
Chapter 6

Interchange instabilities of slab

plasmas with sheared flows

6.1 Introduction

It is widely accepted that a shear flow yields stabilizing effects on various fluctuations

through convective deformations of disturbances [97, 99, 136]. However, rigorous

treatment of the shear flow effects encounters a serious difficulty arising from the

non-Hermiticity of the problem. We may not consider well-defined ‘modes’ and

corresponding ‘time constants.’ The standard normal mode approach breaks down,

and the theory may fail to give correct predictions of evolution even if perturbed

fields remain in the linear regime. The discrepancies between the theory and the

experiment on the stability limit of neutral fluids are reviewed in Ref. [140, 115].

The aim of this work is to establish a solid foundation for the analysis of shear

flow systems. We apply Kelvin’s method of shearing modes [139]. This scheme,

previously called as ‘nonmodal’ approach, actually consists in the combination of

two methods which have been widely used in solving wave equations; the modal and

the characteristics methods.

Many works have been done on instability problems of plasmas with shear flows

by means of the simple ‘modal’ approach. It is implicitly assumed in the application

of the modal scheme that the motion can be decomposed into a set of independent

‘normal modes’ with certain time constants [77, 43]. As is well-known, this method is

effective in solving problems involving Hermitian operators. However, when applying

it to non-Hermitian systems, we may overlook the secular and transient behaviors.

On the other hand, the characteristics method has been used in the context of rapid

distortion theory for the fluid turbulence [114] and in the eikonal representation of

the ballooning mode stability [79]. If we can treat the non-Hermitian part of the
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whole operator as a singular perturbation to the Hermitian operator [66, 68, 151],

we may be able to construct a theory in the framework of the perturbation theory

for the operator [18]. But unfortunately the convergence of the perturbative series

seems to be very ambiguous in case of the shear flows due to the secularity of their

time evolutions [33, 84, 152]. Thus, a thorough mathematical treatment of the non-

Hermitian operators of shear flow systems has not been accomplished so far. In

this chapter, we have analyzed the shear flow effect on interchange instabilities and

its non-Hermitian mathematical background with the time asymptotic behavior by

means of Kelvin’s method.

Recently, Kelvin’s method has been applied to a variety of linear shear flow prob-

lems [57, 52, 53, 112, 100, 137, 143]. For neutral and magnetized fluids, many new

fascinating phenomena were discovered; exchanges of energy between background

flows and perturbed fields [53], shear flow induced coupling between sound waves

and internal waves and the excitation of beat wave [112], the asymptotic persistence

due to the periodic energy transfer for two dimensional shear flows [100], and the

emission of magnetosonic waves by the stationary vortex perturbations [137]. These

results show that the modes, which are independent for static fluids, are no longer

independent and the coupling of these modes induces the energy transfer in the pres-

ence of the shear flow. The basic properties of kink-type instabilities in the presence

of a background shear flow is also analyzed [143]. It is shown that the shear flow

mixing always overcomes the kink driving at sufficiently large time. However, the

mathematical significance of this method has not been clarified yet.

In this chapter, we will first revisit Kelvin’s method from the viewpoint of the

characteristics method in Sec. 6.2. We will review the spectral theory focusing

on the general mathematical concept of eigenmode for a better understanding of

Kelvin’s method. In Sec. 6.3, we will give the equations governing the interchange

instabilities. In Sec. 6.4, we will derive the ordinary differential equation (ODE)

for the time evolution of the amplitude of the interchange instabilities by applying

the analysis of shearing modes. In Sec. 6.5, by drawing an analogy with Newton’s

equation it will be shown that the solution to the above ODE for the flux function

exhibits an asymptotic damped behavior for any strength of instability drive. We

will also consider the electrostatic perturbations in Sec. 6.6. Here the solution of

the derived ODE for the stream function shows the asymptotic growth or decay

of algebraic type depending on the magnitude of instability drive. The difficulty

encountered by including the magnetic shear in the present formulation is addressed

in Sec. 6.7. We will summarize the obtained results in Sec. 6.8.
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6.2 Non-Hermiticity of shear flow systems

Before formulating the interchange instability equations, let us give a rough sketch

of the problem and explain the mathematical tool to analyze the non-Hermitian

dynamics. As is well known, the force operator governing the linear dynamics of

static MHD plasmas is Hermitian [10], and therefore the perturbed fields can be

decomposed into a set of orthogonal eigenmodes which show purely exponential

(unstable) or purely oscillating (stable) evolutions. A non-triviality stems from

the Alfvénic and acoustic continuous spectra; the phase mixing damping occurs.

This behavior, however, is totally within the framework of the well-known theory of

Hermitian operators due to von Neumann [28].

In the case where ambient the shear flow exists, however, the operator becomes

non-Hermitian and the resolution in terms of orthogonal eigenmodes fails. From a

dynamical point of view, the system experiences a complex type of non-exponential

evolutions. In the following sections, we will show examples of such kind of ‘non-

Hermitian’ dynamics where transient phenomena and secular evolutions play a dom-

inant role. Similar evolutions are found in the case of non-Hermitian operators in

finite dimensional vector spaces [61]. It is emphasized that the application of the

traditional modal paradigm to non-Hermitian systems, which assumes exponential

evolution of the perturbed fields, hinders these rich varieties of transient and al-

gebraic phenomena. In this section, we will discuss Kelvin’s method and show its

suitability to the analysis of shear flow induced non-Hermitian systems. We will re-

visit it from the viewpoint of the characteristics method showing that it represents

a generalization of the modal approach.

The linearized dynamics of fluid systems in the presence of sheared flow is gov-

erned by a general equation of the following type;

∂tu+ v · ∇u = Au, (6.1)

where A denotes a Hermitian differential operator (time-independent) defined in a

Hilbert space V , v is the stationary mean flow, and u ( ∈ V ) denotes a perturbed

field.

It is the convective derivative, v · ∇, that introduces the non-Hermiticity into
problem (6.1) and prevents the possibility of representing the dynamics of the sys-

tems in terms of orthogonal and complete set of eigenfunctions. This is a well known

difficulty in the stability analysis of neutral fluids, such as Couette or Poiseille flows,

where the predictions obtained by means of the modal methods do not match the

experiments [140, 115].

In the case of a spatially inhomogeneous stationary flow v, Eq. (6.1) becomes
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non-Hermitian and a straightforward spectral resolution is not effective. However,

Kelvin’s method permits to resolve, for some classes of mean flows, the evolution

of the system (6.1) into new types of modes by means of which both transient

and secular asymptotic behaviors are effectively described. Let us now explain

mathematical foundations of this scheme.

As mentioned in Sec. 6.1, Kelvin’s method consists in the combined application

of two methods which have been extensively used in the analysis of wave equations.

Precisely the ‘Lagrangian’ part of Eq. (6.1), ∂t + v · ∇, is solved by means of the
characteristics method and the ‘Hermitian’ partA by means of the standard spectral
resolution.

The characteristics method is applied to solve the characteristic ODE associated

to the Lagrangian derivative, which is moving along the characteristic curve of the

ambient motion, given by
dx

dt
= v, x(0) = ξ. (6.2)

By inverting the modes, which are expressed in the Lagrangian coordinates as

ϕ(k, ξ), they will be represented in the Eulerian coordinates as

ϕ̃(t;k,x) = ϕ(k, ξ(t;x)), (6.3)

where ξ(t;x) denotes the inverse of x(t; ξ). The existence of the inverse mapping

x(t) �→ ξ is guaranteed in the case of incompressible mean flows. Due to Eq. (6.3),

ϕ̃(t;k,x) satisfies the characteristic equation

∂tϕ̃(t;k,x) + v · ∇ϕ̃(t;k,x) = 0. (6.4)

The essential condition for the applicability of Kelvin’s method consists in the

constraint for the functions ϕ̃(t;k,x) to form the complete set of eigenfunctions

of the operator A. If such a set of eigenfunctions exists, we can decompose the
perturbed field u by means of

u =

∫
ũk(t) ϕ̃(t;k,x) dk. (6.5)

We notice that due to Eq. (6.3) the eigenvalues of A become time dependent. The

new eigenvalue problem for A reads

Aϕ̃(t;k,x) = λk(t) ϕ̃(t;k,x). (6.6)

Plugging Eq. (6.5) into Eq. (6.1) and exploiting Eqs. (6.4) and (6.6), we have∫
[∂tũk(t)] ϕ̃(t;k,x) dk =

∫
ũk(t)λk(t) ϕ̃(t;k,x) dk. (6.7)
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Due to the orthogonality of the modes ϕ̃(t;k,x), the evolution of ũk is governed by

the equation
d

dt
ũk(t) = λk(t) ũk(t). (6.8)

If ϕ̃(t;k,x) do not satisfy both conditions given by the characteristic equation (6.4)

and the eigenvalue equation (6.6), Eq. (6.7) includes additional terms represent-

ing the complicated mode coupling. Thus, the applicability of Kelvin’s method is

compromised in this case.

Due to the time dependence in the eigenvalues λk(t), the evolution of ũk(t)

will not exhibit a simple exponential dependence as in the Hermitian case. More

complicated behaviors appear, which are characteristic of non-Hermitian systems.

By analyzing the ODE (6.8), the motion of each mode can be classified, and the

time asymptotic behavior can be also shown. The following sections will be devoted

to the derivation of ODE (6.8) and the discussion of the behavior of its solution for

the case of interchange instabilities in plasmas with shear flow.

6.3 Formulation of interchange instabilities

Interchange instabilities have been analyzed for static (ambient flow v0 = 0) magne-

tized plasmas by many authors [40, 96, 127, 103, 133]. In the case of static plasmas,

the ideal MHD equations can be reduced into a simple partial differential equation

of the form [10]

∂2
t ξ = Fξ, (6.9)

where ξ is the displacement vector and F is the force operator which is Hermitian

(selfadjoint) when the plasma is surrounded by an ideal conducting wall. In order

to analyze the stability of the system, we can apply the spectral method and rep-

resent the dynamics in terms of a superposition of harmonic oscillations of normal

modes. Another method of analyzing the stability of the static magnetized plasmas

is to apply the energy principle [40, 96] which is a variational approach based on

the Hermiticity of the force operator F . These methods show that the unstable

interchange modes have extremely spatially localized structures near the marginal

stability [127, 103] except when p′ � 0 on the rational surface [133] (see Chap. 3).

It is remarkably difficult to estimate the exact linear stability of the system in

the presence of a stationary shear flow, since, as seen in the previous sections, the

dynamics become non-Hermitian and both the spectral and the variational methods

lose their mathematical foundations. Dispersion relations have been studied in many

publications [66, 97, 77, 43], however, as discussed in Sec. 6.1, the evolution of

non-Hermitian system cannot be reconstructed from the formal dispersion relation,
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because we do not have a spectral theory. Since the proper asymptotic behavior of

interchange instabilities are not yet clearly shown in the presence of shear flow, we

will first analyze simplified systems focusing on the non-Hermiticity of the system.

In this section, we will derive the governing equations for magnetized plasmas with

stationary shear flows. Specifically, we will investigate the effect of shear flow on

interchange instabilities in plasmas with an ambient homogeneous magnetic field.

In the presence of gravitational force, the ideal incompressible MHD equations

are written as

ρ
dv

dt
= j ×B −∇p+ ρg, (6.10)

dρ

dt
+ ρ∇ · v = 0, (6.11)

∂tB −∇× (v ×B) = 0, (6.12)

∇ · v = 0, (6.13)

where ρ, B, and g are the density, magnetic field, and gravitational constant vector,

and d/dt = ∂t + v · ∇ denotes the Lagrangian derivative. Here we assume the

incompressibility of the velocity field v, instead of using the equation of state.

The ambient fields (denoted by the subscript 0) must satisfy

ρ0v0 · ∇v0 = j0 ×B0 −∇p0 + ρ0g. (6.14)

If we consider a parallel stationary shear flow of the form v0 = (0, vy(x), 0), straight

homogeneous magnetic field B0 = (0, By, Bz), and gravitational force acting in the

positive x direction, the convective derivative gives no contribution to the stationary

state and Eq. (6.14) is reduced to

∇p0 = ρ0g. (6.15)

The above equation denotes that the pressure gradient is balanced by the gravita-

tional force in the x direction. This is the same condition which holds for static

neutral fluids.

The perturbed magnetic and velocity fields are assumed to be two dimensional

in the xy plane, and thus we can introduce the poloidal flux function and stream

function;

B1⊥ = ∇ψ × ez,
v1⊥ = ∇φ× ez, (6.16)

where the subscript 1 denotes the perturbed quantities, ⊥ expresses the direction

perpendicular to the dominant magnetic field directed along the z axis, and ez
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denotes the unit vector in the z direction. Using these representations, we can

eliminate the pressure from governing equations.

Taking the curl of the equation of motion and projecting it along ez, we obtain

µ0ρ0[(∂t + vy∂y)∆φ− v′′y∂yφ] = B0 · ∇(∆ψ) + µ0∂yρ1g, (6.17)

where ∆ = ∂2
x + ∂2

y . In deriving Eq. (6.17) we have used the Boussinesq approx-

imation which neglects the spatial variation of the stationary state density in the

inertial term of equation of motion, but does not in continuity equation, since it

is the driving term for the interchange instability. Physically it is valid provided

that the variability in the density is due to variations in the temperature of only

moderate amounts [7]. The component of the flow perpendicular to the ambient

magnetic field can be considered consistently coming from the E ×B drift, taking

into account the ideal Ohm’s law. It is noted that, if we neglect the effect of the

magnetic field, we recover Rayleigh equation for Kelvin-Helmholtz instability of the

incompressible neutral fluid [9].

The density fluctuation can be expressed as

(∂t + vy∂y)ρ1 = −ρ′0∂yφ. (6.18)

where the prime denotes the derivative with respect to x. Now ρ′0 is considered as a

constant which introduces a destabilizing force. The induction equation is the same

as in the ordinary reduced MHD equations [123, 124]. Under the above assumptions

on the stationary fields, it reads as

(∂t + vy∂y)ψ = B0 · ∇φ. (6.19)

Equations (6.17)-(6.19) constitute a closed system of equations. It is seen that

the static system (vy = 0) governed by these equations is Hermitian. It is the

convective derivative (vy �= 0) that brings the non-Hermiticity into our system.

Actually, the system of equations (6.17)-(6.19) can be obtained directly by replacing

g = 2p/ρR0 in the high β reduced MHD equations describing tokamak plasmas [124],

where R0 denotes the major radius of the toroidal device. We will investigate the

effect of the shear flow on the interchange instabilities in following sections.

6.4 Derivation of ordinary differential equation

for Kelvin’s mode

In this section, we derive the ordinary differential equation (ODE) for the ampli-

tude of Kelvin’s mode, given in Eq. (6.8), in the case of interchange instabilities of
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plasmas. Let us first consider the electromagnetic case where B0 · ∇ �= 0. From

Eqs. (6.18)-(6.19), we have

φ = −∂−1
y ρ′−1

0 (∂t + vy∂y)ρ1 = (B0 · ∇)−1(∂t + vy∂y)ψ. (6.20)

Since we have assumed the mean velocity vy = vy(x) and the homogeneous ambient

fieldB0 = (0, By, Bz), the operator ∂t+vy∂y commutes with both ∂
−1
y and (B0·∇)−1.

Thus acting on both sides of Eq. (6.20) with the operator (∂t + vy∂y)
−1 gives

ρ1 = −ρ′0∂y(B0 · ∇)−1ψ. (6.21)

From Eq. (6.19),

∆φ = ∆(B0 · ∇)−1(∂t + vy∂y)ψ. (6.22)

Substituting Eqs. (6.20) and (6.22) into Eq. (6.17), and acting with B0 · ∇ on both

sides, we obtain

(∂t + vy∂y)∆(∂t + vy∂y)ψ =
(B0 · ∇)2
µ0ρ0

∆ψ − ρ′0g

ρ0

∂2
yψ. (6.23)

It is noted that the linearity of the ambient velocity profile allows us to eliminate

v′′y .

Since the operator on the right hand side is Hermitian, we can decompose the

flux function ψ by means of the shearing eigenmodes

ψ(x, t) =

∫
ψ̃k(t) ϕ̃(t;k,x) dk, (6.24)

where each eigenmode can be expressed by the sinusoidal function in our simplified

case

ϕ̃(t;k,x) = exp[ikxx+ iky(y − vyt) + ikzz]

= exp[ik̃x(t)x+ ikyy + ikzz]. (6.25)

Here the mean flow is assumed to be vy(x) = σx and k̃x(t) = kx−kyσt. It is explicitly
shown that the wave number in the flow shear direction is linearly increasing with

time by the distortion of perturbation due to the sheared mean flow. However,

the completeness of the modes ϕ̃ in the Hilbert space will not be lost due to the

time dependent wave number k̃x, therefore, the expansion (6.24) still gives a general

solution of the system. Since continuous variation of k̃x(t) prevents from imposing

the boundary condition in the bounded domain, we will concentrate on the analysis

of localized perturbations by considering the infinite domain. Note that ϕ̃ are the

eigenfunctions of the right hand side of Eq. (6.23), and also satisfy the characteristic

equation (6.4). It should be noted that the presence of the Laplacian operator in
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Figure 6.1: Kelvin’s mode ϕ̃(t;k,x).

the left hand side of Eq. (6.23) does not hinder the application of Kelvin’s method

since the modes ϕ̃ are as well eigenfunctions of the Laplacian ∆.

Thus, the time evolution equation for the amplitude ψ̃k can be written as

d

dt

[(
k̃x(t)

2 + k2
y

) dψ̃
dt

]
= − F 2

µ0ρ0

(
k̃x(t)

2 + k2
y

)
ψ̃ − k2

y

ρ′0g

ρ0
ψ̃, (6.26)

where F = k · B0 = kyB0y + kzB0z, and we have dropped the subscript k for

simplicity. We notice that in the absence of shear flow (σ = 0) the usual interchange

instability equation for static equilibrium can be obtained.

Our procedure can be readily shown to coincide with the traditional formulation

of Kelvin’s method consisting in the coordinate transform (t, x, y, z) �→ (T, ξ, η, ζ)

defined by

T = t, ξ = x, η = y − σtx, ζ = z, (6.27)

and the Fourier transform with respect to the new coordinates

ũ(kξ, kη, kζ;T ) =

∫∫∫ +∞

−∞
u(ξ, η, ζ ;T ) ei(kξξ+kηη+kζζ) dξ dη dζ. (6.28)

Normalizing the time t by the poloidal Alfvén time τA = a
√
µ0ρ0/F , we can

rewrite Eq. (6.26) in dimensionless form as

d

dt

[(
k̃x(t)

2 + k2
y

) dψ̃
dt

]
= −

(
k̃x(t)

2 + k2
y

)
ψ̃ + k2

y

τ 2
A

τ 2
G

ψ̃, (6.29)
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where the wave vectors are normalized by the characteristic length scale a and

τ 2
G = −ρ0/ρ

′
0g. Further we can rewrite Eq. (6.29) in the form

d2ψ̃

dt2
+ µ(t)

dψ̃

dt
+ [1− S(t)]ψ̃ = 0, (6.30)

where

µ(t) = − 2σkyk̃x(t)

k̃x(t)2 + k2
y

,

S(t) =
k2
yG

k̃x(t)2 + k2
y

,

and G = τ 2
A/τ

2
G. Drawing an analogy with Newton’s equation, µ(t) represents

the frictional term and S(t) the interchange drive term. Equation (6.30) is the

correspondent of Eq. (6.8). As we have mentioned in Sec. 6.2, the time evolution

for the amplitude of each eigenmode is no longer described by a simple exponential

function. The behavior of ψ̃ will be discussed in the following sections.

6.5 Asymptotic and transient behavior of Kelvin’s

mode

In the absence of a density gradient or shear flow, µ(t) = S(t) = 0 in Eq. (6.30)

and we have a pure oscillation representing the Alfvén wave. When we include the

density gradient, then S(t) becomes nonzero. Then, we obtain an exponentially

growing interchange instability for negative ρ′0 which exceeds the threshold value.

Since a homogeneous magnetic field is assumed here, we have no stabilizing effect

of the magnetic shear. The operator is Hermitian in these two cases, therefore we

have the simple exponential evolution with time constants for each mode.

When we include the shear flow, we have µ(t) �= 0 and we may consider an

analogy for the dynamics of a damped oscillator with time dependent frictional

coefficient µ(t). In the following subsections, we will describe both the asymptotic

and transient behavior of the amplitude ψ̃.

6.5.1 Transient behavior

In this subsection, we will analyze the transient behavior of each perturbed mode.

Since an analytic expression is not available, we discuss the time evolution by qual-

itatively analyzing the ODE (6.30). In the absence of the instability drive, we have

d

dt

[(dψ̃
dt

)2

+ ψ̃2
]
= −µ(t)

(dψ̃
dt

)2

, (6.31)
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Case σkxky µ(t = 0) µ(t→∞)
(a) − + +

(b) + − +

Table 6.1: The relation between the sign of quantity σkxky and that of effective

frictional coefficient µ(t).

where

µ(t) = − 2σkyk̃x(t)

k̃x(t)2 + k2
y

,

k̃x(t) = kx − σkyt.

Therefore, the frictional coefficient µ(t) acts as a damping term for µ > 0. It may

be considered that this damping is caused by mixing in the same way as Landau

damping which is caused by shear flow in the phase space. On the other hand, if

µ(t) < 0, the oscillator will be amplified due to shear flow.

Since the sign of the denominator in µ(t) is always positive, the behavior of the

solution will be determined by the sign the numerator

µ(t) ∝ −2σkyk̃x(t) = −2σkxky + 2(kyσ)2t. (6.32)

It can be easily understood from Eq. (6.32) that µ(t) will certainly be positive for

large t regardless of the sign of the wave number or the flow shear. Thus, we may

conclude that the shear flow acts to damp the oscillation in a time asymptotic sense.

For the negative product σkxky [Table 6.1(a)], the frictional coefficient µ(t) is always

positive, therefore, the mode will be damped from the beginning. On the other hand,

for the positive product σkxky [Table 6.1(b)], µ(t) is negative at first, and goes to

positive through zero at the instant t∗ = kx/σky. Therefore the mode experiences

an initial amplification lasting until the time t∗, which is even faster than the case

with the interchange drive only.

It is interesting to see the relations between the frictional coefficient and the wave

vector. We will take here as σ > 0 and ky > 0 for simplicity, and the same conclusion

may be drawn if we change the corresponding signs appropriately in other cases. As

is shown in Fig. 6.1, the eigenfunction is being distorted due to the stretching effect

of the shear flow, and the direction of the corresponding wave vector is also shifted.

The |k̃x(t)| of the mode with negative initial kx [see Figs. 6.1(c) and 6.2(a)] will be
increased monotonically, and its structure becomes finer and finer. Then the mixing

is promoted and its amplitude is damped. On the other hand, the |k̃x(t)| of the mode
with positive initial kx [see Figs. 6.1(a) and 6.2(b)] will be decreased in t < t∗, its
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Figure 6.2: Distortion of the wave vector due to shear flow and its effect on the

amplitude of magnetic flux.

structure once becomes the most coarse at time t = t∗, and becomes finer and finer.

Thus the amplitude of the mode is amplified in the period t < t∗, and damped after

that due to the mixing effect. One example of the numerical solutions of Eq. (6.30)

is shown in Fig. 6.3. The result corresponds to the Case (b) of the Table 6.1. It is

also seen in this figure that the initial amplification of the perturbation lasts until

the turning point t∗ = 50, then it is followed by the asymptotic decaying phase.

We have observed in the numerical solutions that there is a case where the

amplitude is amplified to the value of 1030 times larger than the initial one. From a

physical point of view, such huge amplifications may break down the linearity of the

perturbations and may lead to a nonlinear stage. This case is beyond the scope of

the linear theory and no sure conclusion can be drawn from Kelvin’s method. Such

huge amplifications are experienced by modes with large t∗ and G.

6.5.2 Asymptotic behavior

In order to study the time asymptotic behavior, we assume t ! kx/σky, 1/σ. In

this time asymptotic limit we obtain the following ODE

d2

dt2
ψ̃ +

2

t

d

dt
ψ̃ +

(
1− G/σ2

t2

)
ψ̃ = 0, (6.33)

where G = τ 2
A/τ

2
G denotes the magnitude of the instability drive term. In the absence

of the instability drive G, the time asymptotic behavior of the solution of Eq. (6.33)

is expressed as

ψ̃ ∼ 1

t
sin t, (6.34)

which coincides with the result of Koppel [92] who studied a time dependent non-

perturbative state. Since Eq. (6.33) corresponds to the spherical Bessel equation,
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Figure 6.3: Numerical integrations of Eq. (6.30) for the parameters kx = 10, ky = 1,

kz = 0, σ = 0.2, and G = 1. Initial perturbations are ψ̃ = 0 and dψ̃/dt = 1.0 at

t = 0.

its general solution for G �= 0 is expressed as

ψ̃ =
1√
t
(C1Jν(t) + C2Yν(t)), (6.35)

where Jν and Yν denote the Bessel functions, and ν = (G/σ
2 + 1/4)1/2. Therefore

the time asymptotic behavior of the mode is expressed generally as

ψ̃ ∼ 1

t
sin

(
t− πν

2
+ δ

)
, (6.36)

where δ denotes a constant phase depending on the initial condition. Therefore,

the mode oscillates with amplitude ψ̃ and decays with the inverse power of time.

While the x component of the perturbed magnetic field b̃x is proportional to ψ, the

y component b̃y is proportional to k̃x(t)ψ̃. Thus b̃y tends to the pure oscillatory

behavior

b̃y ∼ sin
(
t− πν

2
+ δ

)
, (6.37)

as k̃x(t) increases with proportional to time (see Fig. 6.3). It should be noted

that there is no threshold value for the stabilization of the interchange instability,

since we obtain the same spherical Bessel equation (6.33) for all modes. All modes

asymptotically evolve by following Eq. (6.33) independently of wave numbers k.

The final amplitude of each mode depends sensitively on the parameters. As

the shear parameter increases, the final amplitude of b̃y tends to be larger as is also

shown by Chagelishvili et al. [52], while the mixing effect on b̃x increases. It should

be noted that the instability drive G asymptotically has the effect to shift the phase

of the oscillations as seen in Eqs. (6.36) and (6.37). However, it does not affect the

principal time dependence. The combined effect of the Alfvén wave propagation

and shear flow mixing always overcomes the interchange drive. The oscillation of

the magnetic flux asymptotically decays with proportionality to the inverse power

of time.
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6.6 Interchange perturbations perpendicular to am-

bient magnetic field

When the wave vector is purely perpendicular to the ambient magnetic field, the

formulation using the flux function (6.23) fails. As for the condition with k‖ = 0, we

discuss the evolution of the stream function φ, where k‖ is a parallel wave number

to the ambient magnetic field. The governing equations are Eqs. (6.17) and (6.18),

since the flux freezing equation can be decoupled due to the fact that B0 · ∇ = 0.

Applying ∂t + vy∂y to both sides of Eq. (6.17) and substituting it into Eq. (6.18),

we obtain

(∂t + vy∂y)
2∆φ = −ρ

′
0g

ρ0

∂2
yφ, (6.38)

for a case of linear shear flow. We represent φ in terms of the shearing mode given

in Eq. (6.25),

φ(x, t) =

∫
φ̃k(t) ϕ̃(t;k,x) dk. (6.39)

By substituting Eq. (6.39) into Eq. (6.38), the following ODE is obtained

d2

dt2

[(
k̃x(t)

2 + k2
y

)
φ̃
]
= k2

yγ
2
Gφ̃, (6.40)

where γ2
G = −ρ′0g/ρ0 (= τ−2

G ) denotes the characteristic growth rate of the inter-

change instability. Here again we have dropped the subscript k for the sake of

simplicity. In order to investigate the time asymptotic behavior of each mode, we

assume t! kx/kyσ and t! 1/σ. Then Eq. (6.40) becomes

d2

dt2
φ̃+

4

t

d

dt
φ̃+

2− α

t2
φ̃ = 0, (6.41)

where α = γ2
G/σ

2 denotes the ratio between the interchange destabilizing effect

and flow shear stabilizing one (Richardson number). Note that this ODE is not

dependent on the wave numbers k. The general solution of Eq. (6.41) is

φ̃ = C1t
m+ + C2t

m− , (6.42)

where

m± =
−3±

√
1 + 4α

2
. (6.43)

The time asymptotic behavior is therefore determined by the larger index m+. Thus

we can state the condition for the boundedness of φ̃ as

α ≤ 2 ⇒ −1
2

ρ′0g

ρ0
≤ σ2. (6.44)

The condition for the boundedness of φ̃ is improved compared with the static case

(ρ′0 ≥ 0) due to the mixing effect of the shear flow. It is noted that this interchange
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Figure 6.4: Numerical integrations of Eq. (6.40) for different α. The parameters are

follows: kx = 10, ky = 2, σ = 1 and initial perturbations φ̃ = 0 and dφ̃/dt = 1.0 at

t = 0. The amplitude of the stream function in case of α = 3.3 shows the algebraic

growth corresponding to m+ � 0.35.

instability can be linearly unstable while the case with k‖ �= 0 is completely stabi-
lized. The numerical integrations of the ODE (6.40) are illustrated in Fig. 6.4. The

transient behavior is observed until t∗ = 5, and the asymptotic behavior follows.

The asymptotic behavior is algebraic with the power of m+ as analytically pointed

out.

We notice that the ‘stability condition’ is not well defined here. If we impose

the boundedness of ṽy = ik̃x(t)φ̃ ∼ t1+m+ , the same condition ρ′0 ≥ 0 as the static
case is obtained. However, if we consider the boundedness of other fields which are

represented by higher derivatives, e.g. the vortex perturbation, more strict condition

will be required. Since the mixing effect of the shear flow distorts the structure of the

perturbations into smaller scales, the fields characterized by the higher derivatives

will have stronger secularities. Unlike the static case where the evolution of the

perturbations can be expressed in the common exponential form, different quantities

exhibit different time evolutions in shear flow systems. This could be a pathological

problem of defining the ‘stability condition’ for shear flow systems.

6.7 Effect of magnetic shear on sheared plasma

flow

In order to consider the effect of the magnetic shear on sheared plasma flow, let us

consider the original linearized MHD equations instead of stream and flux functions,

which can be written in the Cartesian coordinates as

ρ0

(
∂tv1 + v0 · ∇v1 + v1x∂xv0

)
=
B0 · ∇b

µ0
−∇

(
p0 +

B0 · b
µ0

)
, (6.45)
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∂tb+ v0 · ∇b = B0 · ∇v1 + bx∂xv0, (6.46)

where b denotes the perturbed magnetic field and v0 = (0, σx, 0). Assuming B0 =

(0, B0y(x), B0z(x)), we can transform the coordinate as (x, y, z) �→ (x, η, ζ) with ζ

along the local ambient magnetic field line and η perpendicular to x and ζ . In this

coordinates, we have the stationary flow expressed as (0, v0η(x), v0ζ(x)). Here, the

spatial dependence of the velocity components is,

v0η =
1

B0
B0zσx,

v0ζ =
1

B0
B0yσx. (6.47)

If the magnetic field is homogeneous, the coordinate transformation is also spatially

homogeneous and these velocity components are still linear functions with respect

to x. Writing the above MHD equations in the new coordinates yields

ρ(∂tu+ v0η∂ηu+ v0ζ∂ζu) =
B0∂ζbx
µ0

− ∂x

(
p+

B0bζ
µ0

)
, (6.48)

ρ
(
∂tv + v0η∂ηv + v0ζ∂ζv +

B0z

B0
σu

)
=
B0∂ζbη
µ0

− ∂η

(
p+

B0bζ
µ0

)
, (6.49)

ρ
(
∂tw + v0η∂ηw ++v0ζ∂ζw +

B0y

B0

σu
)
=
B0∂ζbζ
µ0

− ∂ζ

(
p+

B0bζ
µ0

)
, (6.50)

∂tbx + v0η∂ηbx + v0ζ∂ζbx = B0∂ζu, (6.51)

∂tbη + v0η∂ηbη + v0ζ∂ζbη = B0∂ζv +
B0z

B0
σbx, (6.52)

∂tbζ + v0η∂ηbζ + v0ζ∂ζbζ = B0∂ζw +
B0y

B0

σbx, (6.53)

where u, v, and w denote the x, η, and ζ components of the perturbed velocity,

respectively. Here the evolution of the amplitude b̃x is governed by the same equation

as Eq. (6.30) for ψ̃.

If we include the magnetic shear, the inhomogeneity is also introduced in the

above coordinate transformation. As is seen from Eqs. (6.47), it brings about a

nonlinear spatial dependence of the background shear flow profile even if it is as-

sumed to be linear in original Cartesian coordinates. Thus, it is considered that

introduction of the magnetic shear seems equivalent to the study of the shear flow

different from the linear dependence on x.

6.8 Summary

Kelvin’s method of shearing modes is interpreted as a combination of both modal

and characteristic methods for the analysis of a non-Hermitian system. The shear
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flow distorts each Fourier mode, resulting in change of the wave number, which

represents the stretching effect of the shear flow (see Fig. 6.1). It is noted that the

solution obtained by this method gives the general solution of the system due to the

completeness of the sinusoidal function in the Hilbert space.

By means of this method, we have first analyzed the incompressible electromag-

netic perturbations in the presence of an interchange drive and obtained the ordinary

differential equation (6.30) for the amplitude of the modes ψ̃k. All modes show an

asymptotic decay proportional to the inverse power of time (non-exponential) with-

out any threshold value. This means that the interchange instabilities are always

damped away at sufficiently large time due to the combined effect of the Alfvén

wave propagation and distortion of modes by means of the background shear flow;

i.e. the phase mixing effect. However, the transient behavior is not common for all

modes, which depends on the initial wave numbers. Some of them show transient

amplifications which are even faster than the interchange mode in the static case.

These amplifications are so conspicuous that they may lead to the break down of

the linearity of the perturbations.

It should be noted that, since our treatment considers the case of parallel linear

shear flow, Kelvin-Helmholtz instabilities, which originate from the second order

spatial derivative of the background shear flow [7, 9], are beyond the scope of the

present theory. From a mathematical point of view, we stress that the Kelvin-

Helmholtz instability is a problem involving purely non-Hermitian operators in the

sense that the operator A of Eq. (6.1) itself becomes non-Hermitian. Thus, the

method developed in Sec. 6.2 cannot be applied. This is a well known instability in

fluid mechanics whose rigorous mathematical treatment includes highly non-trivial

difficulties. We will try to construct a spectral theory on this problem in Chap. 7.

We note that the ODE which gives the evolution of the amplitudes of the in-

terchange modes (6.30) and that of kink-type modes (Eq. (32) in Ref. [143]) are

mathematically equivalent. Of course these two modes may have spatially different

structures at least for static equilibria. However, these modes have no difference in

time evolution by means of our treatment. Thus, we can say that these terms have

the same effect in the sense that they enlarge the spectrum to unstable eigenvalues.

The equivalence stems from the assumption of a spatially homogeneous magnetic

field. However, as discussed in Sec. 6.7, the inhomogeneity of the magnetic field

hinders the applicability of Kelvin’s method.

We have also investigated the time evolution for purely perpendicular perturba-

tions (k ·B0 = 0), which do not excite the Alfvén wave, since they do not bend the

magnetic field line during their growth. The flow shear has been shown to have a sta-

bilizing effect also on purely perpendicular disturbances; however, the phase mixing
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effect alone cannot completely stabilize the interchange instabilities. The condition

for the boundedness of the mode amplitudes φ̃k can be expressed in Eq. (6.44) by

means of a ratio of instability drive to shear parameter of the mean flow. We have

shown that the time evolution of these unstable modes is again of algebraic type.

Notice that the conditions for the boundedness of different quantities do not coin-

cide. The discrepancies originate from the fact that, in shear flow systems, different

fields experience algebraic evolutions characterized by different powers of time, while

the time evolutions for any fields are expressed in a common exponential form for

static systems.


