

over a single helical period. The quasi-toroidal coordinates are introduced here

whose metrics are written as

d32 = dr2 + r2 dθ2 + (R0 + r cos θ)2 dζ2, (3.9)

where R0 denotes the major radius of the torus, r the minor radius, θ and ζ = z/R0

the poloidal and toroidal angle, respectively. Here the perfectly conducting wall is

placed at the plasma boundary, and the boundary conditions are given by Br =

∂θψ = 0, vr = ∂θφ = 0, and p = 0 at r = a.

In the following study, we neglect the toroidal effect in the reduced MHD equa-

tions. We also assume that the equilibrium quantities do not depend on the poloidal

angle θ. This assumption means that the averaged flux surfaces have circular cross

section in the large aspect ratio limit. Then the rotational transform is written as

ι(r) ≡ R0

rB0

dψ0

dr
, (3.10)

where the equilibrium poloidal flux function is given by ψ0(r). Since the correction

due to the diamagnetic current gives higher order contribution in this formulation,

the rotational transform includes only the vacuum helical field contribution in this

approximation.

For the stability analysis, we use the following normalization for variables,

ψ → aB0ψ, φ→ aR0

τA
φ, t→ τAt,

p→ p0(r = 0)p, r → ar, jz →
B0

µ0a
jz,

∆φ→ R0

aτA
∆φ, Az → aB0Az,

(3.11)
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where τA = R0
√
µ0ρ/B0 denotes the poloidal Alfvén time, a the minor radius of the

plasma column, respectively. Then the linearized reduced MHD equations can be

written as

γ(∆φ) = −n−mι

γ
∆[(n−mι)φ]− Ds

γ

m2

r2
φ, (3.12)

where Ds and the averaged helical curvature κ
′ are expressed as

Ds = −
β0

2ε2
p′κ′, (3.13)

κ = ε2N
(
r2ι+ 2

∫
rι dr

)
. (3.14)

Here ε ≡ a/R0 denotes the inverse aspect ratio, β0 ≡ 2µ0p0(r = 0)/B
2
0 the central

plasma beta value, andN the toroidal period number of the helical field, respectively.

In order to derive Eq. (3.12), all perturbed quantities are assumed to be proportional

to exp[γt− i(mθ+ nζ)], where m (n) denotes the poloidal (toroidal) mode number.

In Eq. (3.13), the prime denotes the derivative with respect to the normalized minor

radius r. The perpendicular Laplacian operator in Eq. (3.12) is shown as

∆ =
1

r

d

dr

(
r
d

dr

)
− m2

r2
. (3.15)

Then the ordinary differential equation (3.12) for the stream function φ with the

mode number (m,n) is written as

d2φ

dr2
+

[1
r
− 2mι′(n−mι)

γ2 + (n−mι)2

]dφ
dr

−
{m2

r2
+

1

γ2 + (n−mι)2
(3.16)

×
[(mι′

r
+mι′′

)
(n−mι)− Dsm

2

r2

]}
φ = 0,

which is an eigenmode equation with the eigenvalue γ2.

For solving Eq. (3.16), the boundary condition at the plasma surface r = 1 is

φ = 0 under the fixed boundary condition. We also impose the regularity of the

solution at r = 0. With these boundary conditions, we can set up an eigenvalue

problem for the eigenvalue or growth rate γ2 and the corresponding eigenfunction

φ.
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3.3 Analytic solution of eigenmode equation

3.3.1 Eigenmode properties for shearless case

In this subsection, we assume ι′ = 0 for obtaining an analytic solution, then

Eq. (3.16) is written as

d2φ

dr2
+
1

r

dφ

dr
+
m2

r2

[ Ds

γ2 + (n−mι)2
− 1

]
φ = 0. (3.17)

For the parabolic pressure profile, p = p0(1 − r2), the analytic solution is readily

obtained with the transformation r̃ ≡ {D̃sm
2/[γ2 + (n − mι)2]}1/2r, where D̃s =

4β0Nι. From the solution u ∝ Jm(r̃) for the (m,n) mode and the boundary condition

u = 0 at r = 1, the growth rate is written as

γ2 =
D̃sm

2

Z2(m, k)
− (n−mι)2, (3.18)

where Z(m, k) is the k-th zero point of the m-th order Bessel function of the first

kind Jm(r̃).

Although the resonant surface does not exist inside the plasma column, it is seen

that the mode satisfying n � mι is most unstable and the unstable mode has a

global structure without localizing in the radial direction unlike the resonant mode.

Further we notice that, when there is no magnetic shear, the radial mode structure,

Jm(Z(m, k)r), is not affected by the beta value. We notice from Eq. (3.18) that

the more unstable mode has the less node number, and the eigenvalue is discrete

with respect to k for the specified (m,n). The generalization of this property will

be discussed in the next subsection.

Since the left hand side of Eq. (3.18) is proportional to γ2 and the right hand

side is linear with respect to the plasma beta, the relation (3.18) gives a parabolic

line in the (β, γ) plane. Thus a small variation in β0 from the marginal equilibrium

may cause an abrupt increase of growth.

The beta limit for stability is obtained by substituting γ2 = 0 into Eq. (3.18),

which yields

β0c =
Z2(m, k)(n−mι)

4Nιm2
. (3.19)

In order to examine the beta limit of the higher harmonic modes with same helicity,

we use the transformation of the variables (m,n) �→ l(m,n), which yields

βl
0c =

Z2(lm, k)(n−mι)

4Nιm2
. (3.20)

Since Z(lm, k) > Z(m, k) for l ≥ 2, the beta limit of the higher harmonic mode, βl
0c,

is higher than the l = 1 case, β0c. This is different from the resonant modes with the

same helicity, which give the same beta limit given by the Suydam criterion [126].
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3.3.2 Radial structure of most unstable mode

In this subsection we show that the more unstable mode has the less node number

in radial direction with the specified (m,n). We follow the proof shown by Goed-

bloed and Sakanaka [72, 10]. By introducing a variable ξ = φ/r, the eigenmode

equation (3.16) is written in the Sturmian form as

d

dr

(
K
dξ

dr

)
−Gξ = 0, (3.21)

where

K(γ2; r) = r3[γ2 + (n−mι)2],

G(γ2; r) = r{(m2 − 1)[γ2 + (n−mι)2] + (3mι′r +mι′′r2)(n−mι)−Dsm
2}.

Let two solutions corresponding to two neighboring growth rates, γ2 = γ2
1 and

γ2
1 + δγ2 be ξ1 and ξ1 + δξ, respectively, which only satisfy the boundary condition

at r = 0. When we substitute the first solution ξ1 corresponding to the parameter

γ2
1 in Eq. (3.21), we obtain

d

dr

(
K(γ2

1 ; r)
dξ1
dr

)
−G(γ2

1 ; r)ξ1 = 0. (3.22)

Substituting the second solution into Eq. (3.21) and subtracting Eq. (3.22) leads to

d

dr

(
K(γ2

1 ; r)
dδξ

dr

)
−G(γ2

1 ; r)δξ = −δγ2
[ d
dr

(∂K
∂γ2

∣∣∣
γ2
1

dξ1
dr

)
− ∂G

∂γ2

∣∣∣
γ2
1

ξ1

]
. (3.23)

Assume now that ξ1(r1) = 0 at 0 < r1 ≤ 1, which is possible for an unstable

case. We make the product of δξ with Eq. (3.22), ξ1 with Eq. (3.23) and integrate

from 0 to r1. Subtracting both sides leads to

Kδξ
dξ1
dr

∣∣∣
r1
= −δγ2

∫ r1

0

[∂K
∂γ2

(dξ1
dr

)2

+
∂G

∂γ2
ξ2
1

]
dr, (3.24)

after some partial integrations, where we have used the fact that δξ(0) = 0,K(γ2
1 ; 0) =

0. Here K, G and their derivatives with respect to γ2 are all evaluated at γ2 = γ2
1 .

Since ∂K/∂γ2 = r3 and ∂G/∂γ2 = r(m2− 1), the integrand is positive for m ≥ 1 at
all radial points. Provided that δγ2 > 0, or ξ1+δξ is more unstable than ξ1, the right

hand side of Eq. (3.24) becomes negative. Since K is positive in (0, 1), the radial

position of ξ1+δξ = 0 moves to outer due to the increase of the parameter γ
2. Since

K and G are monotonic functions of γ2 for m ≥ 1, we can conclude that the radial
positions of all zeros move to the outer direction with the increase of the parameter

γ2. If we further impose another boundary condition at r = 1, it is confirmed that

the eigenvalue is discrete and the more unstable mode has the less node number. In

other words, the most unstable mode has no node.
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Figure 3.1: (a) Dependence of the beta limit on the magnetic shear parameter σ for

the non-resonant (2, 1) mode. (b) Radial mode structures in cases of σ = 0.05, 0.5,

and 2.0 for the parabolic pressure profile with β0 = 0.03.

3.4 Numerical solution of eigenmode equation

3.4.1 Resonant and non-resonant modes for standard pres-

sure profiles

We have solved Eq. (3.16) numerically by the shooting method using the fourth

order Runge-Kutta formula. At first we picked up the same eigenvalue problem as

shown in section 3.3 in order to validate the numerical code. The obtained growth

rates for the (m,n) = (2, 1) mode coincide well with the analytic solution, Eq. (3.18),

and the radial mode structures described by the Bessel function J2(r̃) seems to be

unchanged by the variation of β0.

Next we have investigated the effect of the magnetic shear on the non-resonant

modes for the standard parabolic pressure profile. For the assumed rotational trans-

form profile, ι = 0.51+σr2, σ is changed from 0.05 to 2.0. The rotational transform

profile in the case of σ = 1.69 is approximately coincides with that in Heliotron-E

[48]. When the beta value is fixed, the growth rate of the non-resonant (2, 1) mode

is decreased with the increase of the magnetic shear intensity σ. Or the beta limit

is increased almost linearly with the increase of σ as shown in Fig. 3.1. The radial

mode structure is shifted to the inner region when σ is increased (see Fig. 3.1). This

result can be interpreted in the following way. As σ is increased, there are two ef-

fects. First, the magnetic shear becomes larger in the outer region compared to the

inner region. Second, the outer region is removed further away from the resonance

than the inner region. These may account for the mode structure becoming more lo-
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calized towards the magnetic axis. Also when β0 is decreased, since the destabilizing

effect due to the plasma pressure gradient becomes weak, the non-resonant mode

can be excited only in the inner region. However, since there is no resonant surface,

the radial mode structure is not highly localized and still has a global structure.

The behavior of the growth rate near the marginal beta value for the non-resonant

mode is different from that for the resonant mode as shown in Fig. 3.2. The growth

rate of non-resonant mode decreases to zero without the tail at β0 � β0c, where β0c

is the beta limit for the non-resonant (2, 1) mode.

Here we study transition from the resonant mode to the non-resonant one. For

currentless plasmas in Heliotron-E, MHD equilibria show that the central rotational

transform is increased with the increase of beta value. When the vacuum rotational

transform at the plasma center is lower than 0.5, the resonant surface for the (2, 1)

mode exists inside the plasma column. The resonant mode may not be excited due

to the low beta value at the initial state. Experimental results show that the (2, 1)

mode becomes unstable for β0
>∼ 0.7% in the neutral beam heating plasmas, which

leads to the occurrence of sawtooth [48]. However, when the ECRH is applied to

the central region, the pressure profile becomes more peaked and the (2, 1) mode

is stabilized. These data could be understood with disappearance of the ι = 0.5

surface according to the increase of the central beta value. Linear stability of the

ideal (2, 1) mode in the toroidal geometry shows that the resonant mode appears

first, then it changes to the non-resonant mode with the increase of β0. Finally the

non-resonant mode becomes stable, when ι(0) is deviated far from 0.5 [48].

In the cylindrical model we simulate the above situation by changing the central

value of the rotational transform artificially. For clarifying the property of the non-

resonant mode, we consider a weak shear configuration with the resonant surface for

the (2, 1) mode at first. Then we exclude the resonant surface of ι = 0.5 by increasing

ι(0). Figure 3.2 shows the numerical results for the pressure profile p = p0(1− r4).

White squares correspond to the growth rates for the equilibria with rotational

transform profile, ι = 0.499 + 0.2r2, which has the resonant surface for the (2, 1)

mode at the normalized radius r � 0.07. Black squares correspond to the growth

rates for the equilibria with ι = 0.501+ 0.2r2, which has no resonant surface for the

(2, 1) mode. The beta limit for the resonant case seems to be 1.14 × 10−3 or less,

while for the non-resonant mode it is 5.97×10−3. The difference between these beta

limits correlates with the radial mode structure. In the small growth rate regime,

when β0 is decreased, the radial mode structure of the resonant mode becomes more

localized. Thus the highly localized mode with an extremely small growth rate is

possible as shown in Fig. 3.2. Thus, in the β-γ space the line for the resonant mode

case extends to the lower beta region with small growth rates. On the contrary,
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Figure 3.2: (a) Dependence of the growth rate of (2, 1) mode on the central beta value

β0 for p = p0(1− r4). Squares denote numerical results. The white ones correspond

to the resonant case and the black ones to the non-resonant case. (b) Radial mode

structures corresponding to the resonant (β0 = 1.35× 10−3), and non-resonant case

(β0 = 5.97× 10−3). Here the rotational transform profile is ι(r) = 0.499 + 0.2r2 for

the resonant case and ι(r) = 0.501 + 0.2r2 for the non-resonant case.

since the non-resonant mode cannot be localized at a particular surface, the growth

rate decreases to zero without the tail with the decrease of β0.

We may apply the Suydam criterion to resonant modes, which can be derived

from the indicial equation of Eq. (3.16) at the singular point, or the resonant surface.

It is written as
Ds

ι′2r2
s

<
1

4
, (3.25)

for the stability, where Ds and ι′ are evaluated at the resonant surface, r = rs,

for the corresponding mode. In the case of Fig. 3.2, the resonant surface of the

(2, 1) mode is rs � 0.07. Here the beta limit obtained from the criterion (3.25) is

β0 � 1.05 × 10−3. Generally it is difficult to obtain the beta limit for the resonant

mode numerically. One reason is the extension of the growth rate to the low beta

side as mentioned above, and the other is the localization of the mode structure in

the vicinity of the resonant surface. In Fig. 3.2, however, the difference between the

analytic evaluation and the numerical result is less than 10%, and the growth rate

at numerically obtained beta limit is 4.49× 10−11, which is normalized by poloidal

Alfvén time.

It is noted that the global-type mode is shown in Ref. [67] in toroidal stellarators.

However, this mode is different from the non-resonant mode shown here, since the

poloidal coupling in the toroidal geometry is essential to destabilize the global-type

mode.
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Figure 3.3: Left figure shows the pressure profiles given by Eq. (3.26) for λ = 1.

The effect of pressure flattening is very small for W = 0.01. Right figure shows the

Suydam critical β corresponding to each W .

3.4.2 Resonant modes for locally flattened pressure profiles

at resonant surface

Here we consider equilibria with the resonant surface at ι = 0.5 for the (2, 1) mode

in the plasma column, but without the pressure gradient on the resonant surface.

In the experimental situation of Heliotron-E there may exist small magnetic islands

due to resistive interchange instabilities at the low order resonant surfaces [68, 105],

which may be nonlinearly saturated at low fluctuation levels. In such a case the

equilibrium may not be violated by the resistive mode, however, the local plasma

profile will change and the pressure gradient becomes small near the resonant surface

[48, 106]. For this situation the Suydam criterion (3.25) predicts stability at the

ι = 0.5 surface.

Here we will show that low m modes can be unstable due to the finite negative

pressure gradient at elsewhere other than the resonant surface. For simplicity the

pressure profile is assumed as

p = 1− r2 + λ(r − rs) exp
[
−1
2

(r − rs

W

)2]
, (3.26)

where rs is the position of the mode resonant surface, and the choice λ = 2rs

makes p′ vanish at r = rs. The width of the flat region is controlled with the

parameterW . Several pressure profiles given by Eq. (3.26) and corresponding critical

β0 values evaluated by Suydam criterion (3.25) are shown in Fig. 3.3. We assume

ι = 0.45 + 0.2r2 and consider the (2, 1) mode again. The resonant surface exists

at rs = 0.5 where the pressure gradient vanishes. We can see that the pressure

flattening region is very narrow inW = 0.01 case, which connects with the steepness

of the pressure gradient near resonant surface, therefore, the destabilizing effect

around resonant surface is considerably large. However, we consider that the high
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Figure 3.4: (a) Dependence of the growth rate of (2, 1) mode on the central beta value

β0 forW = 0, 0.01 and 0.1. (b) Radial mode structures forW = 0 (β0 = 5.62×10−4),

and W = 0.01 (β0 = 1.05 × 10−3). The radial mode structures for W = 0.1 are

shown in Fig. 3.5.

(m,n) modes which has resonant surface close to ι � 0.5 might be stabilized by

non-MHD effect.

For three cases with W = 0, 0.01, and 0.1 shown in Fig. 3.3, growth rates

of the (2, 1) mode are shown as a function of β0 in Fig. 3.4(a). Although the

highly localized mode structure is observed in the case of W = 0, it is not localized

even in the case of W = 0.01, and the beta limit is increased with a factor of 2.

Furthermore, in Fig. 3.4(a) the growth rate decreases to zero without the tail near

the beta limit for W = 0.01, while the growth rate in the higher beta regime is not

affected. The growth rates and the radial mode structures in the case ofW = 0.1 are

shown separately in Fig. 3.5, where both the first growing mode with the maximum

growth rate and the second growing mode with the next growth rate are shown. In

Figs. 3.4(b) and 3.5(b) we see that the radial mode structures are quite different

from the case with W = 0. They are restricted in one side of the mode resonant

surface, and change sharply at the mode resonant surface in the case of W �= 0. In
order to understand the role of the second growing mode, it is interesting to study

nonlinear behavior of the (2, 1) mode for an equilibrium with a flat pressure region

in the neighborhood of resonant surface. It is considered that, since the average

magnetic shear is weak in the inner side of the resonant surface, the first growing

mode is restricted to the region [0, rs] in the case of W = 0.01, whereas in the case

of W = 0.1, it is restricted to the outer region since the average pressure gradient

seems larger in the outer side. It is noted that the beta limit of the W = 0.01 case,

β0c = 1.0× 10−3, is lower than that of the W = 0.1 case, β0c = 2.7× 10−3. In both
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Figure 3.5: (a) Dependence of the growth rate of (2, 1) mode on the central beta

value β0 for W = 0.1. (b) Radial mode structure of the first growing mode (β0 =

2.72 × 10−3) and that of the second growing mode (β0 = 2.76 × 10−3). It is noted

that the growth rates of the first growing mode are the same as those in Fig. 3.4(a).

cases the second growing mode appears in the opposite region to the first growing

mode.

To investigate why the steep mode structure appears at the resonant surface,

we expand the coefficients in Eq. (3.16) in the neighborhood of the mode resonant

surface r = rs. Since the rotational transform is expanded as ι(r) ≈ ι(rs)+ ι
′(rs)(r−

rs) + · · ·, the resonant denominator is expressed as

n−mι ≈ −mι′(rs)(r − rs) + · · · . (3.27)

Since the pressure becomes flat at the mode resonant surface, p′(rs) becomes zero,

but p′(r) is still negative in both sides of the mode resonant surface. Therefore p′′

is also zero at r = rs, thus p
′ is expanded in the neighborhood of the mode resonant

surface as

p′ ≈ p′′′(rs)

2
(r − rs)

2 + · · · , (3.28)

where p′′′(rs) < 0. Substituting the leading terms of Eqs. (3.27) and (3.28) into

Eq. (3.16) yields

d2φ

dr2
+

[1
r
+

2m2ι′2(r − rs)

γ2 +m2ι′2(r − rs)2

]dφ
dr

−
[m2

r2
− mι′(r − rs)

γ2 +m2ι′2(r − rs)2

(mι′
r
+mι′′

)
+

m2β0Np′′′(4rsι+ r2
s ι

′)

4r2
s [γ

2 +m2ι′2(r − rs)2]
(r − rs)

2
]
φ = 0. (3.29)
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Figure 3.6: Pressure profiles with the locally flat regions around the mode resonant

surface. The solid line corresponds to Eq. (3.30) and the broken line to Eq. (3.31).

As seen here, the effect of the pressure near the resonant surface appears in the

higher order with respect to (r − rs). Thus the pressure is negligible and does not

affect the steep mode structure.

In order to confirm this situation, we have calculated the radial mode structure

of nearly marginal mode for the following pressure profiles numerically. One is

p =


1

2
(1− 4r2)2 + 0.5 (r < 0.5),

1

2
[1− 4(r − 0.5)2]2 (r > 0.5),

(3.30)

and the other is

p =



1

2

(
1− 25

4
r2

)2

+ 0.5 (r < 0.4),

0.5 (0.4 < r < 0.6),

1

2

[
1− 25

4
(r − 0.5)2

]2

(r > 0.6).

(3.31)

The latter pressure profile contains a completely flat region whose width is noted

as δ in [0.4, 0.6] in order to eliminate the effect of the pressure gradient. Those

profiles are shown in Fig. 3.6. By assuming the same rotational transform profile as

the previous case in Figs. 3.4 and 3.5, the obtained mode structures are shown in

Fig. 3.7. The reason why the mode structure of the first growing mode is restricted

in the inner region is that, since the average pressure gradient is equal in both sides

of r = 0.5, the interchange mode is considered to be excited in the weaker shear

region. It is interesting that the mode structure with the sharp decrease at r = rs is

observed even though the pressure is completely flat in a region with a finite width
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Figure 3.7: (a) Radial mode structures of (2, 1) mode for the pressure profile cor-

responding to Eq. (3.30) (δ = 0 curves) and to Eq. (3.31) (δ = 0.2 curves). Both

lines show the radial mode structure of each first growing mode. Here all perturbed

functions are shown; (a) φ̃, (b) p̃, (c) ψ̃.

around the mode resonant surface. This assures our conjecture that the locally

steep profile of the mode structure such as in Figs. 3.5 and 3.7 is caused only by the

profile of the magnetic shear, not by the pressure profile any more. We note that

a non-resonant feature is seen in the radial mode structure for the second growing

mode in Fig. 3.5(b) and the first growing mode for the second pressure profile (3.31)

in Fig. 3.7(b), i.e. the peak is shifted from the resonant surface. This clearly shows

that the unstable mode is driven by the negative pressure gradient at elsewhere

other than the resonant surface.

The appearance of the sharp decrease to zero at the resonant surface in the radial

mode structure or u(r) is considered as follows. Consider a resonant layer satisfying

|r − rs| = |x| ∼ ε. Since our interest is in the small growth rate limit, γ ∼ ε is also

assumed. Under these assumptions, if we assume p′ � 0 in the resonant layer, the
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second term in Eq. (3.21) becomes negligible and

d

dr

(
K(γ2; r)

dξ

dr

)
= 0 (3.32)

decide the behavior of eigenfunction ξ(r) in the resonant layer. It is noted that

Eq. (3.32) is exactly same as that given by Rosenbluth, Dagazian and Rutherford

for the m = 1 internal kink mode in the cylindrical tokamak [113]. They gave the

solution

ξ =
1

2
ξa

[
1− 2

π
arctan

(∣∣∣mι′
γ

∣∣∣x)], (3.33)

for the boundary conditions ξ → ξa as x → −∞ and ξ → 0 as x → ∞. Since
mι′/γ ∼ O(ε−1), the eigenfunction ξ has the largest gradient at r = rs and has

a step function structure near the resonant surface. Further, since u � rsξ in the

neighborhood of the resonant layer, this type of solution may explain the behavior

of the sharp decrease to zero of the eigenfunction with the largest growth rate near

the resonant surface r = rs for γ → 0.

3.4.3 Behavior of non-resonant type mode

We will show that the non-resonant type mode is also excited even if pressure profiles

do not have exact zero gradient at the resonant surface. For small and nonzero

values of p′ at r = rs, we discuss about transition from the resonant mode to the

non-resonant type one. We assume p = p0(1 − r2)α, where α is changed from 4 to

14 (see Fig. 3.8). The profile of the rotational transform is fixed as ι = 0.4 + 0.2r2,

where the resonant surface for the (2, 1) mode exists at rs =
√
2/2. Figure 3.8

shows that the mode structure gradually changes from the resonant one to the non-

resonant type one. Particularly the α = 14 case shows that the peak of the radial

mode structure exists at the position different from the resonant surface, which

is considered as the non-resonant feature. It does have a step function structure

instead of a peak at the mode resonant surface for the nearly marginal beta value.

In other words, the driving force to the instability comes from the largest pressure

gradient region different from the resonant surface. From the sharp decrease of φ to

zero at the resonant surface in the α = 14 case, it is considered that the pressure has

almost no effect on the mode structure at the resonant surface, since p′ and p′′ are

negligibly small. In the α = 10 case, the mode structure has the maximum value at

the resonant surface; however, there exists another broad peak in the inner side of

the resonant surface. Also the growth rate vanishes without the tail near the beta

limit (see Fig. 3.8(b)). In the α = 8 case, the situation is more ambiguous. The

mode structure has a maximum value at the resonant surface and has no other peak.

However, the dependence of γ on β near the beta limit is different from the standard
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Figure 3.8: (a) Pressure profiles given by p = p0(1− r2)α for α = 4, 8, 10, and 14.

(b) Dependence of the growth rate on the central beta value β0 for different α. (c)

Radial mode structures near the beta limit for different α. The height of the mode

structure is normalized with its own maximum value.

resonant mode. Thus the case with α = 8 or 10 seems to have a mixed property

between the resonant and non-resonant type mode. For the α = 4 case, the clear

feature of the resonant mode is seen, i.e. the small growth rate regime is extended

to the low beta side in the β-γ space, and the nearly marginal mode structure is

highly localized at the resonant surface. For comparison, the beta limit given by

the Suydam criterion is calculated for each equilibrium in Fig. 3.8. Table 3.1 shows

both the beta limit obtained from Suydam criterion (3.25) at the resonant surface of

the (2, 1) mode, βS, and the one shown in Fig. 3.8(b), βn. From Table 3.1, in cases

of α ≥ 8, the non-resonant type (2, 1) modes are unstable even when the central

beta value is smaller than the Suydam limit. The beta limit in case of α = 4 almost

coincides with the Suydam limit since the radial mode structure is highly localized

around the resonant surface.
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α βS βn p′

4 1.91× 10−3 2.07× 10−3 −0.707
8 1.53× 10−2 5.92× 10−3 −8.84× 10−2

10 4.90× 10−2 7.02× 10−3 −2.76× 10−2

14 0.560 8.39× 10−3 −2.41× 10−3

Table 3.1: Comparison between the marginal beta values from Suydam criterion,

βS, and the ones shown in Fig. 3.8(b), βn. The equilibrium pressure gradient at the

resonant surface is also shown. The pressure is normalized by the central value and

the radial variable by the minor radius of the plasma column.

Finally, we considered a reversed shear profile, which will be realized in the high

beta equilibrium of toroidal stellarator. Here we assume a cylindrical plasma with

ι′ < 0 in the central region and ι′ > 0 in the outer region. We also assume the

following profile of the rotational transform,

ι = ι(0) + σr2 − λ exp
[
−1
2

(r − rc

W

)2]
, (3.34)

where σ is the previously defined shear parameter, rc is the parameter for the mini-

mum point of ι(r), and W denotes the characteristic width of non-monotonic region

of ι(r). Here σ = 0.2, rc = 0.5, W = 0.15, and λ = 0.2 are chosen as an example.

The pressure profile is again assumed to be parabolic, p = p0(1−r2). We have calcu-

lated two cases which are parameterized as follows. One is the double resonant case,

ι(0) = 0.6, in which the radial positions of two resonant surfaces for the (2, 1) mode

are at 0.35 and 0.59, where the beta limits predicted from the Suydam criterion

(3.25) are 6.61× 10−3 and 8.25× 10−3, respectively. The other is the non-resonant

case, ι(0) = 0.66, in which the rotational transform has its minimum value 0.508 at

r = 0.478. The both profiles of the rotational transform and the nearly marginal

mode structures are shown in Fig. 3.9.

In the double resonant case the radial mode structure is localized dominantly

at the inner resonant surface. The reason is that, since the beta limit from the

Suydam criterion is lower at the inner resonant surface than that at the outer one,

the pressure driven mode is more unstable at the inner resonant surface. In the

non-resonant case the radial mode structure is restricted near the minimum point

of the rotational transform and the beta limit is much lower than that in the double

resonant case. It can be interpreted that, since the pressure driven mode is excited

near the minimum point of ι in the non-resonant case, which is fairly close to ι = 0.5,

the stabilizing magnetic shear is very weak there. On the other hand, the resonant

mode is localized at the resonant surface where the magnetic shear is relatively

strong in the double resonant case, thus the beta limit becomes higher than that in
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Figure 3.9: (a) Profiles of the rotational transform for ι(0) = 0.6, σ = 0.2, rc = 0.5,

W = 0.15, λ = 0.2 (double resonance) and ι(0) = 0.66, σ = 0.2, rc = 0.5, W = 0.15,

λ = 0.2 (no resonance). (b) Radial mode structure of the (2, 1) mode near the beta

limit; β0 = 7.79×10−3 for double resonant case, or β0 = 4.87×10−4 for non-resonant

case.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.01 0.02 0.03 0.04 0.05 0.06

G
ro

w
th

 R
at

e

β value

(3,2)

(a)

0 0.2 0.4 0.6 0.8 1
Normalized Radius

β0=2.5×10-2

β0=2.0×10-2

β0=5.3×10-3

(b)

Figure 3.10: (a) Growth rate as a function of β0. (b) Radial mode structures for

β0 = 2.5× 10−2, 2.0× 10−2, 5.3× 10−3. The beta limit is estimated as 5.27× 10−3,

which is lower than the Suydam limit at the resonant surface of the (3, 2) mode.

the non-resonant case.

We have also calculated the (3, 2) mode in the non-resonant case with the ro-

tational transform shown by dashed line in Fig. 3.9(a). This mode has one res-

onant surface at rs = 0.691, where the beta limit from the Suydam criterion is

βS = 8.28 × 10−3. The numerical results are shown in Fig. 3.10. Figure 3.10(a)

shows a transition in the growth rate depending on β0, which occurs at β0 ∼ 0.02.
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This transition is understood from the mode structures shown in Fig. 3.10(b). The

maximum point of the unstable mode structure is placed at the resonant surface for

β0
>∼ 0.025. However, it moves to the inner weak shear region for the non-resonant

type mode with β0
<∼ 0.02. This type of mode structure has a small peak at rs near

the beta limit, however, it does not decrease to zero at the resonant surface as shown

previously, since the pressure gradient is not small there.

3.5 Summary

We have clarified the properties of the non-resonant pressure driven instabilities

and the relation to the resonant instabilities in the cylindrical plasma model. The

behavior of the non-resonant type mode depends strongly on the profile of both

the pressure and rotational transform. For some cases the instability has a mixed

character between the resonant and non-resonant modes. Also the transition from

the resonant mode to the non-resonant type one occurs, when the pressure gradient

is increased in the central region or the pressure profile becomes peaked.

At first we have solved the eigenmode equation analytically with respect to the

perturbed stream function for an equilibrium with a constant rotational transform

and a parabolic pressure profile. It is noted that the non-resonant mode has a global

structure, and the dependency of γ on β is parabolic [see Eq. (3.18)]. In this case it

can be shown that, the mode with fewest node number has the larger growth rate,

and the higher harmonic mode with the same helicity has the higher beta limit.

With the numerical calculations, it is shown that the growth rate of the non-

resonant mode decreases to zero without the tail near the beta limit, while the res-

onant mode has a fairly wide small growth rate regime expressed as γ ∝ e−1/
√
β0−βS

[126], where βS denotes the central beta value given by the Suydam criterion. A

physical interpretation is as follows. Although the resonant mode becomes local-

ized at the resonant surface with the decrease of the beta value, the non-resonant

mode does not have such a surface in the plasma column. Therefore the free energy

necessary to excite the non-resonant modes is always finite, since the parallel wave

number along the magnetic field line is also finite. Thus the growth rate decreases to

zero without the tail near the beta limit. In the resonant case, since the higher har-

monic modes have larger poloidal and toroidal wave numbers than the fundamental

one, they can be more localized in the radial direction. Thus the growth rates at

the same beta value are larger than the fundamental mode. However, all modes

can be highly localized at the resonant surface as the central beta value decreases,

the beta limit does not depend on the mode numbers and agrees with the Suydam

limit. On the contrary, in the non-resonant case, since the parallel wave number
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of higher harmonic mode becomes larger than the fundamental mode, the higher

harmonics need more energy for excitation in the low beta regime. Thus the beta

limit of the non-resonant mode with a higher harmonic mode number is larger than

the fundamental mode.

When the pressure profile becomes locally flattened with the width ofW around

the resonant surface, the resonant mode shows the non-resonant feature. The beta

limit in this case is increased with the small flattening region. The marginal mode

structure is quite different from the case with W = 0, i.e. it is restricted to the

one side of the resonant surface and the growth rate decreases to zero without the

tail when β0 approaches to the marginal value. It is noted that this non-resonant

feature also appears in case of the nonzero but small pressure gradient at the resonant

surface.

In Heliotron-E, when the beta value is increased, the central rotational transform

is increased and the profile becomes non-monotonic. We have studied this situation

by changing the rotational transform artificially. Even if there is no resonant surface

for the (2, 1) mode, when the minimum of the rotational transform, ιmin, is close

to 0.5, the non-resonant (2, 1) mode becomes unstable, which is independent of the

Suydam criterion. When ιmin is less than 0.5, the double resonant mode becomes

unstable. Also, the non-resonant type (3, 2) mode is unstable below the Suydam

limit at the ι = 2/3 surface. In this case the radial mode structure is observed in

the central region when ι(0) is sufficiently close to 2/3.

In later publications, the analytically approximated solution is obtained for cylin-

drical model equilibrium with the assumption that the mode structure has a step

like structure around the resonant surface [46, 47]. It is shown that the beta limit of

the non-resonant mode becomes mostly an order of magnitude higher than that ob-

tained from Suydam criterion for the smooth pressure profile. Moreover, the toroidal

effect on the non-resonant mode is also analyzed for the typical LHD configuration

by means of the numerical computation [85, 87, 88]. The radial step like structure

is also found in the toroidal case for the eigenmode with the toroidal mode number

n = 1, however, it is not the case that the eigenmode with the least node number is

the most unstable one.


