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Abstract

One dimensional linear spectral properties for incompressible ideal magnetohydro-

dynamic (MHD) plasmas are explored for various situations. The non-triviality of

the problem mainly consists of two aspects. One is that the infinite dimensionality

of the generator induces continuous spectra. The other is that the generator in case

of finite shear flow becomes non-Hermitian (non-selfadjoint), which is not yet solved

even in modern mathematics. In addition to the viewpoint of mathematical physics,

it is also deeply related to a future energy development, magnetic fusion. For long

sustainment of a fusion plasma, at least the linear stability of the equilibrium con-

figuration is necessary. Such stability analyses are accomplished by studying spectra

of linearized MHD equations. The spectral analyses are given for point spectra and

continuous spectra for Hermitian operators (static equilibria). Also, non-Hermitian

problems due to the shear flow in magnetized plasmas are analyzed. Point spectra

and continuous spectra related to MHD modes are discussed, respectively, then the

resonance between point and continuous spectra is investigated.

The main results are as follows. Firstly, for static magnetized cylindrical plasmas,

it is shown that the marginal stability is not described by the local criterion when

pressure gradient disappears at the mode resonant surface. Then the beta (ratio of

plasma pressure to magnetic pressure) limit may increase for a stair-like pressure

profile for a stellarator even with a magnetic hill. For static magnetized slab plasmas

with sharp density gradients, the rate of the shear Alfvén continuum damping has

been analytically calculated. The result was compared with magnetic fluctuations

observed in the pellet injection experiment of Heliotron-E. Next, for a magnetized

cylindrical plasma with a rigid plasma flow, the destabilizing mechanism of external

kink mode has been clarified when the plasma is surrounded by a resistive wall. Here,

the closest position of the resistive wall to the plasma edge for the stabilization of

resistive wall mode is proposed. For a magnetized slab plasma with a linear flow

and an ambient homogeneous magnetic field, complex behavior originating from

the non-Hermiticity introduced by the shear flow has been shown for an interchange

instability. All linear instabilities will be suppressed asymptotically by the combined

effect of Alfvén wave propagation and linear flow profile with constant velocity

shear. Finally, for a slab plasma with a sheared flow, an exact spectral theory for

a particular non-Hermitian flow profile has been constructed. The mechanism of

Kelvin-Helmholtz instability is clarified, and the eigenvalue problem is shown to be

an incomplete approach.
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Chapter 1

Introduction

One dimensional linear spectral properties in single fluid magnetohydrodynamics

(MHD) were explored in this thesis by considering plasmas with and without mass

flows. Electromagnetic field equations in vacuum are linear systems. However, by

introducing magnetofluids in the system, MHD equations become highly nonlin-

ear due to coupling between the electromagnetic and fluid properties of plasmas. In

such nonlinear systems, a lot of fascinating collective phenomena will appear; chaotic

motions, self-organizations, nonlinear waves, and so on. It should be stressed that

even the linear problems, which describe the dynamics of small amplitude motion

around an equilibrium state, also contain much more interesting behavior than a

simple system of point mass, or that governed by the linear Schrödinger equation.

The infinite dimensionality of the generator induces continuous spectra, and more-

over, as well as neutral fluids, the generator in case of finite shear flow equilibrium

becomes non-Hermitian (non-selfadjoint), which is still an unresolved problem in

modern mathematics.

In addition to the above mentioned significance from mathematical physics, spec-

tral analysis of MHD is also related to an energy research for future human lives;

it is magnetic fusion. A fundamental requirement for realizing a fusion reactor is

to confine a high density and high temperature1 plasma for sufficiently long time.

In order to obtain such a plasma, magnetic confinement systems have been studied,

which basically utilize cyclotron motion of charged particle in a toroidal magnetic

field. For the sustainment of plasma as a whole, at least the linear stability of the

confined plasma is indispensable in the time scale of the plasma dynamics. Studies

of such stability properties are accomplished by the spectral analysis.

1Actually, the highest temperature was achieved at JT-60U in 1998 at more than five hundred
million degrees of centigrade, which is considered to be a few tens times higher than the core
temperature of the Sun [13].
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2 Chapter 1: Introduction

The practical magnetic confinement configurations for aiming at fusion reactors

are mainly toroidal. Thus, multi-dimensional analyses of MHD stability are required.

Multi-dimensional spectral properties for static plasmas are recently discussed in

many literatures, e.g. for 2D [56, 150] and 3D [59]. However, the multi-dimensional

stability analysis is much more difficult for the magnetized plasmas with shear flows.

In this thesis, one dimensional spectral properties are discussed rather deeply in-

cluding discrete and continuous spectra in non-Hermitian operators. First, we will

treat point spectra in Chap. 3 and continuous spectra in Chap. 4 for Hermitian oper-

ators (static plasmas). Although there are still many unresolved problems of MHD

stability in static equilibria, recently MHD stability of equilibria with plasma flows

are investigated intensively, because of the spontaneous formation of zonal flows from

electrostatic turbulence [82]. Another reason is the rotational stabilization of MHD

instabilities, e.g. resistive wall modes [122]. Recently, a confinement system which

actively uses the flow shear for the improved confinement is even proposed [101].

Thus, the latter half of the thesis is devoted to non-Hermitian problems of sheared

plasma flow. Point spectra and continuous spectra are discussed in Chap. 5 and in

Chap. 6, respectively. Finally, the resonance between point spectra and continuous

spectra is mathematically investigated in Chap. 7.

Let us describe the main results in each chapter with an emphasis on physics.

We will firstly introduce the MHD system of equations in Chap. 2. Usually, pre-

Maxwell equations for electromagnetic field, which comes from the neglect of the

displacement current, are used in ideal MHD. We will discuss in detail why and

how the displacement current will be omitted. We will also introduce the spectral

method for the analysis of linearized MHD equations. The boundary condition

is well known to affect the spectra of differential equations. Here, it is explicitly

shown that the ‘norm’ (or scalar product) also plays an essential role for especially

Hermiticity of the operator. The construction of general solution is guaranteed if

the generating operator is shown to be Hermitian under any norm. Mathematically,

boundary condition and norm are considered in the definition of the Hilbert space

in which the formal differential operators are embedded. After all description of the

mathematical background, we will summarize the spectra of incompressible MHD

equations, on which the rest part of the thesis is based.

In Chap. 3, some unusual properties of the unstable point spectra are investigated

[133, 45, 88, 47]. The Mercier (Suydam) criterion for localized interchange modes

in stellarators does not predict instability in cases where global modes are unsta-

ble. One case is non-resonant pressure driven instabilities with low mode numbers,

which become unstable even if the mode resonant surface does not exist inside the

plasma column. The other case is interchange instabilities when the pressure gradi-
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ent vanishes at the mode resonant surface. If the pressure becomes flat in a narrow

region around the mode resonant surface, high mode number instabilities may be

eliminated and the beta (ratio of plasma pressure to magnetic pressure) limit at the

particular resonant surface increases. Also radial mode structure at nearly marginal

beta changes significantly. Resonant unstable modes have a sequence of eigenval-

ues which converges to the edge of the Alfvén continuum, and the corresponding

eigenfunctions tend to localize around the resonant surface. However, non-resonant

unstable modes show the global structure and have a step like structure around

the resonant surface even in the limit of marginal beta value. Property of the non-

resonant mode and transition from the resonant to the non-resonant one are clarified

with a cylindrical plasma model for a low shear stellarator with a magnetic hill.

In Chap. 4, Alfvén continuous spectrum is picked up [132]. The MHD wave is

studied when two steep density gradient regions exist at surfaces of slab plasma. In

such a case, it is shown that the surface Alfvén wave has two branches with nearly the

same damping rates, since the steep density gradients are located closely each other.

However, for the sharp boundary plasma, the surface Alfvén wave does not damp. As

the density profile is relaxed, the damping rates become larger, pass via extremum,

and again they become small when the scale length of the density gradients becomes

extremely large. These damping rates seem consistent with behavior of magnetic

fluctuations observed in the Heliotron-E pellet injection experiment.

As an example of non-Hermitian operators, we will first analyze the effect of

the outer resistive conducting wall and the rigid flow of the plasma on external

kink instabilities in Chap. 5 [153]. Rigid plasma flow itself will not introduce non-

Hermiticity, however, the finite difference of the velocity between the resistive wall

and the plasma will be regarded as a kind of discontinuous shear of the flow. We will

firstly show the physical mechanism of Kelvin-Helmholtz instability in the neutral

fluids, then show the correspondence of external kink mode in the cylindrical plasma

with a surrounding resistive wall and a rigid plasma flow to the Kelvin-Helmholtz

instability. It is shown that the resistive wall does not only affect to push back the

plasma surface wave, but also pull to destabilize the external kink modes.

In Chap. 6, transient and secular behavior of interchange fluctuations is analyzed

in an ambient shear flow by invoking Kelvin’s method of shearing modes [143, 131].

Because of its non-Hermiticity, complex transient phenomena can occur in a shear

flow system. It is shown that, for each mode, the combined effect of shear flow

stretching and Alfvén wave propagation overcomes the instability driving force at

sufficiently long time, and damps fluctuations of the magnetic flux for all wave

numbers. On the other hand, electrostatic perturbations can be destabilized for

sufficiently strong interchange drive. The time asymptotic behavior in both cases is
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algebraic (non-exponential).

In Chap. 7, we will construct an exact mathematical formulation of neutral fluids

which contains the resonance of point spectra (diocotron modes) and continuous

ones (entropy waves) [152]. It is easily understood by the finite dimensional spectral

theory that the simple resonance among point spectra will cause secular growth of

the modes. However, by introducing a new definition of the Hilbert space, it is

shown that the resonance, which contains the energy flow from continuous spectra

to point ones, may not cause secular behavior of the perturbed quantities. By

considering another model, e.g. parallel dynamics, it is also shown in Ref. [84] that

such secular behavior will be realized due to the inclusion of the resonance between

two different continuous spectra. It means that, even if the system has no unstable

eigenvalue [91], growth of the algebraic type is possible, which may cause linear

instability of the system. It is pointed out in Appendix C that such kind of resonance

(between continuum and point spectra) is also found in the kinetic treatment of the

electrostatic oscillations (plasma oscillations).



Chapter 2

Single fluid

magnetohydrodynamics

2.1 Magnetohydrodynamic equations

At first, we will introduce non-relativistic, single fluid, ideal magnetohydrodynamic

(MHD) equations in SI units. Their derivation and validity are given in many books

(see for example, Refs. [1, 3, 10, 19, 23]). Continuity equation and equation of

motion are written as

∂tρ+∇ · (ρv) = 0, (2.1)

ρ(∂tv + v · ∇v) = j ×B −∇p, (2.2)

where ρ, v, j, B and p are fluid mass density, velocity, current density, magnetic field

and pressure, respectively. Since the time scale of plasma dynamics is considerably

faster than the heat conduction, we may assume that the each fluid element is

insulated against heat exchange with its surroundings and locally in thermodynamic

equilibrium. Consider the plasma as an ideal gas which follows the thermodynamical

equation of state p = nT , where n and T denote the particle number density and

the temperature in units of energy (J), respectively. Then the time evolution of

pressure is shown as,

∂tp+ v · ∇p + γp∇ · v = 0, (2.3)

where γ denotes the specific heat ratio. It is noted that, when we do not treat the

plasma as an ideal gas, e.g. incompressible fluid, we need another equation of state.

These set of equations describe the dynamics of the plasma. We do not consider

non-ideal kinetic effects including viscosity or resistivity of the plasma in this thesis.

For the magnetic field B and the electric field E, we use the Maxwell equations.

5



6 Chapter 2: Single fluid MHD

One of them is Faraday’s law,

∇×E = −∂tB, (2.4)

and another is Ampère’s law,

∇×B = µ0j

(
+
1

c2
∂tE

)
, (2.5)

where µ0 is the vacuum permeability, and c is the speed of the light, respectively.

Here we note that Maxwell’s displacement current (in the bracket) will often be

neglected due to the smallness of its correction on MHD dynamics in non-relativistic

regime. It is also related to the Galilei invariance of the equations, which we discuss

in the next section. Since the plasma is assumed to be a perfectly conducting

medium, the plasma resistivity is neglected and Ohm’s law becomes

E + v ×B = 0, (2.6)

which merely implies that the electric field will not appear in the rest frame of the

plasma.

These equations consist a closed set of ideal MHD: i.e. for fourteen independent

variables ρ, v, j, B, p and E, we have fourteen independent equations. In MHD

equations, the Gauss’ law for the electric field is not necessary since each fluid

element is considered to be neutralized and charge separation is not treated. It

is also noted that the Gauss’ law for the magnetic field is considered as an initial

condition. If it is initially satisfied, it will be kept forever as we can see by taking

the divergence of Eq. (2.4)1.

For later applications, let us further manipulate the above equations. Substitut-

ing Ohm’s law (2.6) into Faraday’s law (2.4) leads to the magnetic field induction

equation

∂tB −∇× (v ×B) = 0, (2.7)

which enables us to eliminate the electric field from the governing equations. More-

over, by substituting Ampère’s law (2.5) into the equation of motion (2.2), we can

eliminate the plasma current from governing equations as

ρ(∂tv + v · ∇v) =
1

µ0

(∇×B)×B −∇p, (2.8)

where we have neglected the displacement current in Ampère’s law.

1In two fluid theory, the former Gauss’ law can be also understood as an initial condition. It is
shown by taking the divergence of Eq. (2.5), denoting the electric charge as σ = e(Zni − ne), and
using continuity equations for electrons and ions.
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In summary, the single fluid MHD equations are shown as

∂tρ+∇ · (ρv) = 0, (2.9)

∂tv + v · ∇v =
1

µ0ρ
B · ∇B − 1

ρ
∇
(
p+

B2

2µ0

)
, (2.10)

∂tp+ v · ∇p+ γp∇ · v = 0, (2.11)

∂tB + v · ∇B = −B(∇ · v) +B · ∇v. (2.12)

There are eight independent variables ρ, v, B, and p, and corresponding eight

independent evolution equations.

It is noted that the ideal MHD system has no characteristic scale length in

general. They have two characteristic velocities, namely the Alfvén velocity and

the sound velocity; however, there is no other typical scale. By taking any spatial

scale with proportional to the time scale, we can write the equations into normalized

form in any size. However, if we introduce a certain non-ideal effect, this property

will be broken. For example, the Hall MHD system and the resistive MHD system

contain the ion cyclotron frequency and the resistive diffusion time, respectively.

They introduce the characteristic spatial scale when combined with the velocity

one, namely the ion skin depth and the resistive skin depth.

2.2 Galilei invariance of Maxwell equations

Galilean transformation is defined as a small velocity limit of the Lorentz transfor-

mation [5]. It is clear that the non-relativistic fluid equations are Galilei invariant.

However, the knowledge of relativity theory [25] is useful to show how the electro-

magnetic fields will be Galilean transformed. The Lorentz transformations of the

electromagnetic fields in Gaussian units are given in Ref. [20]. Transformations of

those expressions from Gaussian units to SI units can be done by means of the table

in Ref. [17].

Let the inertial system K∗ be moving with the relative velocity V with respect

to the reference frame K. Then, the electromagnetic fields in the system K∗ will be

expressed in terms of that in the system K as

E∗
⊥ = Γ (E⊥ + V ×B⊥) (2.13)

B∗
⊥ = Γ

(
B⊥ −

1

c2
V ×E⊥

)
, (2.14)

where ⊥ denotes the direction perpendicular to the relative velocity V between

two systems. The parallel component of the field will not be changed. Here Γ =

(1−V 2/c2)−1/2 denotes the Lorentz factor. Charge density σ will be combined with
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the current density j to give a four-vector, therefore, they will be transformed as

σ∗ = Γ
(
σ − 1

c2
j · V

)
(2.15)

j∗ = Γ (j − σV ). (2.16)

Of course, this combination of the transformation will not change Maxwell equations

(including displacement current). With the relativistic equation of motion, they

constitute the Lorentz invariant set of governing equations.

If we take the limit |V /c| � 1, we obtain the following set of Galilean transfor-

mation relationships;

E∗ = E + V ×B, (2.17)

B∗ = B, (2.18)

σ∗ = σ, (2.19)

j∗ = j − σV . (2.20)

In the single fluid MHD equations, however, we have no charge separation which

always give σ = 0 in the non-relativistic limit. Therefore, the current density will not

be changed by the Galilean transformation. From these relations, it is readily shown

that the pre-Maxwell equations (without displacement current) will not change their

forms by the Galilean transformations (2.17)-(2.20). Thus, it is justified that the

displacement current is neglected in the non-relativistic MHD model.

2.3 Conservation of energy

2.3.1 Nonlinear form

We will review the energy conservation relation and consider the effect of neglecting

the displacement current again. Taking the scalar product of Eq. (2.2) with v, the

left hand side leads to

ρv · (∂tv + v · ∇v) = ρ∂t

(1
2
v2

)
+ ρv · (v · ∇v) + v2

2
[∂tρ+∇ · (ρv)]

= ∂t

(1
2
ρv2

)
+∇ ·

(1
2
ρv2v

)
. (2.21)

Here, in the first equality, we have added the left hand side of continuity equation

Eq. (2.1) multiplied by v2/2. In the second equality, we have used the vector relation

v ·∇v = ∇(v2/2)−v× (∇×v). The second term of the right hand side of Eq. (2.2)
will be evaluated as

v · ∇p = 1

γ − 1∂tp+
γ

γ − 1∇ · (pv), (2.22)
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with the adiabatic equation of state (2.3).

The first term of the right hand side of Eq. (2.2) will be evaluated by means of

Maxwell equations. By taking scalar products of Eq. (2.4) with B/µ0 and Eq. (2.5)

with ε0E and adding each other, we obtain

∂t

[(ε0
2
E2

)
+

1

2µ0
B2

]
= − 1

µ0
∇ · (E ×B)− j ·E, (2.23)

where the first term of the right hand side denotes the Poynting vector, and the

second term denotes Joule heat. The first term in the right hand side of equation

of motion (2.2), therefore, will give

v · (j ×B) = −j · (v ×B) = j ·E

= −∂t
[(ε0
2
E2

)
+

1

2µ0
B2

]
− 1

µ0
∇ · (E ×B), (2.24)

where we have used Ohm’s law (2.6) in the second equality, and Eq. (2.23) in the

last.

Adding up equalities (2.21), (2.22), and (2.24), we obtain the following local

energy conservation relation:

∂t

[1
2
ρv2 +

1

γ − 1p+
(ε0
2
E2

)
+

1

2µ0
B2

]
= −∇ ·

[1
2
ρv2v +

1

µ0

E ×B +
γ

γ − 1pv
]
, (2.25)

where the round bracket denotes the contribution of the displacement current. It

is noted that the neglect of the displacement current leads to the exclusion of elec-

tric field energy from the conservation law. This may explain why the governing

equations without displacement current are called ‘magnetofluid’ or ‘magnetohydro-

dynamic’ system of equations.

2.3.2 Linearized form and energy principle for static equi-

libria

Firstly, the physical quantities are divided into the equilibrium and the perturbation

parts as

ψ = ψ0 + ψ1, (2.26)

where subscripts 0 and 1 denote the equilibrium and perturbed quantities, respec-

tively. Magnetohydrodynamic equilibria are defined by stationary class of solutions

of the governing equations given by ∂t = 0. These are expressed by the solutions of
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equations:

∇ · (ρ0v0) = 0, (2.27)

ρ0v0 · ∇v0 = j0 ×B0 −∇p0, (2.28)

v0 · ∇p0 + γp0∇ · v0 = 0, (2.29)

∇× (v0 ×B0) = 0, (2.30)

∇×B0 = µ0j0. (2.31)

It is noted that the magnetic field must also satisfy the divergence free condition

(∇·B0 = 0). In the case of static (v0 = 0) plasma, they can be very much simplified

and give

j0 ×B0 = ∇p0, (2.32)

which reduces to Grad-Shafranov equation in the toroidal axisymmetric case. Gen-

eral analyses of the equilibria with flows become a very profound problems even in

the two dimensional case (see e.g. Ref. [31]); however, it is not the subject of this

thesis. Later, we will discuss the linear spectral analyses for only simplified one

dimensional model equilibria which satisfy the above equations almost trivially.

Suppose that such a static (v0 = 0) equilibrium is obtained, and let us introduce

the displacement vector ξ for describing perturbations by

∂tξ(x, t) = v1(x, t), ξ(x, 0) = 0. (2.33)

Then, we can derive the evolution equation for ξ as

∂2
t ξ = Fξ

=
1

ρ0

[
∇(γp0∇ · ξ + ξ · ∇p0)

+
1

µ0
(∇×B0)× [∇× (ξ ×B0)]

+
1

µ0

[∇× (∇× (ξ ×B0))]×B0

]
. (2.34)

After some tedious manipulations, it can be shown that the force operator F is

Hermitian [10, 21] with respect to the scalar product

〈η | ξ〉 ≡ 1

2

∫
Ω

ρ0η̄ · ξ dV, (2.35)

where the bar denotes the complex conjugate, and Ω denotes the plasma volume

surrounded by a perfectly conducting wall. It is noted that this scalar product leads

to the energy norm which plays a very important role in the later sections.
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Hermiticity of the force operator F allows us to apply the spectral resolution

due to von Neumann theorem [28]. Moreover, we can show the conservation of the

perturbed energy

W =
1

2

∫
Ω

ρ0

(
|∂tξ|2 − ξ̄ · Fξ

)
dV, (2.36)

by multiplying ∂tξ̄ on both sides of Eq. (2.34), ∂tξ on that of the complex conjugate

of Eq. (2.34), and adding each side of equations. The conservation of W may also

be shown with the triangular bracket defined by Eq. (2.35) as

dW

dt
=
d

dt
(〈∂tξ | ∂tξ〉 − 〈ξ | Fξ〉)

= 〈∂2
t ξ | ∂tξ〉+ 〈∂tξ | ∂2

t ξ〉 − 〈∂tξ | Fξ〉 − 〈ξ | F∂tξ〉
= 〈∂2

t ξ − Fξ | ∂tξ〉+ 〈∂tξ | ∂2
t ξ −Fξ〉

= 0, (2.37)

where we have used the Hermiticity of the force operator F in the third equality.

Another important consequence of the Hermiticity is the energy principle [40, 96,

10, 21] which describes the necessary and sufficient condition for the MHD stability

of static equilibria;

δW (ξ, ξ) ≡ −〈ξ | Fξ〉 ≥ 0 (for any ξ) ←→ stable. (2.38)

However, it is noted that the Hermiticity does not hold for shear flow plasmas as

well as neutral fluids. Thus, these advantages for the linear stability theory will be

lost in shear flow systems.

2.4 Magnetohydrodynamic waves in homogeneous

plasmas

Let us review the small amplitude waves in the ideal MHD system for homogeneous

plasmas. If the plasma is flowing with a homogeneous velocity, it generates just a

uniform Doppler shift of wave frequencies. Thus, we consider static plasma here

without loss of generality. Consider the equilibrium magnetic field to be in the z

direction of the Cartesian coordinates as

B0 = (0, 0, B0z). (2.39)

Physical quantities are linearized with respect to perturbations as

ψ = ψ0 + ψ1, (2.40)
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where subscripts 0 and 1 denote the equilibrium and perturbed quantities, respec-

tively. Assume ei(k·x−ωt) dependence for perturbed fields, where k = (0, k⊥, k‖) in

the Cartesian coordinates. Then, Eqs. (2.9)-(2.12) will be combined and written

after linearization as

−iω



ρ

p

vx

vy

vz

Bx

By

Bz


= A



ρ

p

vx

vy

vz

Bx

By

Bz


, (2.41)

where the matrix A is given by

A =



0 0 0 ik⊥ρ0 ik‖ρ0 0 0 0

0 0 0 −ik⊥γp0 −ik‖γp0 0 0 0

0 0 0 0 0
ik‖B0z

µ0ρ0
0 0

0 − ik⊥
ρ0

0 0 0 0
ik‖B0z

µ0ρ0
− ik⊥B0z

µ0ρ0

0 − ik‖
ρ0

0 0 0 0 0 0

0 0 ik‖B0z 0 0 0 0 0

0 0 0 ik‖B0z 0 0 0 0

0 0 0 −ik⊥B0z 0 0 0 0


. (2.42)

Here, we have omitted the subscript 1 denoting perturbed quantities for simplicity.

The matrix A may not seem to be anti-Hermitian due to the asymmetry of the

components A14,15 and A41,51, however, it can be removable due to the vacancy

of the first column. It is also noted that the first and the second row is parallel

with each other. Physically it means that the time evolution equations which show

the continuity and the adiabatic state are not purely independent. One of the two

equations (and thus, one of two physical quantities, namely density or pressure) can

be removable from the system by means of the relation

p = c2sρ
γ, (2.43)

where cs denotes the local phase velocity of the sound wave. After the reduction of

the physical quantities, we can transform the matrix A into anti-Hermitian one by

introducing the appropriate normalizations. Reduced 7 × 7 anti-Hermitian matrix
contains the seven orthogonal eigenvectors and the corresponding eigenvalues. All

eigenvalues of the anti-Hermitian matrix give pure imaginary numbers, namely real

ω’s. Thus, there are seven types of small amplitude waves in the ideal MHD system.
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Alfvén waves Since the vx and Bx components can be easily decoupled from

others in Eq. (2.41), we can readily obtain the Alfvén wave dispersion relation as

ω = ±k‖vA, (2.44)

where the corresponding eigenvectors are written as

(vx, Bx) = (∓1,
√
µ0ρ0), ρ = p = vy = vz = By = Bz = 0. (2.45)

Here the phase velocity of the Alfvén wave is introduced as vA = B0z/
√
µ0ρ0. It

is noted that, since k · v = 0, Alfvén wave shows an incompressible transverse

perturbation of the plasma element.

Entropy wave and Magnetosonic waves The remaining five waves satisfy the

following eigenvalue problem:

−iω


p

vy

vz

By

Bz

 =


0 −ik⊥γp0 −ik‖γp0 0 0

− ik⊥
ρ0

0 0
ik‖B0z

µ0ρ0
− ik⊥B0z

µ0ρ0

− ik‖
ρ0

0 0 0 0

0 ik‖B0z 0 0 0

0 −ik⊥B0z 0 0 0




p

vy

vz

By

Bz

 . (2.46)

The eigenvalues are obtained by means of the sweeping-out method, which leads to

the dispersion relation

ω[ω4 − k2(v2
A + v2

s )ω
2 + k2k2

‖v
2
Av

2
s ] = 0, (2.47)

where vs =
√
γp0/ρ0 denotes the phase velocity of the sound wave. Thus, it is found

that there are an entropy wave which satisfies

ω = 0, (2.48)

and magnetosonic waves which satisfy

ω2 =
1

2

[
k2(v2

A + v2
s )±

√
k4(v2

A + v2
s )

2 − 4k2k2
‖v

2
Av

2
s

]
. (2.49)

Here, two of the magnetosonic waves (+ sign) denote fast waves and the other two

(− sign) denote slow waves, respectively, and k2 = k2
⊥ + k2

‖.

In the case of k‖ = 0 in Eq. (2.47), we obtain the following eigenvalues

ω = 0, (2.50)

ω = 0, (2.51)

ω = ±k⊥
√
v2
A + v2

s , (2.52)
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and the corresponding eigenvectors

ρ �= 0, p �= 0, Bz �= 0, vx = vy = vz = Bx = By = 0, (2.53)

vz �= 0, By �= 0, ρ = p = vx = vy = Bx = Bz = 0, (2.54)

ρ �= 0, p �= 0, vy �= 0, Bz �= 0, vx = vz = Bx = By = 0, (2.55)

respectively. It is noted that the slow waves are degenerated here to give zero

eigenvalues. The fast waves are reduced to a couple of oppositely propagating com-

pressional Alfvén waves.

By putting k⊥ = 0 in Eq. (2.47), we can decouple two magnetosonic waves and

the eigenvalues become

ω = 0, (2.56)

ω = ±k‖vs, (2.57)

ω = ±k‖vA, (2.58)

where the corresponding eigenvectors are shown as

Bz �= 0, ρ = p = vx = vy = vz = Bx = By = 0, (2.59)

ρ �= 0, p �= 0, vz �= 0, vx = vy = Bx = By = Bz = 0, (2.60)

vy �= 0, By �= 0, ρ = p = vx = vz = Bx = Bz = 0, (2.61)

respectively. In this case, the slow waves reduce to the sound waves which propagate

with the same mechanism in neutral fluids. It is noted that the sound waves do not

carry any electric field (E‖ = 0) in the description of single fluid MHD equations.
2

The fast waves reduce to the degenerated shear Alfvén waves whose eigenvalues and

eigenvectors are same as Eqs. (2.44) and (2.45), since x and y directions are not

distinguishable in this situation.

In general, the magnetosonic wave accompanies compression of the plasma,

k · v �= 0. This means that these two branches will be excluded from the sys-

tem by assuming incompressibility on the perturbed velocity. However, as will be

discussed in Sec. 4.3, we should be careful for an additional condition on the original

MHD system. Actually, incompressibility is consistent with the adiabatic pressure

equation only in the limit γ →∞ in the way that

γ(∇ · v)→ −1
p

dp

dt
. (2.62)

The limit γ →∞ corresponds to the situation that the sound wave will be excluded

from the system with vs → ∞. For the mathematical discussions, see Ref. [116]
and the references therein. The problem encountered in the determination of the

pressure for the incompressible fluid is also discussed in Ref. [93].
2On the contrary, in the two fluid theory, electric field plays a role in the propagation of ion

sound waves.
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2.5 Linearized one dimensional reduced magneto-

hydrodynamic equations

In this section, we will consider the linearized one dimensional reduced magnetohy-

drodynamic (RMHD) equations for a low beta static plasma. The first simplification

was done by Strauss [123].

2.5.1 Derivation

Here we will simplify the derivation without discussing the detailed physical situa-

tions. It is noted that the MHD equilibria are described as

j0 ×B0 = ∇p0, (2.63)

where the plasma current density is taken j0 = j0ez with ez denoting the unit vector

in the z direction, and the strong magnetic field is applied in the z direction.

Under the above situation, we may assume that the perturbation fields come

from two dimensional incompressible motions and are written as

v1 = ∇φ× ez, B1 = ∇ψ × ez. (2.64)

Here, φ and ψ denote the stream function and the flux function, respectively. By

assuming ρ = ρ0 = const, the continuity equation becomes a trivial relation. It

is noted that the incompressibility is a valuable relation to assume for the sim-

ple description of (magneto)fluids, however, such a simplification sometimes spoils

physical consistency. Therefore, we have to be careful for introducing additional

constraints. The consistency of the incompressibility assumption is discussed in the

Appendix A and Sec. 4.3.

Taking the curl of the equation of motion (2.10) gives the vorticity evolution

equation;

ρ0∂t(∇× v1) = B0 · ∇j1 +B1 · ∇j0 − j0 · ∇B1 − j1 · ∇B0. (2.65)

Here, the third and the last terms in the right hand side can be omitted when we

take the z component of the vorticity equation. It is because the spatial variation of

the z component in equilibrium and perturbed magnetic fields are negligible under

the application of strong magnetic field B0z. By substituting Eq. (2.64), we can

rewrite Eq. (2.65) in terms of stream function φ and flux function ψ as

∂t∆φ =
1

µ0ρ0
B0 · ∇∆ψ +

1

ρ0
(∇j0 × ez) · ∇ψ, (2.66)
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where ∆ = ∂2
x + ∂2

y denotes the two dimensional Laplacian operator in the perpen-

dicular direction of the ambient strong magnetic field (z direction).

Let us now formulate the induction equation. It is noted that the right hand

side of the induction equation (2.7) can be manipulated to give

∇× (v1 ×B0) = ∇× [(∇φ× ez)×B0]

= ∇× [(B0 · ∇φ)ez], (2.67)

where we have assumed that the axial equilibrium magnetic field is homogeneous.

Moreover, by using the relation ∇ψ × ez = ∇× (ψez), Eq. (2.7) leads to

∂t[∇× (ψez)] = ∇× [(B0 · ∇φ)ez]. (2.68)

If we omit the curl operator on both sides of this equation, we obtain

∂tψ = B0 · ∇φ, (2.69)

where it is shown in Ref. [123] that the arbitrariness of the gradient field may be

neglected due to the ambient strong magnetic field B0z.

The somewhat different formalisms which lead to three fields evolution equations

are seen for high beta tokamaks [124] or stellarators [125, 27, 32]. The latter will be

used in the analysis in Chap. 3.

2.5.2 Hermiticity of Alfvén operator

Here we discuss the formal Hermiticity of the Alfvén operator embedded in the

energy norm. First we introduce the matrix representation of the linearized RMHD

equations (2.66) and (2.69). Let B, a, and τA = a
√
µ0ρ0/B be the characteristic

magnetic field strength, scale length, and time scale, respectively. Then the physical

quantities are normalized as

φ→ a2

τA
φ, ψ → aBψ, B0 → BB, j0 →

B

aµ0
j. (2.70)

With a state vector u = T (∆φ, ψ), the evolution equations (2.66) and (2.69) are

combined and written in the operator matrix form as

∂tu = Au, (2.71)

where the operator matrix A is defined as

A =
(

0 B · ∇∆+∇j × ez · ∇
B · ∇∆−1 0

)
, (2.72)

and the superscript T denotes the transpose of the matrix.
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Magnetic derivative operator Let φ and φ∗ be two scalar functions defined in

the plasma domain Ω satisfying the boundary condition

φ = 0, φ∗ = 0 on ∂Ω. (2.73)

Then, it is readily shown that the magnetic derivative operator B · ∇ is anti-

Hermitian with the simple norm

(φ |φ∗) =

∫
φ̄φ∗ dV (2.74)

according to the equality

(φ̄B) · ∇φ∗ = ∇ · (φ̄φ∗B)− [∇ · (φ̄B)]φ∗

= ∇ · (φ̄φ∗B)− (B · ∇φ̄)φ∗,

which comes from Gauss’ law ∇ ·B = 0. It reads as

(φ |B · ∇φ∗) = −(B · ∇φ |φ∗). (2.75)

Norm of state vector u It is clear that Hermiticity condition is not obtained

with the simple norm defined by Eq. (2.74) for the state vector u. We will introduce

a ‘modified norm’ here. Let u = T (∆φ, ψ) and u∗ = T (∆φ∗, ψ∗) be two state vectors.

By taking the metric as

M =

(
−∆−1 0

0 −∆

)
, (2.76)

we can define the formal scalar product as

〈u | u∗〉 ≡ (∆φ | −∆−1 |∆φ∗) + (ψ | −∆ |ψ∗), (2.77)

where ( | ) denotes the simple norm defined by Eq. (2.74). Physically, it is shown

that this metric gives the bilinear form corresponding to perturbed energy as

〈u | u〉 =
∫
∆φ̄(−∆−1)∆φ+ ψ̄(−∆)ψ dV (2.78)

=

∫
|∇φ|2 + |∇ψ|2 dV, (2.79)

where we have omitted the factor 1/2 for simplicity.

Anti-Hermiticity of A with homogeneous B Firstly, we will assume here that

the magnetic field is spatially homogeneous. In this case, the current density j is

eliminated and A becomes

Ah =

(
0 B · ∇∆

B · ∇∆−1 0

)
. (2.80)
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By taking two state vectors u and u∗ as before, we can show the anti-Hermiticity in

the matrix form after careful calculations;

〈u | Ahu
∗〉 ≡

∫
(∆φ̄, ψ̄)MAh

(
∆φ∗

ψ∗

)
dV

= −
∫
(∆φ̄, ψ̄)

(
0 ∆−1B · ∇∆

∆B · ∇∆−1 0

)(
∆φ∗

ψ∗

)
dV

= −
∫
(∆φ̄)(∆−1B · ∇∆ψ∗) + ψ̄(∆B · ∇φ∗) dV

= −
∫
(B · ∇∆−1∆φ̄)(−∆)(ψ∗) + (B · ∇∆ψ̄)(−∆−1)(∆φ∗) dV

=

∫
T

{(
0 −B · ∇∆

−B · ∇∆−1 0

)(
∆φ̄

ψ̄

)}

×
(
−∆−1 0

0 −∆

)(
∆φ∗

ψ∗

)
dV

= −〈Ahu | u∗〉, (2.81)

where we have used the Hermiticity and anti-Hermiticity of the operator ∆ and

B ·∇ with the simple norm, respectively. Since all eigenvalues of the anti-Hermitian
operator are pure imaginary, the time evolution of A will give the simple oscillatory
behavior representing the Alfvén wave. However, it is difficult to check the Her-

miticity for the operator matrix form in the case of inhomogeneous magnetic field.

The reason is the existence of kink instability.

Hermiticity of unified scalar Alfvén operator Let us consider then the unified

scalar Alfvén operator. Combining Eqs. (2.66) and (2.69), we can write the unified

equation for the vorticity ∆φ as

∂2
t∆φ = B · ∇∆B · ∇∆−1(∆φ) + (∇j × ez) · ∇B · ∇∆−1(∆φ). (2.82)

If we just consider the operator

B · ∇∆B · ∇+ (∇j × ez) · ∇B · ∇ (2.83)

for the stream function φ with the simple norm (2.74), it seems Hermitian because

the second term yields a multiplication operator for the one dimensional MHD equi-

librium. However, since Eq. (2.82) is an evolution equation for the vorticity, we

should consider the following generator

Au = B · ∇∆B · ∇∆−1 + (∇j × ez) · ∇B · ∇∆−1, (2.84)

for the vorticity, and we should take the energy norm as discussed in the previous

paragraph. We just consider the one dimensional MHD equilibrium and take B in
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the yz (θz) plane depending only on x (r) in the Cartesian (cylindrical) coordinates.

Then, the operator (∇j × ez) · ∇B · ∇ reduces to a multiplication operator with

wave numbers in y and z (θ and z) directions. By introducing

f(x) = (∇j × ez) · ∇B · ∇. (2.85)

we may simplify the expression of the generator as

Au = B · ∇∆B · ∇∆−1 + f(x)∆−1. (2.86)

With the energy norm by following Eq. (2.77) as

〈∆φ |∆φ∗〉 = (∆φ | −∆−1 |∆φ∗), (2.87)

where ( | ) denoting the simple norm (2.74), the Hermiticity of the operator Au is

shown as

〈∆φ | Au∆φ
∗〉 = −(∆φ |∆−1B · ∇∆B · ∇∆−1∆φ∗)− (∆φ |∆−1f(x)∆−1∆φ∗)

= (B · ∇∆B · ∇∆−1∆φ | −∆−1 |∆φ∗)

+ (f(x)∆−1∆φ | −∆−1 |∆φ∗)

= 〈Au∆φ |∆φ∗〉. (2.88)

Here we have used the Hermiticity and anti-Hermiticity of the operators ∆ andB ·∇
with the simple norm, respectively.

2.6 Spectra of Alfvén waves in static equilibria

A complete spectral ordinary differential equation for studying MHD perturbations

in a static cylindrical plasma (general screw pinch) is derived by Hain and Lüst [76].

Instead of Hain-Lüst equation, we will treat a simpler equation under the assumption

of incompressibility. The spectral properties of the Alfvén wave are focused on in

the slab geometry (Sec. 2.6.1) and in the cylindrical geometry (Sec. 2.6.2). We will

start from the unified scalar Alfvén equation (2.82) without normalization;

∂2
t∆φ =

1

µ0ρ
B · ∇∆B · ∇φ+ 1

ρ
(∇j × ez) · ∇B · ∇φ, (2.89)

where we have omitted the subscript 0 denoting the equilibrium quantities. The

assumptions which we have imposed here are the incompressibility

∇ · v = 0 (2.90)

of the ideal MHD plasma instead of the adiabatic equation of state (2.3), and the one

dimensionality of the static equilibrium. The variation of the equilibrium quantities

are taken in the x (r) direction of the Cartesian (cylindrical) coordinate system.
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2.6.1 Slab geometry — continuous spectra —

The equilibrium magnetic field is assumed as

B = (0, By(x), Bz), (2.91)

with Bz = const in the Cartesian coordinates. From the homogeneity of the equi-

librium quantities in the y and z directions, the wave numbers in both directions

become good quantum numbers and we take k = (0, ky, kz). Since the generator is

Hermitian as shown in Sec. 2.5.2, we may consider the eigenvalue λ of the generator

with replacing ∂t by −iω (λ = −ω2). Then, Eq. (2.89) gives

−ω2
( d2

dx2
− k2

y

)
φ = − F

µ0ρ

( d2

dx2
− k2

y

)
Fφ+

1

µ0ρ

d2F

dx2
Fφ, (2.92)

where we have defined F (x) = k ·B(x). After some manipulations, we obtain the
following eigenmode equation;

d

dx

[
(ω2 − ω2

A)
dφ

dx

]
− k2

y(ω
2 − ω2

A)φ = 0, (2.93)

where ωA(x) = F (x)/
√
µ0ρ.

The singular solution of the spectral equation (2.93) can be obtained as follows.

Since Eq. (2.93) is a Sturmian equation, it should not have any singular solution

except the Alfvén resonance (ω2 − ω2
A = 0). Suppose that ω

2 − ω2
A(x) has the zero

of order h ( ∈ N) at x = xs, i.e.

ω2 − ω2
A(x) = c(x)(x− xs)

h, (2.94)

where c(x) is an analytic function with finite value at x = xs. It is noted that, since

the coefficient of the highest order derivative vanishes at x = xs, it constitutes a

singular point of the spectral equation (2.93). For investigating the behavior of the

solution in the vicinity of the singular point xs, we will take the leading order of the

Taylor expansion (2.94) and substitute it into Eq. (2.93), which yields

d2φ

dx2
+

h

x− xs

dφ

dx
+ k2

yφ = 0. (2.95)

It is clearly seen that the point x = xs is found to be a regular singular point of

the spectral equation (2.93). The behavior of the solution around the singular point

is investigated by means of the Frobenius expansion [16]. There is a logarithmic

singularity in the solution since two solutions of the indicial equation have an integral

difference for any h ∈ N. Therefore, the solution is written in the vicinity of the

regular singular point as

φ(x) = a1g1(x) + a2[g1(x) log |x− xs|+ g2(x)], (2.96)
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where g1(x) and g2(x) are analytic functions with g1(xs) �= 0. The energy norm

(2.77) will be applied to the solution (2.96), which now reads as

〈φ |φ〉 = (φ | −∆ |φ). (2.97)

Thus, it is found that Eq. (2.96) actually gives a non square integrable solution

corresponding to the continuous spectrum.

Furthermore, the fact that Eq. (2.96) is the only solution for the spectral equation

(2.93) is shown as follows. Let ω2
A (ω

2
A) be the lower (upper) bound value of the

Alfvén wave frequency

ω2
A = inf

x∈Ω
ω2

A (ω2
A = sup

x∈Ω
ω2

A), (2.98)

if it exists in the plasma domain Ω. Here we divide the Alfvén singular factor as

ω2 − ω2
A = (ω

2 − ω2
A) + (ω

2
A − ω2

A), (2.99)

and multiply φ̄ denoting the complex conjugate of the stream function φ. Then, the

integrated form of Eq. (2.93) gives

(ω2−ω2
A)

∫
Ω

(∣∣∣∣dφdx
∣∣∣∣2 + k2

y|φ|2
)
dx = −

∫
Ω

(ω2
A−ω2

A)

(∣∣∣∣dφdx
∣∣∣∣2 + k2

y|φ|2
)
dx. (2.100)

Since we have taken the lower bound of ω2
A by ω

2
A, we see that (ω

2
A − ω2

A) ≤ 0 at

any position. Moreover, the large round bracket of the right hand side integrand

denotes the local kinetic energy; i.e. |∇φ|2 ≥ 0. Thus, it is shown that

−
∫

Ω

(ω2
A − ω2

A)

(∣∣∣∣dφdx
∣∣∣∣2 + k2

y|φ|2
)
dx ≥ 0. (2.101)

The right hand side of Eq. (2.100) is shown to be positive and the integral of the

left hand side is also positive, therefore

ω2 ≥ ω2
A (2.102)

must hold. It is concluded that the Alfvén eigenmode equation (2.93) has no eigen-

value lower than the lower bound of the Alfvén continuous spectrum. If we trace

the same discussion on the upper bound ω2
A of the Alfvén continuum, we can also

prove that the Alfvén equation (2.93) does not have any eigenvalue upper than the

upper bound of the continuum. Since it is quite natural to assume that ωA(x) is

a smooth function of x, we may conclude that the slab Alfvén equation has only

Alfvén continuous spectrum. The spectra of Eq. (2.93) is shown as

σc = {ω2 | min
x∈Ω

ω2
A ≤ ω2 ≤ max

x∈Ω
ω2

A}. (2.103)
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It is noted here that a meticulous care should be taken for the norm of the

system. For example, in determining the square integrability of the solution (2.96),

the energy norm (2.97) plays an essential role. If we take a simple norm ( | )
here, then we find that the solution (2.96) does not give non square integrability

since the square of the logarithmic function is integrable around the singular point

x = xs. Furthermore, if we write the equation for the artificially introduced variable

φ† = (ω2 − ω2
A)φ as

d

dx

[
(ω2 − ω2

A)
d

dx

( φ†

ω2 − ω2
A

)]
− k2

yφ
† = 0, (2.104)

in order to eliminate the singularity from the equation, and take the simple norm

( | ) again, we find that even the Alfvén equation can be rewritten in apparently
non-Hermitian form. In this case, we have to take the norm as

〈φ† |φ†〉 = −
∫

φ̄†

ω2 − ω2
A

∆
( φ†

ω2 − ω2
A

)
dx, (2.105)

which recovers the original Hermiticity of the system and the non square integrability

of the solution.

It is also noted that the shear Alfvén continuum is not the only continuum in

the MHD system. Their existence is first conjectured by Grad [74]. Firstly, he

conjectured four branches of such continuum, however, it is clarified later by Appert

et al. that the MHD system contains just two [36, 69]; one is the above shear Alfvén

wave continuum, and the other is related to the sound wave.

2.6.2 Cylindrical geometry

Here the equilibrium magnetic field is assumed as

B = (0, Bθ(r), Bz), (2.106)

with Bz = const in the cylindrical coordinates. Then, we may take the wave number

vector k = (0, m/r, kz) due to the homogeneity of the equilibrium fields in the θ and

z direction. In the same way as in the slab geometry, we replace ∂t by −iω. Then,
Eq. (2.89) becomes

−ω2
[1
r

d

dr

(
r
d

dr

)
− m2

r2

]
φ = −F

[1
r

d

dr

(
r
d

dr

)
− m2

r2

]
Fφ+

m

r

dj

dr
Fφ, (2.107)

where F (r) = k · B(r). Since the relation between the current density and F (r)

differs from the slab geometry due to the curvature effect, we will obtain the following

spectral equation which is different from that in the slab geometry [Eq. (2.93)]

1

r

d

dr

[
r(ω2 − ω2

A)
dφ

dr

]
− m2

r2
(ω2 − ω2

A)φ+
2

r

dF

dr
Fφ = 0, (2.108)
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where, ωA(r) = F (r)/
√
µ0ρ.

Singular solution may be also obtained from the singularity of the equation;

ω2 = ω2
A(r) (∃r ∈ Ω). (2.109)

It is noted that, however, this singularity is no longer regular due to the existence of

the last term of Eq. (2.108). Therefore, we do not have general explicit representation

of the singular solution. Moreover, the last term in Eq. (2.108) admits the point

spectra which is the essential difference from the case in the slab geometry. Namely,

even if ω2 is less than the lower bound of the Alfvén wave frequency ω2
A = inf ω

2
A,

(ω2 − ω2
A)

∫
Ω

r

(∣∣∣∣dφdr
∣∣∣∣2 + m2

r2
|φ|2

)
dr

= −
∫

Ω

r(ω2
A − ω2

A)

(∣∣∣∣dφdr
∣∣∣∣2 + m2

r2
|φ|2

)
dr +

∫
Ω

2F
dF

dr
|φ|2 dr, (2.110)

can be satisfied for an appropriate F satisfying∫
Ω

2F
dF

dr
|φ|2 dr = −

∫
Ω

r(ω2 − ω2
A)

(∣∣∣∣dφdr
∣∣∣∣ + m2

r2
|φ|2

)
dr ≥ 0 (2.111)

for a certain nontrivial eigenfunction φ.

Due to Sturm’s oscillation theorem [16], if the solution for ω2 = 0 satisfying

the boundary condition only on r = 0 have any node in the domain Ω, we will

have unstable eigenvalue ω2 < 0 which also satisfies the boundary condition on the

plasma edge. Furthermore, the number of these point spectra are infinite, which has

a property to accumulate on the edge of the continuum ω2 = ω2
A. This property can

be used in order to judge the stability of the resonant mode which has the edge of

the continuum at ω2
A = 0. When the smallest eigenvalue is positive and the mode

has no resonant surface inside the plasma, the eigenfunction shows a global stable

oscillation, which is called the global Alfvén eigenmode [35].

2.7 Non-Hermiticity in shear flow systems

We will consider the shear flow introduced non-Hermiticity in this section. For

simplicity, we will assume that the plasma is not magnetized and consider the elec-

trostatic response. If we neglect the charge separation of the plasma, the plasma

behaves in the same way as the neutral fluids. The equilibrium velocity field is

assumed as

v0 = (0, v0y(x), 0), (2.112)
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in the Cartesian coordinates. Then, the vorticity equation (2.66) for two dimen-

sional incompressible motion of the plasma will be rewritten in the form of Rayleigh

equation as

(∂t + v0y∂y)∆φ− v′′0y∂yφ = 0. (2.113)

Here, the prime denotes the derivative with respect to x and ∆ = ∂2
x+∂

2
y . Assuming

two dimensional perturbation, the wave number in the y direction becomes a good

quantum number. Equation (2.113) will be written in the form of the Schrödinger

type as

i∂t∆φ = kyv0y∆φ− kyv
′′
0yφ. (2.114)

We can play with Eq. (2.114) on the definition of the norm. If we regard

Eq. (2.114) as a vorticity evolution equation, the generator is written as

L = kyv0y − kyv
′′
0y∆

−1. (2.115)

Firstly, let us see how the simple norm for the vorticity field works. Suppose that

the norm is defined by the enstrophy bilinear form;

〈〈Ψ |Ψ〉〉 = (∆φ |∆φ) =
∫
|∆φ|2 dV, (2.116)

where we have defined Ψ = −∆φ. Then, the first operator in Eq. (2.115) trivially
gives Hermiticity as

〈〈Ψ | kyv0yΨ
∗〉〉 =

∫
kyv0yΨ̄Ψ

∗ dV

= 〈〈kyv0yΨ |Ψ ∗〉〉. (2.117)

The second operator gives non-Hermiticity with the enstrophy norm;

〈〈Ψ | kyv′′0y∆−1Ψ ∗〉〉 = 〈〈∆−1kyv
′′
0yΨ |Ψ ∗〉〉

�= 〈〈kyv′′0y∆−1Ψ |Ψ ∗〉〉. (2.118)

However, if we define the energy norm as

〈∆φ |∆φ〉 = −
∫
(∆φ̄)∆−1(∆φ) dV

=

∫
|∇φ|2 dV, (2.119)

then, the second operator in Eq. (2.115) gives Hermiticity as

〈Ψ | kyv′′0y∆−1Ψ ∗〉 = −
∫

Ψ̄ ∆−1(kyv
′′
0y∆

−1Ψ ∗) dV

= −
∫
(kyv

′′
0y∆

−1Ψ̄)∆−1Ψ ∗ dV

= 〈kyv′′0y∆−1Ψ |Ψ ∗〉, (2.120)
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whereas the first operator gives non-Hermiticity;

〈Ψ | kyv0yΨ
∗〉 = −

∫
Ψ̄ ∆−1(kyv0yΨ

∗) dV

= −
∫
(kyv0y∆

−1Ψ̄)∆∆−1Ψ ∗ dV

= −
∫
(∆kyv0y∆

−1Ψ̄ )∆−1Ψ ∗ dV

= 〈∆kyv0y∆
−1Ψ |Ψ ∗〉. (2.121)

Let us then regard Eq. (2.114) as an evolution equation for the stream function

φ;

i∂tφ = ky∆
−1v0y∆φ− ky∆

−1v′′0yφ. (2.122)

Then, we can readily show that the first operator is non-Hermitian with the energy

norm

〈φ |φ〉 = −
∫

φ̄∆φ dV

=

∫
|∇φ|2 dV, (2.123)

however, it is Hermitian with the enstrophy norm

〈〈φ |φ〉〉 =
∫

φ̄∆2φ dV

=

∫
|∆φ|2 dV. (2.124)

On the other hand, the second operator is Hermitian with the energy norm and non-

Hermitian with the enstrophy norm. It is, therefore, concluded that the Hermiticity

of the operator does not change by the form of the evolution equation if we take the

common norm.

It has been shown that neither energy norm nor enstrophy norm gives Hermiticity

of the combined operator for the vorticity evolution equation (2.114). However, when

v′′0y �= 0 in the domain, we can make them Hermitian by taking the norm

〈〈〈φ |φ〉〉〉 =
∫

1

|v′′0y|
φ̄ φ dV. (2.125)

It is straightforwardly shown that the combined operator is Hermitian with the norm

(2.125) as

〈〈〈Ψ | ky(v0y − v′′0y∆
−1)Ψ ∗〉〉〉 =

∫
kyv0y

v′′0y
Ψ̄Ψ ∗ − Ψ̄ ky∆

−1Ψ ∗ dV

=

∫
ky
v0y′′

(v0y − v′′0y∆
−1)Ψ̄ Ψ ∗ dV

= 〈〈〈ky(v0y − v′′0y∆
−1)Ψ |Ψ ∗〉〉〉, (2.126)
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where we have assumed that v′′0y > 0 for simplicity. In this case, the spectra of the

generator ky(v0y − v′′0y∆
−1) are real, which yields stability of the system. This fact

shows that the shear flow is stable when the system does not contain any inflection

point (Rayleigh’s inflection point theorem [111, 7]).



Chapter 3

Non-resonant type pressure driven

instabilities in stellarators

3.1 Introduction

Although Mercier criterion is useful for investigating the pressure driven instabilities

in tokamaks [119] and stellarators [118], it does not predict the limiting conditions

in some cases within the ideal MHD model [107, 108]. For deriving the Mercier

criterion it is assumed that the unstable mode is radially localized near the mode

resonant surface. There is a tendency that the radial mode structure becomes narrow

in the vicinity of the mode resonant surface with the increase of mode number. Even

the interchange mode with m = 1/n = 1 also has a property that the radial mode

structure becomes highly localized near the marginal regime [126], where m (n)

is a poloidal (toroidal) mode number. This result explains why the Mercier limit

correlates with the beta limit due to the interchange instabilities with the low mode

numbers [104, 67]. However, this situation changes substantially, when the pressure

gradient becomes locally flat at the mode resonant surface [144]. Details of pressure

profile effect on the interchange modes will be shown in this paper with use of a

cylindrical plasma model for a low shear stellarator with a magnetic hill.

In order to destabilize the interchange mode, the resonant surface is not always

necessary. It is reasonable that in a low shear region with a steep pressure gradi-

ent, non-resonant modes approximately satisfying the resonant condition are desta-

bilized. First unstable non-resonant resistive modes were shown for a Heliotron-E

plasma with a highly peaked pressure profile [86]. Recently ideal non-resonant modes

were shown unstable in the central region of Heliotron-E [48], which seems consis-

tent with the m = 2/n = 1 mode triggering the sawtooth [156]. It is noted that

non-resonant modes usually have global mode structures, which requires numerical

27
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analysis to clarify the property. For studying the details of ideal non-resonant insta-

bilities we use a cylindrical plasma model which saves computational time greatly.

Since the non-resonant mode is hard to be excited in a high shear region, our interest

is in a low shear stellarator with a magnetic hill.

It is noted that Fu et al. [67] studied the relation between the Mercier modes

and the low-n modes with a full 3-D stability code for l = 2 stellarators. They found

that the unstable localized low-n modes are correlated with the Mercier criterion.

However, the stability of global-type low-n modes was found to be decorrelated from

that of Mercier modes for the case with a fairly large outward magnetic axis shift.

It seems that the strong poloidal coupling in the toroidal geometry is essential for

this type of unstable mode which may be a tokamak-type ballooning mode. In this

paper our interest is in the decorrelation between the low-n pressure driven modes

and the Suydam modes in the cylindrical model. Thus both the rotational transform

and pressure profiles are important here.

In Sec. 3.2, we derive an eigenmode equation for studying linear interchange

modes in stellarators, which is derived from the reduced MHD equations [125]. In

Sec. 3.3, we first solve the eigenmode equation analytically in the low shear limit, and

discuss about the non-resonant mode. Next we solve the same eigenvalue equation

numerically for a finite shear case in Sec. 3.4. Here we show examples to highlight

various properties for both the resonant and non-resonant modes. Finally in Sec. 3.5,

we summarize the obtained results and give some physical interpretations for the

behavior of non-resonant mode.

3.2 Eigenmode equation

For analyzing pressure driven instabilities in stellarators, we use the ideal reduced

MHD equations which are derived under the specific ordering for stellarators [125].

Intrinsically, stellarator is a three dimensional configuration which is quite difficult

and an open problem as a spectral theory. Here, by averaging in toroidal direction,

we can reduce the problem into two dimensions which is the same as axially sym-

metric systems. This approximation is valid for the modes which have toroidally

global structures and when the toroidal mode coupling do not play a major role.

The equations are written as

∂tψ = B · ∇φ, (3.1)

ρ
d∆φ

dt
= −B · ∇jz +∇κ×∇p · ez, (3.2)

dp

dt
= 0, (3.3)



3.2: Eigenmode equation 29

where

B · ∇ = B0∂z +∇ψ × ez · ∇, (3.4)

d

dt
= ∂t +∇φ× ez · ∇, (3.5)

κ =
2r cos θ

R0
+
(∇η)2
B2

0

, (3.6)

jz = −∆Az , (3.7)

Az = ψ +
1

2B0
∇〈η〉 × ∇η · ez. (3.8)

Here ψ, φ, κ′, and η denote the poloidal flux function, the stream function, the

averaged curvature of the helical magnetic field, and the magnetic field potential

due to helical coils, respectively. Bars denote the averaged equilibrium quantities

over a single helical period. The quasi-toroidal coordinates are introduced here

whose metrics are written as

d32 = dr2 + r2 dθ2 + (R0 + r cos θ)2 dζ2, (3.9)

where R0 denotes the major radius of the torus, r the minor radius, θ and ζ = z/R0

the poloidal and toroidal angle, respectively. Here the perfectly conducting wall is

placed at the plasma boundary, and the boundary conditions are given by Br =

∂θψ = 0, vr = ∂θφ = 0, and p = 0 at r = a.

In the following study, we neglect the toroidal effect in the reduced MHD equa-

tions. We also assume that the equilibrium quantities do not depend on the poloidal

angle θ. This assumption means that the averaged flux surfaces have circular cross

section in the large aspect ratio limit. Then the rotational transform is written as

ι(r) ≡ R0

rB0

dψ0

dr
, (3.10)

where the equilibrium poloidal flux function is given by ψ0(r). Since the correction

due to the diamagnetic current gives higher order contribution in this formulation,

the rotational transform includes only the vacuum helical field contribution in this

approximation.

For the stability analysis, we use the following normalization for variables,

ψ → aB0ψ, φ→ aR0

τA
φ, t→ τAt,

p→ p0(r = 0)p, r → ar, jz →
B0

µ0a
jz,

∆φ→ R0

aτA
∆φ, Az → aB0Az,

(3.11)
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where τA = R0
√
µ0ρ/B0 denotes the poloidal Alfvén time, a the minor radius of the

plasma column, respectively. Then the linearized reduced MHD equations can be

written as

γ(∆φ) = −n−mι

γ
∆[(n−mι)φ]− Ds

γ

m2

r2
φ, (3.12)

where Ds and the averaged helical curvature κ
′ are expressed as

Ds = −
β0

2ε2
p′κ′, (3.13)

κ = ε2N
(
r2ι+ 2

∫
rι dr

)
. (3.14)

Here ε ≡ a/R0 denotes the inverse aspect ratio, β0 ≡ 2µ0p0(r = 0)/B
2
0 the central

plasma beta value, andN the toroidal period number of the helical field, respectively.

In order to derive Eq. (3.12), all perturbed quantities are assumed to be proportional

to exp[γt− i(mθ+ nζ)], where m (n) denotes the poloidal (toroidal) mode number.

In Eq. (3.13), the prime denotes the derivative with respect to the normalized minor

radius r. The perpendicular Laplacian operator in Eq. (3.12) is shown as

∆ =
1

r

d

dr

(
r
d

dr

)
− m2

r2
. (3.15)

Then the ordinary differential equation (3.12) for the stream function φ with the

mode number (m,n) is written as

d2φ

dr2
+

[1
r
− 2mι′(n−mι)

γ2 + (n−mι)2

]dφ
dr

−
{m2

r2
+

1

γ2 + (n−mι)2
(3.16)

×
[(mι′

r
+mι′′

)
(n−mι)− Dsm

2

r2

]}
φ = 0,

which is an eigenmode equation with the eigenvalue γ2.

For solving Eq. (3.16), the boundary condition at the plasma surface r = 1 is

φ = 0 under the fixed boundary condition. We also impose the regularity of the

solution at r = 0. With these boundary conditions, we can set up an eigenvalue

problem for the eigenvalue or growth rate γ2 and the corresponding eigenfunction

φ.
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3.3 Analytic solution of eigenmode equation

3.3.1 Eigenmode properties for shearless case

In this subsection, we assume ι′ = 0 for obtaining an analytic solution, then

Eq. (3.16) is written as

d2φ

dr2
+
1

r

dφ

dr
+
m2

r2

[ Ds

γ2 + (n−mι)2
− 1

]
φ = 0. (3.17)

For the parabolic pressure profile, p = p0(1 − r2), the analytic solution is readily

obtained with the transformation r̃ ≡ {D̃sm
2/[γ2 + (n − mι)2]}1/2r, where D̃s =

4β0Nι. From the solution u ∝ Jm(r̃) for the (m,n) mode and the boundary condition

u = 0 at r = 1, the growth rate is written as

γ2 =
D̃sm

2

Z2(m, k)
− (n−mι)2, (3.18)

where Z(m, k) is the k-th zero point of the m-th order Bessel function of the first

kind Jm(r̃).

Although the resonant surface does not exist inside the plasma column, it is seen

that the mode satisfying n � mι is most unstable and the unstable mode has a

global structure without localizing in the radial direction unlike the resonant mode.

Further we notice that, when there is no magnetic shear, the radial mode structure,

Jm(Z(m, k)r), is not affected by the beta value. We notice from Eq. (3.18) that

the more unstable mode has the less node number, and the eigenvalue is discrete

with respect to k for the specified (m,n). The generalization of this property will

be discussed in the next subsection.

Since the left hand side of Eq. (3.18) is proportional to γ2 and the right hand

side is linear with respect to the plasma beta, the relation (3.18) gives a parabolic

line in the (β, γ) plane. Thus a small variation in β0 from the marginal equilibrium

may cause an abrupt increase of growth.

The beta limit for stability is obtained by substituting γ2 = 0 into Eq. (3.18),

which yields

β0c =
Z2(m, k)(n−mι)

4Nιm2
. (3.19)

In order to examine the beta limit of the higher harmonic modes with same helicity,

we use the transformation of the variables (m,n) �→ l(m,n), which yields

βl
0c =

Z2(lm, k)(n−mι)

4Nιm2
. (3.20)

Since Z(lm, k) > Z(m, k) for l ≥ 2, the beta limit of the higher harmonic mode, βl
0c,

is higher than the l = 1 case, β0c. This is different from the resonant modes with the

same helicity, which give the same beta limit given by the Suydam criterion [126].



32 Chapter 3: Non-resonant pressure driven instabilities

3.3.2 Radial structure of most unstable mode

In this subsection we show that the more unstable mode has the less node number

in radial direction with the specified (m,n). We follow the proof shown by Goed-

bloed and Sakanaka [72, 10]. By introducing a variable ξ = φ/r, the eigenmode

equation (3.16) is written in the Sturmian form as

d

dr

(
K
dξ

dr

)
−Gξ = 0, (3.21)

where

K(γ2; r) = r3[γ2 + (n−mι)2],

G(γ2; r) = r{(m2 − 1)[γ2 + (n−mι)2] + (3mι′r +mι′′r2)(n−mι)−Dsm
2}.

Let two solutions corresponding to two neighboring growth rates, γ2 = γ2
1 and

γ2
1 + δγ2 be ξ1 and ξ1 + δξ, respectively, which only satisfy the boundary condition

at r = 0. When we substitute the first solution ξ1 corresponding to the parameter

γ2
1 in Eq. (3.21), we obtain

d

dr

(
K(γ2

1 ; r)
dξ1
dr

)
−G(γ2

1 ; r)ξ1 = 0. (3.22)

Substituting the second solution into Eq. (3.21) and subtracting Eq. (3.22) leads to

d

dr

(
K(γ2

1 ; r)
dδξ

dr

)
−G(γ2

1 ; r)δξ = −δγ2
[ d
dr

(∂K
∂γ2

∣∣∣
γ2
1

dξ1
dr

)
− ∂G

∂γ2

∣∣∣
γ2
1

ξ1

]
. (3.23)

Assume now that ξ1(r1) = 0 at 0 < r1 ≤ 1, which is possible for an unstable

case. We make the product of δξ with Eq. (3.22), ξ1 with Eq. (3.23) and integrate

from 0 to r1. Subtracting both sides leads to

Kδξ
dξ1
dr

∣∣∣
r1
= −δγ2

∫ r1

0

[∂K
∂γ2

(dξ1
dr

)2

+
∂G

∂γ2
ξ2
1

]
dr, (3.24)

after some partial integrations, where we have used the fact that δξ(0) = 0,K(γ2
1 ; 0) =

0. Here K, G and their derivatives with respect to γ2 are all evaluated at γ2 = γ2
1 .

Since ∂K/∂γ2 = r3 and ∂G/∂γ2 = r(m2− 1), the integrand is positive for m ≥ 1 at
all radial points. Provided that δγ2 > 0, or ξ1+δξ is more unstable than ξ1, the right

hand side of Eq. (3.24) becomes negative. Since K is positive in (0, 1), the radial

position of ξ1+δξ = 0 moves to outer due to the increase of the parameter γ
2. Since

K and G are monotonic functions of γ2 for m ≥ 1, we can conclude that the radial
positions of all zeros move to the outer direction with the increase of the parameter

γ2. If we further impose another boundary condition at r = 1, it is confirmed that

the eigenvalue is discrete and the more unstable mode has the less node number. In

other words, the most unstable mode has no node.
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Figure 3.1: (a) Dependence of the beta limit on the magnetic shear parameter σ for

the non-resonant (2, 1) mode. (b) Radial mode structures in cases of σ = 0.05, 0.5,

and 2.0 for the parabolic pressure profile with β0 = 0.03.

3.4 Numerical solution of eigenmode equation

3.4.1 Resonant and non-resonant modes for standard pres-

sure profiles

We have solved Eq. (3.16) numerically by the shooting method using the fourth

order Runge-Kutta formula. At first we picked up the same eigenvalue problem as

shown in section 3.3 in order to validate the numerical code. The obtained growth

rates for the (m,n) = (2, 1) mode coincide well with the analytic solution, Eq. (3.18),

and the radial mode structures described by the Bessel function J2(r̃) seems to be

unchanged by the variation of β0.

Next we have investigated the effect of the magnetic shear on the non-resonant

modes for the standard parabolic pressure profile. For the assumed rotational trans-

form profile, ι = 0.51+σr2, σ is changed from 0.05 to 2.0. The rotational transform

profile in the case of σ = 1.69 is approximately coincides with that in Heliotron-E

[48]. When the beta value is fixed, the growth rate of the non-resonant (2, 1) mode

is decreased with the increase of the magnetic shear intensity σ. Or the beta limit

is increased almost linearly with the increase of σ as shown in Fig. 3.1. The radial

mode structure is shifted to the inner region when σ is increased (see Fig. 3.1). This

result can be interpreted in the following way. As σ is increased, there are two ef-

fects. First, the magnetic shear becomes larger in the outer region compared to the

inner region. Second, the outer region is removed further away from the resonance

than the inner region. These may account for the mode structure becoming more lo-
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calized towards the magnetic axis. Also when β0 is decreased, since the destabilizing

effect due to the plasma pressure gradient becomes weak, the non-resonant mode

can be excited only in the inner region. However, since there is no resonant surface,

the radial mode structure is not highly localized and still has a global structure.

The behavior of the growth rate near the marginal beta value for the non-resonant

mode is different from that for the resonant mode as shown in Fig. 3.2. The growth

rate of non-resonant mode decreases to zero without the tail at β0 � β0c, where β0c

is the beta limit for the non-resonant (2, 1) mode.

Here we study transition from the resonant mode to the non-resonant one. For

currentless plasmas in Heliotron-E, MHD equilibria show that the central rotational

transform is increased with the increase of beta value. When the vacuum rotational

transform at the plasma center is lower than 0.5, the resonant surface for the (2, 1)

mode exists inside the plasma column. The resonant mode may not be excited due

to the low beta value at the initial state. Experimental results show that the (2, 1)

mode becomes unstable for β0
>∼ 0.7% in the neutral beam heating plasmas, which

leads to the occurrence of sawtooth [48]. However, when the ECRH is applied to

the central region, the pressure profile becomes more peaked and the (2, 1) mode

is stabilized. These data could be understood with disappearance of the ι = 0.5

surface according to the increase of the central beta value. Linear stability of the

ideal (2, 1) mode in the toroidal geometry shows that the resonant mode appears

first, then it changes to the non-resonant mode with the increase of β0. Finally the

non-resonant mode becomes stable, when ι(0) is deviated far from 0.5 [48].

In the cylindrical model we simulate the above situation by changing the central

value of the rotational transform artificially. For clarifying the property of the non-

resonant mode, we consider a weak shear configuration with the resonant surface for

the (2, 1) mode at first. Then we exclude the resonant surface of ι = 0.5 by increasing

ι(0). Figure 3.2 shows the numerical results for the pressure profile p = p0(1− r4).

White squares correspond to the growth rates for the equilibria with rotational

transform profile, ι = 0.499 + 0.2r2, which has the resonant surface for the (2, 1)

mode at the normalized radius r � 0.07. Black squares correspond to the growth

rates for the equilibria with ι = 0.501+ 0.2r2, which has no resonant surface for the

(2, 1) mode. The beta limit for the resonant case seems to be 1.14 × 10−3 or less,

while for the non-resonant mode it is 5.97×10−3. The difference between these beta

limits correlates with the radial mode structure. In the small growth rate regime,

when β0 is decreased, the radial mode structure of the resonant mode becomes more

localized. Thus the highly localized mode with an extremely small growth rate is

possible as shown in Fig. 3.2. Thus, in the β-γ space the line for the resonant mode

case extends to the lower beta region with small growth rates. On the contrary,
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Figure 3.2: (a) Dependence of the growth rate of (2, 1) mode on the central beta value

β0 for p = p0(1− r4). Squares denote numerical results. The white ones correspond

to the resonant case and the black ones to the non-resonant case. (b) Radial mode

structures corresponding to the resonant (β0 = 1.35× 10−3), and non-resonant case

(β0 = 5.97× 10−3). Here the rotational transform profile is ι(r) = 0.499 + 0.2r2 for

the resonant case and ι(r) = 0.501 + 0.2r2 for the non-resonant case.

since the non-resonant mode cannot be localized at a particular surface, the growth

rate decreases to zero without the tail with the decrease of β0.

We may apply the Suydam criterion to resonant modes, which can be derived

from the indicial equation of Eq. (3.16) at the singular point, or the resonant surface.

It is written as
Ds

ι′2r2
s

<
1

4
, (3.25)

for the stability, where Ds and ι′ are evaluated at the resonant surface, r = rs,

for the corresponding mode. In the case of Fig. 3.2, the resonant surface of the

(2, 1) mode is rs � 0.07. Here the beta limit obtained from the criterion (3.25) is

β0 � 1.05 × 10−3. Generally it is difficult to obtain the beta limit for the resonant

mode numerically. One reason is the extension of the growth rate to the low beta

side as mentioned above, and the other is the localization of the mode structure in

the vicinity of the resonant surface. In Fig. 3.2, however, the difference between the

analytic evaluation and the numerical result is less than 10%, and the growth rate

at numerically obtained beta limit is 4.49× 10−11, which is normalized by poloidal

Alfvén time.

It is noted that the global-type mode is shown in Ref. [67] in toroidal stellarators.

However, this mode is different from the non-resonant mode shown here, since the

poloidal coupling in the toroidal geometry is essential to destabilize the global-type

mode.
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Figure 3.3: Left figure shows the pressure profiles given by Eq. (3.26) for λ = 1.

The effect of pressure flattening is very small for W = 0.01. Right figure shows the

Suydam critical β corresponding to each W .

3.4.2 Resonant modes for locally flattened pressure profiles

at resonant surface

Here we consider equilibria with the resonant surface at ι = 0.5 for the (2, 1) mode

in the plasma column, but without the pressure gradient on the resonant surface.

In the experimental situation of Heliotron-E there may exist small magnetic islands

due to resistive interchange instabilities at the low order resonant surfaces [68, 105],

which may be nonlinearly saturated at low fluctuation levels. In such a case the

equilibrium may not be violated by the resistive mode, however, the local plasma

profile will change and the pressure gradient becomes small near the resonant surface

[48, 106]. For this situation the Suydam criterion (3.25) predicts stability at the

ι = 0.5 surface.

Here we will show that low m modes can be unstable due to the finite negative

pressure gradient at elsewhere other than the resonant surface. For simplicity the

pressure profile is assumed as

p = 1− r2 + λ(r − rs) exp
[
−1
2

(r − rs

W

)2]
, (3.26)

where rs is the position of the mode resonant surface, and the choice λ = 2rs

makes p′ vanish at r = rs. The width of the flat region is controlled with the

parameterW . Several pressure profiles given by Eq. (3.26) and corresponding critical

β0 values evaluated by Suydam criterion (3.25) are shown in Fig. 3.3. We assume

ι = 0.45 + 0.2r2 and consider the (2, 1) mode again. The resonant surface exists

at rs = 0.5 where the pressure gradient vanishes. We can see that the pressure

flattening region is very narrow inW = 0.01 case, which connects with the steepness

of the pressure gradient near resonant surface, therefore, the destabilizing effect

around resonant surface is considerably large. However, we consider that the high
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Figure 3.4: (a) Dependence of the growth rate of (2, 1) mode on the central beta value

β0 forW = 0, 0.01 and 0.1. (b) Radial mode structures forW = 0 (β0 = 5.62×10−4),

and W = 0.01 (β0 = 1.05 × 10−3). The radial mode structures for W = 0.1 are

shown in Fig. 3.5.

(m,n) modes which has resonant surface close to ι � 0.5 might be stabilized by

non-MHD effect.

For three cases with W = 0, 0.01, and 0.1 shown in Fig. 3.3, growth rates

of the (2, 1) mode are shown as a function of β0 in Fig. 3.4(a). Although the

highly localized mode structure is observed in the case of W = 0, it is not localized

even in the case of W = 0.01, and the beta limit is increased with a factor of 2.

Furthermore, in Fig. 3.4(a) the growth rate decreases to zero without the tail near

the beta limit for W = 0.01, while the growth rate in the higher beta regime is not

affected. The growth rates and the radial mode structures in the case ofW = 0.1 are

shown separately in Fig. 3.5, where both the first growing mode with the maximum

growth rate and the second growing mode with the next growth rate are shown. In

Figs. 3.4(b) and 3.5(b) we see that the radial mode structures are quite different

from the case with W = 0. They are restricted in one side of the mode resonant

surface, and change sharply at the mode resonant surface in the case of W �= 0. In
order to understand the role of the second growing mode, it is interesting to study

nonlinear behavior of the (2, 1) mode for an equilibrium with a flat pressure region

in the neighborhood of resonant surface. It is considered that, since the average

magnetic shear is weak in the inner side of the resonant surface, the first growing

mode is restricted to the region [0, rs] in the case of W = 0.01, whereas in the case

of W = 0.1, it is restricted to the outer region since the average pressure gradient

seems larger in the outer side. It is noted that the beta limit of the W = 0.01 case,

β0c = 1.0× 10−3, is lower than that of the W = 0.1 case, β0c = 2.7× 10−3. In both
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Figure 3.5: (a) Dependence of the growth rate of (2, 1) mode on the central beta

value β0 for W = 0.1. (b) Radial mode structure of the first growing mode (β0 =

2.72 × 10−3) and that of the second growing mode (β0 = 2.76 × 10−3). It is noted

that the growth rates of the first growing mode are the same as those in Fig. 3.4(a).

cases the second growing mode appears in the opposite region to the first growing

mode.

To investigate why the steep mode structure appears at the resonant surface,

we expand the coefficients in Eq. (3.16) in the neighborhood of the mode resonant

surface r = rs. Since the rotational transform is expanded as ι(r) ≈ ι(rs)+ ι
′(rs)(r−

rs) + · · ·, the resonant denominator is expressed as

n−mι ≈ −mι′(rs)(r − rs) + · · · . (3.27)

Since the pressure becomes flat at the mode resonant surface, p′(rs) becomes zero,

but p′(r) is still negative in both sides of the mode resonant surface. Therefore p′′

is also zero at r = rs, thus p
′ is expanded in the neighborhood of the mode resonant

surface as

p′ ≈ p′′′(rs)

2
(r − rs)

2 + · · · , (3.28)

where p′′′(rs) < 0. Substituting the leading terms of Eqs. (3.27) and (3.28) into

Eq. (3.16) yields

d2φ

dr2
+

[1
r
+

2m2ι′2(r − rs)

γ2 +m2ι′2(r − rs)2

]dφ
dr

−
[m2

r2
− mι′(r − rs)

γ2 +m2ι′2(r − rs)2

(mι′
r
+mι′′

)
+

m2β0Np′′′(4rsι+ r2
s ι

′)

4r2
s [γ

2 +m2ι′2(r − rs)2]
(r − rs)

2
]
φ = 0. (3.29)
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Figure 3.6: Pressure profiles with the locally flat regions around the mode resonant

surface. The solid line corresponds to Eq. (3.30) and the broken line to Eq. (3.31).

As seen here, the effect of the pressure near the resonant surface appears in the

higher order with respect to (r − rs). Thus the pressure is negligible and does not

affect the steep mode structure.

In order to confirm this situation, we have calculated the radial mode structure

of nearly marginal mode for the following pressure profiles numerically. One is

p =


1

2
(1− 4r2)2 + 0.5 (r < 0.5),

1

2
[1− 4(r − 0.5)2]2 (r > 0.5),

(3.30)

and the other is

p =



1

2

(
1− 25

4
r2

)2

+ 0.5 (r < 0.4),

0.5 (0.4 < r < 0.6),

1

2

[
1− 25

4
(r − 0.5)2

]2

(r > 0.6).

(3.31)

The latter pressure profile contains a completely flat region whose width is noted

as δ in [0.4, 0.6] in order to eliminate the effect of the pressure gradient. Those

profiles are shown in Fig. 3.6. By assuming the same rotational transform profile as

the previous case in Figs. 3.4 and 3.5, the obtained mode structures are shown in

Fig. 3.7. The reason why the mode structure of the first growing mode is restricted

in the inner region is that, since the average pressure gradient is equal in both sides

of r = 0.5, the interchange mode is considered to be excited in the weaker shear

region. It is interesting that the mode structure with the sharp decrease at r = rs is

observed even though the pressure is completely flat in a region with a finite width
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Figure 3.7: (a) Radial mode structures of (2, 1) mode for the pressure profile cor-

responding to Eq. (3.30) (δ = 0 curves) and to Eq. (3.31) (δ = 0.2 curves). Both

lines show the radial mode structure of each first growing mode. Here all perturbed

functions are shown; (a) φ̃, (b) p̃, (c) ψ̃.

around the mode resonant surface. This assures our conjecture that the locally

steep profile of the mode structure such as in Figs. 3.5 and 3.7 is caused only by the

profile of the magnetic shear, not by the pressure profile any more. We note that

a non-resonant feature is seen in the radial mode structure for the second growing

mode in Fig. 3.5(b) and the first growing mode for the second pressure profile (3.31)

in Fig. 3.7(b), i.e. the peak is shifted from the resonant surface. This clearly shows

that the unstable mode is driven by the negative pressure gradient at elsewhere

other than the resonant surface.

The appearance of the sharp decrease to zero at the resonant surface in the radial

mode structure or u(r) is considered as follows. Consider a resonant layer satisfying

|r − rs| = |x| ∼ ε. Since our interest is in the small growth rate limit, γ ∼ ε is also

assumed. Under these assumptions, if we assume p′ � 0 in the resonant layer, the
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second term in Eq. (3.21) becomes negligible and

d

dr

(
K(γ2; r)

dξ

dr

)
= 0 (3.32)

decide the behavior of eigenfunction ξ(r) in the resonant layer. It is noted that

Eq. (3.32) is exactly same as that given by Rosenbluth, Dagazian and Rutherford

for the m = 1 internal kink mode in the cylindrical tokamak [113]. They gave the

solution

ξ =
1

2
ξa

[
1− 2

π
arctan

(∣∣∣mι′
γ

∣∣∣x)], (3.33)

for the boundary conditions ξ → ξa as x → −∞ and ξ → 0 as x → ∞. Since
mι′/γ ∼ O(ε−1), the eigenfunction ξ has the largest gradient at r = rs and has

a step function structure near the resonant surface. Further, since u � rsξ in the

neighborhood of the resonant layer, this type of solution may explain the behavior

of the sharp decrease to zero of the eigenfunction with the largest growth rate near

the resonant surface r = rs for γ → 0.

3.4.3 Behavior of non-resonant type mode

We will show that the non-resonant type mode is also excited even if pressure profiles

do not have exact zero gradient at the resonant surface. For small and nonzero

values of p′ at r = rs, we discuss about transition from the resonant mode to the

non-resonant type one. We assume p = p0(1 − r2)α, where α is changed from 4 to

14 (see Fig. 3.8). The profile of the rotational transform is fixed as ι = 0.4 + 0.2r2,

where the resonant surface for the (2, 1) mode exists at rs =
√
2/2. Figure 3.8

shows that the mode structure gradually changes from the resonant one to the non-

resonant type one. Particularly the α = 14 case shows that the peak of the radial

mode structure exists at the position different from the resonant surface, which

is considered as the non-resonant feature. It does have a step function structure

instead of a peak at the mode resonant surface for the nearly marginal beta value.

In other words, the driving force to the instability comes from the largest pressure

gradient region different from the resonant surface. From the sharp decrease of φ to

zero at the resonant surface in the α = 14 case, it is considered that the pressure has

almost no effect on the mode structure at the resonant surface, since p′ and p′′ are

negligibly small. In the α = 10 case, the mode structure has the maximum value at

the resonant surface; however, there exists another broad peak in the inner side of

the resonant surface. Also the growth rate vanishes without the tail near the beta

limit (see Fig. 3.8(b)). In the α = 8 case, the situation is more ambiguous. The

mode structure has a maximum value at the resonant surface and has no other peak.

However, the dependence of γ on β near the beta limit is different from the standard
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Figure 3.8: (a) Pressure profiles given by p = p0(1− r2)α for α = 4, 8, 10, and 14.

(b) Dependence of the growth rate on the central beta value β0 for different α. (c)

Radial mode structures near the beta limit for different α. The height of the mode

structure is normalized with its own maximum value.

resonant mode. Thus the case with α = 8 or 10 seems to have a mixed property

between the resonant and non-resonant type mode. For the α = 4 case, the clear

feature of the resonant mode is seen, i.e. the small growth rate regime is extended

to the low beta side in the β-γ space, and the nearly marginal mode structure is

highly localized at the resonant surface. For comparison, the beta limit given by

the Suydam criterion is calculated for each equilibrium in Fig. 3.8. Table 3.1 shows

both the beta limit obtained from Suydam criterion (3.25) at the resonant surface of

the (2, 1) mode, βS, and the one shown in Fig. 3.8(b), βn. From Table 3.1, in cases

of α ≥ 8, the non-resonant type (2, 1) modes are unstable even when the central

beta value is smaller than the Suydam limit. The beta limit in case of α = 4 almost

coincides with the Suydam limit since the radial mode structure is highly localized

around the resonant surface.
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α βS βn p′

4 1.91× 10−3 2.07× 10−3 −0.707
8 1.53× 10−2 5.92× 10−3 −8.84× 10−2

10 4.90× 10−2 7.02× 10−3 −2.76× 10−2

14 0.560 8.39× 10−3 −2.41× 10−3

Table 3.1: Comparison between the marginal beta values from Suydam criterion,

βS, and the ones shown in Fig. 3.8(b), βn. The equilibrium pressure gradient at the

resonant surface is also shown. The pressure is normalized by the central value and

the radial variable by the minor radius of the plasma column.

Finally, we considered a reversed shear profile, which will be realized in the high

beta equilibrium of toroidal stellarator. Here we assume a cylindrical plasma with

ι′ < 0 in the central region and ι′ > 0 in the outer region. We also assume the

following profile of the rotational transform,

ι = ι(0) + σr2 − λ exp
[
−1
2

(r − rc

W

)2]
, (3.34)

where σ is the previously defined shear parameter, rc is the parameter for the mini-

mum point of ι(r), and W denotes the characteristic width of non-monotonic region

of ι(r). Here σ = 0.2, rc = 0.5, W = 0.15, and λ = 0.2 are chosen as an example.

The pressure profile is again assumed to be parabolic, p = p0(1−r2). We have calcu-

lated two cases which are parameterized as follows. One is the double resonant case,

ι(0) = 0.6, in which the radial positions of two resonant surfaces for the (2, 1) mode

are at 0.35 and 0.59, where the beta limits predicted from the Suydam criterion

(3.25) are 6.61× 10−3 and 8.25× 10−3, respectively. The other is the non-resonant

case, ι(0) = 0.66, in which the rotational transform has its minimum value 0.508 at

r = 0.478. The both profiles of the rotational transform and the nearly marginal

mode structures are shown in Fig. 3.9.

In the double resonant case the radial mode structure is localized dominantly

at the inner resonant surface. The reason is that, since the beta limit from the

Suydam criterion is lower at the inner resonant surface than that at the outer one,

the pressure driven mode is more unstable at the inner resonant surface. In the

non-resonant case the radial mode structure is restricted near the minimum point

of the rotational transform and the beta limit is much lower than that in the double

resonant case. It can be interpreted that, since the pressure driven mode is excited

near the minimum point of ι in the non-resonant case, which is fairly close to ι = 0.5,

the stabilizing magnetic shear is very weak there. On the other hand, the resonant

mode is localized at the resonant surface where the magnetic shear is relatively

strong in the double resonant case, thus the beta limit becomes higher than that in
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Figure 3.9: (a) Profiles of the rotational transform for ι(0) = 0.6, σ = 0.2, rc = 0.5,

W = 0.15, λ = 0.2 (double resonance) and ι(0) = 0.66, σ = 0.2, rc = 0.5, W = 0.15,

λ = 0.2 (no resonance). (b) Radial mode structure of the (2, 1) mode near the beta

limit; β0 = 7.79×10−3 for double resonant case, or β0 = 4.87×10−4 for non-resonant

case.
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Figure 3.10: (a) Growth rate as a function of β0. (b) Radial mode structures for

β0 = 2.5× 10−2, 2.0× 10−2, 5.3× 10−3. The beta limit is estimated as 5.27× 10−3,

which is lower than the Suydam limit at the resonant surface of the (3, 2) mode.

the non-resonant case.

We have also calculated the (3, 2) mode in the non-resonant case with the ro-

tational transform shown by dashed line in Fig. 3.9(a). This mode has one res-

onant surface at rs = 0.691, where the beta limit from the Suydam criterion is

βS = 8.28 × 10−3. The numerical results are shown in Fig. 3.10. Figure 3.10(a)

shows a transition in the growth rate depending on β0, which occurs at β0 ∼ 0.02.
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This transition is understood from the mode structures shown in Fig. 3.10(b). The

maximum point of the unstable mode structure is placed at the resonant surface for

β0
>∼ 0.025. However, it moves to the inner weak shear region for the non-resonant

type mode with β0
<∼ 0.02. This type of mode structure has a small peak at rs near

the beta limit, however, it does not decrease to zero at the resonant surface as shown

previously, since the pressure gradient is not small there.

3.5 Summary

We have clarified the properties of the non-resonant pressure driven instabilities

and the relation to the resonant instabilities in the cylindrical plasma model. The

behavior of the non-resonant type mode depends strongly on the profile of both

the pressure and rotational transform. For some cases the instability has a mixed

character between the resonant and non-resonant modes. Also the transition from

the resonant mode to the non-resonant type one occurs, when the pressure gradient

is increased in the central region or the pressure profile becomes peaked.

At first we have solved the eigenmode equation analytically with respect to the

perturbed stream function for an equilibrium with a constant rotational transform

and a parabolic pressure profile. It is noted that the non-resonant mode has a global

structure, and the dependency of γ on β is parabolic [see Eq. (3.18)]. In this case it

can be shown that, the mode with fewest node number has the larger growth rate,

and the higher harmonic mode with the same helicity has the higher beta limit.

With the numerical calculations, it is shown that the growth rate of the non-

resonant mode decreases to zero without the tail near the beta limit, while the res-

onant mode has a fairly wide small growth rate regime expressed as γ ∝ e−1/
√
β0−βS

[126], where βS denotes the central beta value given by the Suydam criterion. A

physical interpretation is as follows. Although the resonant mode becomes local-

ized at the resonant surface with the decrease of the beta value, the non-resonant

mode does not have such a surface in the plasma column. Therefore the free energy

necessary to excite the non-resonant modes is always finite, since the parallel wave

number along the magnetic field line is also finite. Thus the growth rate decreases to

zero without the tail near the beta limit. In the resonant case, since the higher har-

monic modes have larger poloidal and toroidal wave numbers than the fundamental

one, they can be more localized in the radial direction. Thus the growth rates at

the same beta value are larger than the fundamental mode. However, all modes

can be highly localized at the resonant surface as the central beta value decreases,

the beta limit does not depend on the mode numbers and agrees with the Suydam

limit. On the contrary, in the non-resonant case, since the parallel wave number
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of higher harmonic mode becomes larger than the fundamental mode, the higher

harmonics need more energy for excitation in the low beta regime. Thus the beta

limit of the non-resonant mode with a higher harmonic mode number is larger than

the fundamental mode.

When the pressure profile becomes locally flattened with the width ofW around

the resonant surface, the resonant mode shows the non-resonant feature. The beta

limit in this case is increased with the small flattening region. The marginal mode

structure is quite different from the case with W = 0, i.e. it is restricted to the

one side of the resonant surface and the growth rate decreases to zero without the

tail when β0 approaches to the marginal value. It is noted that this non-resonant

feature also appears in case of the nonzero but small pressure gradient at the resonant

surface.

In Heliotron-E, when the beta value is increased, the central rotational transform

is increased and the profile becomes non-monotonic. We have studied this situation

by changing the rotational transform artificially. Even if there is no resonant surface

for the (2, 1) mode, when the minimum of the rotational transform, ιmin, is close

to 0.5, the non-resonant (2, 1) mode becomes unstable, which is independent of the

Suydam criterion. When ιmin is less than 0.5, the double resonant mode becomes

unstable. Also, the non-resonant type (3, 2) mode is unstable below the Suydam

limit at the ι = 2/3 surface. In this case the radial mode structure is observed in

the central region when ι(0) is sufficiently close to 2/3.

In later publications, the analytically approximated solution is obtained for cylin-

drical model equilibrium with the assumption that the mode structure has a step

like structure around the resonant surface [46, 47]. It is shown that the beta limit of

the non-resonant mode becomes mostly an order of magnitude higher than that ob-

tained from Suydam criterion for the smooth pressure profile. Moreover, the toroidal

effect on the non-resonant mode is also analyzed for the typical LHD configuration

by means of the numerical computation [85, 87, 88]. The radial step like structure

is also found in the toroidal case for the eigenmode with the toroidal mode number

n = 1, however, it is not the case that the eigenmode with the least node number is

the most unstable one.



Chapter 4

Phase mixing damping of surface

Alfvén wave in a slab plasma

4.1 Introduction

The first careful treatment of plasma wave in an inhomogeneous plasma was pre-

sented by Barston [39]. He applied the normal mode analysis to the electrostatic

plasma waves in the inhomogeneous cold plasma for a plane-pinch. He considered

two density profiles; one was everywhere continuous and nowhere constant, and the

other was piecewise continuous and differentiable. It was shown that there exists

no dispersion relation and the spectrum of frequency is continuous with real values

in the former case. In the latter case discrete modes appear with the same num-

ber as that of discontinuities in the density profile. Sedláček [117] had studied the

same problem using the Laplace transformation in time and showed that the nor-

mal mode approach is equivalent to the Laplace transformation approach. It was

concluded that even in the continuous profile case, there exists a dispersion relation

which Barston did not appreciate, and both continuous and discrete spectrum of

frequency appear. The dispersion relation is interpreted in the same way as in the

case of Landau damping in hot plasmas, and the discrete spectrum is considered as

the ‘virtual’ eigenmode of the system.

Uberoi [141] has pointed out that there exists an interesting similarity of the

forms between the equation governing Alfvén waves in the presence of an inho-

mogeneous magnetic field and that governing electrostatic plasma oscillations in

a cold inhomogeneous plasma. By following Barston’s analysis, the incompressible

Alfvén wave can be treated in the same way as the electrostatic plasma oscillation in

the cold inhomogeneous plasma. Tataronis and Grossmann [75, 129] also followed

Sedláček to study the incompressible shear Alfvén wave in the magnetized slab

47
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plasma. While Tataronis and Grossmann assumed the incompressibility of plasma,

Chen and Hasegawa [54] showed that the Alfvén wave damps in the inhomogeneous

plasma without assuming incompressibility, and they proposed to use the Alfvén

wave for heating the magnetically confined plasma [55].

Although these theories have mainly been developed for the surface waves at the

plasma-vacuum interface, they will be applicable to an inhomogeneous plasma with

a sharp density gradient formed by the injection of hydrogen ice pellet. Since the

pellet is considered to be ablated in a narrow region, the density has a locally peaked

profile. In the Heliotron-E experiment, magnetic fluctuations are often observed

with the magnetic probe located near the wall of vacuum chamber [155], which are

considered to be induced by the pellet injection. The frequency ωr and damping rate

ωi are evaluated from experimental data as ωr ∼ 2.3 × 106 [s−1] and ωi ∼ 6.9 × 104

[s−1]. If we assume that this magnetic fluctuation is induced by Alfvén waves and

that this damping is caused by plasma resistivity, the damping rate will be estimated

as 10-102 [s−1]. Thus we need another mechanism to enhance the damping. The

Alfvén resonance occurred in strongly inhomogeneous plasmas is such a candidate.

It is noted that a detailed experimental investigation of Alfvén continuum damping

is also reported in Ref. [51].

In Sec. 4.2, we show the wave equation for the shear Alfvén wave and discuss

its general property. We derive the dispersion relation and analytic solution for the

slab plasma with steep density gradient regions at the plasma surface in Sec. 4.4.

In Sec. 4.6, we show the numerical solution of the dispersion relation. Our interest

is in the dependence of damping rate on the scale length of density gradient. We

present an interpretation that the pellet induced magnetic fluctuation disappears

with a fairly large damping rate, when the singularity exists in the Alfvén wave

equation at the surface of slab plasma.

4.2 Alfvén wave equation

Since we are interested in magnetic fluctuations in high density and high temperature

plasmas, we use the ideal magnetohydrodynamic (MHD) equations for describing

the wave phenomena. We consider a slab configuration with straight magnetic

field lines for simplicity. It is a rough approximation for an annular high density

plasma produced by the pellet injection into a toroidal plasma [155]. The equilibrium

magnetic field is assumed in the z direction, and to vary only in the x direction; i.e.,

B0 = (0, 0, B0(x)), (4.1)
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in the Cartesian coordinate. (In the toroidal plasma, x, y, and z correspond to

radial, poloidal, and toroidal directions, respectively.) In addition, we assume that

the equilibrium mass density ρ0 and plasma pressure p0 also vary only in the x

direction.

The linearized ideal MHD equation is written as

ρ0∂
2
t ξ = −∇(γp0∇ · ξ + ξ · ∇p0)

+
1

µ0

(∇×B0)× [∇× (ξ ×B0)]

+
1

µ0
[∇× (∇× (ξ ×B0))]×B0, (4.2)

where ξ, γ, and µ0 denote the plasma displacement, the specific heat ratio, and

permeability, respectively. We use the Fourier transformation in y and z, and the

Laplace transformation in t,

ξ̃(x, k⊥, k‖, ω) =

∫ ∞

0

dt

∫ ∞

−∞
dy

∫ ∞

−∞
dz ξ(x, y, z, t) ei(ωt−k⊥y−k‖z), (4.3)

for ξ(x, y, z, t). By applying the Fourier-Laplace transformation to Eq. (4.2), the

MHD wave equation is given as [54]

d

dx

[ εαB2

ε− αk2
⊥B

2

dξ̃x
dx

]
+ εξ̃x = S∗(x, k⊥, k‖, ω), (4.4)

where

α(x) = 1 + β +
β2k2

‖B
2

ω2µ0ρ− βk2
‖B

2
, (4.5)

β(x) =
γµ0p

B2
, (4.6)

ε(x) = ω2µ0ρ− k2
‖B

2. (4.7)

Here, the subscript zero which denotes equilibrium quantity is omitted, and ξ̃x, and

S∗(x, ω) denote the Fourier-Laplace transform of the x component of the plasma

displacement vector, and the source term coming from initial conditions for the

Laplace transform, respectively, and k‖ denotes the wavenumber parallel to equilib-

rium magnetic field (z direction), k⊥ the wavenumber in the y direction. The other

components of the displacement vector ξ̃y and ξ̃z are expressed in terms of ξ̃x as,

ξ̃y = −
iαk⊥B

2

ε− αk2
⊥B

2
∂xξ̃, (4.8)

ξ̃z =
−iγµ0pk‖

ω2µ0ρ− βk2
‖B

2

ε

ε− αk2
⊥B

2
∂xξ̃. (4.9)
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The boundary conditions for Eq. (4.2) are given as ξ̃x → 0 in x → ±∞, which
correspond to the requirement that the normal component of the perturbed mag-

netic field vanishes at infinity. Notice that this MHD wave equation has a regular

singularity at ε(x0) = 0 where the wave locally satisfies the dispersion relation of the

homogeneous shear Alfvén wave. It is also noted that Eq. (4.4) is the slab simpli-

fied version of the Hain-Lust equation for the general screw pinch without magnetic

shear.

To compare the above model with toroidal experiments, we assume that |k⊥|,
corresponding to poloidal wave number, is much larger than |k‖|, corresponding to
toroidal wave number, and β <∼ 1. Since we consider the lower frequency wave than
the ion cyclotron frequency, these conditions are equivalent to |αB2k2

⊥| ! |ε|, and
therefore setting S = −k2

⊥S
∗ leads to

d

dx

[
ε(x, k‖, ω)

dξ̃x
dx

]
− k2

⊥ε(x, k‖, ω)ξ̃x = S(x, k⊥, k‖, ω). (4.10)

It is noted that this equation also has a regular singularity at ε(x = x0) = 0.

Comparing Eq. (4.10) with the incompressible plasma model [129], we notice

that the solution of Eq. (4.10) also describes an incompressible Alfvén wave. Though

Eq. (4.4) contains both shear and compressional Alfvén wave, Eq. (4.10) only con-

tains the shear Alfvén wave after |k⊥| ! |k‖| and β <∼ 1 are assumed. This means
that in large-aspect-ratio and low-β device, the shear Alfvén wave is prior to the

compressional one.

4.3 Incompressible limit of spectral equation

In this section, we will discuss the consistency of the incompressibility condition by

taking incompressible limit of the spectral ordinary differential equation (4.4).

Let us first show the relations among perturbed fields under the incompressible

assumption. In the incompressible case [30, 110, 141], the slab Alfvén equation is

written as [
∂2
t −

1

µ0ρ0

(B0 · ∇)2
]
ξic = − 1

ρ0

∇
(
pic

1 +
B0 ·Bic

1

µ0

)
, (4.11)

with the incompressibility condition

∇ · ξic = 0, (4.12)

where the superscript ic denotes the perturbed fields under incompressible assump-

tion. Here we will consider the same equilibrium magnetic field with the compressible
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case (4.1). Hence, some tedious algebra gives the relation between y and z com-

ponent of the displacement vector, perturbed pressure pic
1 , and x component of the

displacement vector in the Fourier transformed form as

ξ̃ic
y =

ik⊥
k2
⊥ + k2

‖
∂xξ̃

ic
x (4.13)

ξ̃ic
z =

ik‖
k2
⊥ + k2

‖
∂xξ̃

ic
x (4.14)

p̃ic
1 =

ω2ρ0

k2
⊥ + k2

‖
∂xξ̃

ic
x − ξ̃ic

x

dp0

dx
, (4.15)

where we have used the equilibrium relation

d

dx

(
p0 +

B2
0

2µ0

)
= 0. (4.16)

In order to take the incompressible limit of the physical quantities from the ex-

pression obtained under compressible condition, we can invoke the limit of γ → ∞
as discussed in Appendix A. It is readily shown that the limit γ → ∞ on the ex-

pressions (4.8) and (4.9) in the compressible case converges to the values (4.13) and

(4.14) evaluated under incompressible condition, respectively. However, the expres-

sion of the pressure is not so trivial. Actually, simple substitution of Eqs. (4.13) and

(4.14) into the adiabatic relation

p̃1 = −ξ̃ · ∇p0 − γp0(∇ · ξ̃) (4.17)

will not give the same expression with Eq. (4.15). Since ∇ · ξ̃ approaches to zero in
the limit γ → ∞, we have to include the higher order contributions in the second
term of Eq. (4.17). Substituting the expressions (4.8) and (4.9) into Eq. (4.17), the

perturbed pressure under compressible condition will be represented in terms of the

x component of the displacement vector as

p̃1 = −ξ̃x
dp0

dx
− γp0∂xξ̃x

[
1 +

αk2
⊥B

2

ε− αk2
⊥B

2
+

γµ0pk
2
‖

ω2µ0ρ− βk2
‖B

2

ε

ε− αk2
⊥B

2

]
= −ξ̃x

dp0

dx
− γp0εω

2µ0ρ0

(ε− αk2
⊥B

2)(ω2µ0ρ0 − βk2
‖B

2)
∂xξ̃x. (4.18)

By taking the limit γ →∞ directly on Eq. (4.18), it gives

p̃1 → −ξ̃x
dp0

dx
+

ω2ρ0

k2
⊥ + k2

‖
∂xξ̃x, (4.19)

which exactly coincides with the relation (4.15) obtained with incompressible as-

sumption.

Thus, it is conclude here that the incompressible result can be obtained by taking

the limit γ → ∞ on the relations from compressible system of equations, and this

limit keeps exact consistency with the adiabatic equation of state.
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Figure 4.1: Profile of ε(x, k‖, ω) = ω2µ0ρ(x) − k2
‖B

2(x), where εI and εII are only

functions of k‖ and ω. The positions x = ±b correspond to the surfaces of high
density plasma.

4.4 Derivation of dispersion relation

Since the wave equation (4.10) is inhomogeneous, we can solve this equation by

using a Green function. When the inverse Laplace transformation is carried out for

ξ̃, the contribution from poles of the Green function becomes dominant for t→∞.
For the magnetized plasma with sharp gradients near the surface regions, we assume

a profile of ε which consists of three spatially constant regions and two linear ones

described as

ε(x, k‖, ω) =



εI (x < −b)
δx+ η (−b < x < −a)
εII (−a < x < a)

−δx+ η (a < x < b)

εI (b < x)

, (4.20)

where εI = ω2µ0ρI−k2
‖B

2
I , εII = ω2µ0ρII−k2

‖B
2
II, ρI,II and BI,II are the constant values,

and δ(k‖, ω) = (εII − εI)/(b− a), η(k‖, ω) = (bεII − aεI)/(b− a). The schematic form

which is symmetric with respect to x is illustrated in Fig. 4.1. This model may be

applicable to an annular high density plasma produced by an injected ice pellet.

The region (−b, b) describes the high density one and the regions (−∞,−b) and
(b,∞) correspond to the background density ones. The following analysis to obtain
the dispersion relation of shear Alfvén wave is parallel to that of Sedláček [117].

There exist non-collective oscillations due to the branch-point singularities of

the Green function, which damp proportional to inverse power of time. Since the

frequencies of these oscillations, however, depend on position, their behavior may

not be seen from the outer magnetic probe [129]. Since the Green function also has

simple poles in (a, b) and (−b,−a), their contribution becomes dominant for t→∞.
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Since Eq. (4.10) is an inhomogeneous differential equation of Sturm-Liouville

type, the solution can be expressed in terms of the Green function, which can be

written as

G(x, s; k⊥, k‖, ω) =


J−1[ξ̃(1)(x, k⊥, k‖, ω) ξ̃(2)(s, k⊥, k‖, ω)] (x < s)

J−1[ξ̃(1)(s, k⊥, k‖, ω) ξ̃(2)(x, k⊥, k‖, ω)] (s < x)

. (4.21)

Here ξ̃(1) and ξ̃(2) are homogeneous solutions of the differential equation (4.10) with

satisfying the boundary condition at x = −∞ and x = ∞, respectively, J is the
conjunct of ξ̃(1) and ξ̃(2),

J(k⊥, k‖, ω) = ε(x)
[
ξ̃(1)
dξ̃(2)
dx

− dξ̃(1)
dx

ξ̃(2)

]
=
1

2
k⊥εIIz1z4e

2k⊥aD(k⊥, k‖, ω), (4.22)

which can be proved independent of x and s. Here we have introduced the dispersion

function

D(k⊥, k‖, ω) = ([I0(z2) + I1(z2)][K0(z1) + K1(z1)]− [I0(z1)− I1(z1)][K0(z2)−K1(z2)])

× ([I0(z3)− I1(z3)][K0(z4)−K1(z4)]− [I0(z4) + I1(z4)][K0(z3) + K1(z3)])

+ e−4k⊥a([I0(z2)− I1(z2)][K0(z1) + K1(z1)]− [I0(z1)− I1(z1)][K0(z2) + K1(z2)])

× ([I0(z4) + I1(z4)][K0(z3)−K1(z3)]− [I0(z3) + I1(z3)][K0(z4)−K1(z4)]),(4.23)

and zi (i = 1-4) which depend on k⊥, k‖, and ω denote the quantity associated with

the scale length of the density gradient,

z1 = −z4 =
εI

εII − εI
k⊥(b− a), (4.24)

z2 = −z3 =
εII

εII − εI
k⊥(b− a), (4.25)

and In and Kn denote the n-th order modified Bessel function of the first and the

second kind, respectively.

With the Green function (4.21), the solution for Eq. (4.10) is described as

ξ̃x(x, k⊥, k‖, ω) =

∫ ∞

−∞
G(x, s; k⊥, k‖, ω)S(s, k⊥, k‖, ω) ds. (4.26)

Then the plasma displacement in the real space is expressed by carrying out the

inverse Fourier-Laplace transformation of Eq. (4.26),

ξ(x, y, z, t) =
1

(2π)3

∫
C
dω

∫ ∞

−∞
dk⊥

∫ ∞

−∞
dk‖ ξ̃(x, k⊥, k‖, ω) e

i(k⊥y+k‖z−ωt), (4.27)
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where C denotes the integration path in the complex ω plane. When there exist poles
of the Green function, their contribution becomes dominant in the limit t → ∞.
Therefore J = 0 gives a dispersion relation:

D(k⊥, k‖, ω) = 0. (4.28)

Although the discussion of this paper is mainly concerned with density gradient,

dispersion relation (4.28) is applicable to the case with inhomogeneous magnetic

field.

4.5 Analytic solutions of dispersion relation

If we assume that the density gradients are steep, |k⊥(b − a)| � 1, to obtain the

analytic solution, the dispersion relation (4.28) has two branches shown as

coth(k⊥a) +
z2

z1
+ z2 log

z2

z1
= 0, (4.29)

tanh(k⊥a) +
z2

z1
+ z2 log

z2

z1
= 0. (4.30)

We need to consider Riemannian sheets for the logarithmic function with complex

argument. Since there exist no solution on n = 0 Riemannian sheet, we carry out the

analytic continuation into the other sheets and then calculate the weakest damping

solution (or |ωr| ! |ωi| in ω = ωr + iωi). Two solutions exist on the n = 1 sheet,

which are expressed as

ωr1 = k‖

√
B2

I + θB2
II

µ0(ρI + θρII)
,

ωi1

ωr1
= −1

4
πθk⊥(b− a)(1− e−2k⊥a)

× µ0ρIρII(V
2
AI − V 2

AII)

(ρI + θρII)(B2
I + θB2

II)
,

(4.31)



ωr2 = k‖

√
θB2

I +B2
II

µ0(θρI + ρII)
,

ωi2

ωr2
= −1

4
πk⊥(b− a)(1− e−2k⊥a)

× µ0ρIρII(V
2
AI − V 2

AII)

(θρI + ρII)(θB2
I +B2

II)
,

(4.32)

respectively, which describe the surface Alfvén waves. Here θ = tanh(k⊥a) is the

parameter associated with the width of central constant density region, and VA

denotes the Alfvén velocity. Subscripts I and II denote the central and outer constant
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regions in Fig. 4.1, respectively. It can be easily shown that the solutions on the

other Riemannian sheets damp faster than those on the n = 1 sheet by replacing π

in ωi1 and ωi2 with (2n− 1)π.

Both real frequencies ωr1 and ωr2 are proportional to k‖, which is the same as

the frequency of shear Alfvén wave in homogeneous plasmas, however, they include

the parameter θ dependent on k⊥. The damping rates are proportional to the scale

length of the density gradient, b−a, and |ωi1| and |ωi2| are nearly equal to each other.
Therefore, in the sharp boundary limit (b − a → 0), these modes show undamped

oscillations. When the distance of two density gradient regions, 2a, goes to infinity

with keeping (b− a) constant, both the frequencies and damping rates of these two

branches converge to the same value, which coincides with Chen and Hasegawa [54].

4.6 Numerical solutions of dispersion relation

In order to evaluate accuracy of the analytic solutions in Eqs. (4.31) and (4.32),

numerical solutions of Eq. (4.28) are shown for the particular parameters. In the

numerical calculations, it is useful to define the following dimensionless variables:

b̂ =
b

a
, ρ̂ =

ρII

ρI

, k̂‖ = k‖a, k̂⊥ = k⊥a,

ω̂2 =
ω2a2

B2
I /µ0ρI

, β̂ = 1−
(BII

BI

)2

.

(4.33)

Then the arguments of the modified Bessel functions are expressed in terms of these

variables as

z1 = k̂⊥(b̂− 1)
ω̂2 − k̂2

‖

ω̂2(ρ̂− 1) + k̂2
‖β̂
, (4.34)

z2 = k̂⊥(b̂− 1)
ω̂2ρ̂− k̂2

‖(1− β̂)

ω̂2(ρ̂− 1) + k̂2
‖β̂
. (4.35)

The numerical solutions of the dispersion relation (4.28) corresponding to ω1 and

ω2 are shown in Fig. 4.2. Here we have used the following values for dimensionless

parameters,

k̂⊥ = 1, k̂‖ = 0.01, β̂ = 0, ρ̂ = 6, (4.36)

and we have taken into account of the n = 1 Riemannian sheet. Though the

damping rates are proportional to the scale length of the density gradient in the

sharp boundary limit, they do not continue to increase monotonically with the scale

length. They have extrema at b̂ � 1.9 for ω1 and b̂ � 1.4 for ω2, and when the

scale length of the density gradient becomes larger than this value, they turn out
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Figure 4.2: Dependence of normalized frequency ω̂r and damping rate ω̂i on the

scale length of the density gradient. The left figure denotes the frequency and the

right one the damping rate. The subscripts 1 and 2 denote the solutions of the exact

dispersion relation (4.28) corresponding to Eq. (4.31) and (4.32), respectively.

to decrease with increase of b̂. It is considered that ω̂i finally go to zero in the

limit b̂ → ∞. Also, ω̂r1 is considered to have a limiting value of 0.01, which is

equivalent to the relation ω = k‖VAI. On the other hand, ω̂r2 is considered to have

a limiting value of 0.01 ×
√
1/6, which is equivalent to the relation ω = k‖VAII. In

the region with b̂ ∼ 1, we observe that the analytic solutions (4.31) and (4.32) agree
with numerical results. In this region these two branches have almost the same

damping rates, however, in the region b̂ >∼ 1.5, the branch ω2, which has a smaller

frequency, has weaker damping rate than ω1. Since the density profile approaches

to a homogeneous one at ρ = ρI with increase of the scale length of the density

gradients, b − a, the branch ω2 remains prior to the other. We also observed that

the maximum points of the damping rates go to the right with the increase of the

fraction of the density ρ̂. They do not move leftward or rightward due to the change

of β̂, although the damping rates themselves increase.

Figure 4.3 shows the deviation of the analytic damping rate from the numerical

one. Here the same parameters as in Eq. (4.36) are used. The analytic solution

is valid only for the case with the steep density gradient b̂ <∼ 1.2. The error of the
analytic solution is about 10% at b̂ = 1.2.

4.7 Summary

It is confirmed that two branches of the surface Alfvén wave exist for the slab

plasma, since there are two sharp jump regions of density. However, the frequencies

and damping rates of both branches are almost comparable, when the density jump

is substantial. It is interpreted that the magnetic fluctuations induced by the pellet
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Figure 4.3: Comparison between analytic solution and numerical one of damping

rate ω̂i1 in Fig. 4.2. The normalized frequency of the analytic solution ω̂r1 is inde-

pendent of the scale length of the density gradient.

injection in Heliotron-E are surface Alfvén waves corresponding to Eq. (4.31) or

Eq. (4.32). These modes damp with finite scale length of the density gradient. In

the limit of sharp boundary, (b − a) → 0, Eqs. (4.31) and (4.32) give undamped

oscillations, and so do in the limit of homogeneous plasma, (b−a)→∞. That is to
say, these two modes exist in the sharp boundary limit, while continuous spectrum

does not appear.

The initial annular density profile produced by the pellet may have sharp density

gradients satisfying b̂ >∼ 1, and the analytic treatment is valid to estimate ωr and ωi

for comparison with experiments. For example, provided typical plasma parameters

for Heliotron-E are assumed as BI = BII = 1.9 [T], nI = 1019 [m−3], nII = 6nI,

a = 10−1 [m], b− a = 10−2 [m], k⊥ = 10 [m
−1], and k‖ = 2× 10−2 [m−1], we obtain

ωr1 ∼ 2×106 [s−1], and ωi1 ∼ 6×104 [s−1], which is comparable to the experimental

values expressed in the introduction, and the frequency ωr1 is much less than the

ion cyclotron frequency ωci ∼ 1.8 × 108. The damping rate is enhanced with the

decrease of the density gradient by radial particle transport.





Chapter 5

External kink instabilities in

presence of resistive wall

5.1 Introduction

The first research on plasma stability under the existence of surrounding resistive

wall was back in the paper by Kruskal et al. [94]. They pointed out that, in stellara-

tors which were designed for aiming at stationary operation, the external kink mode

will be destabilized due to the penetration of magnetic field in long time discharges,

while it would be stabilized in a shorter time scale due to the stabilizing effect of the

wall. Later, Pfirsch and Tasso [109] showed that the ideal wall has actually the sta-

bilizing effect on external kink mode of the static plasma due to non-penetration of

the magnetic field. In reality, since the surrounding wall has always small but finite

resistivity, there appear slow instabilities which grow in a time scale proportional to

the resistivity of the wall. The conclusion then is that, the conducting wall should

not be considered as a perfect stabilizing tool for the external kink mode of static

plasmas.

Goedbloed et al. [71] calculated the spectrum of the external kink mode for

a z-pinch plasma surrounded with a resistive wall. Here a constant density and

magnetic field with surface plasma current are assumed and carries surface current

in equilibrium. They investigated the dependence of growth rate of kink mode on

the resistivity of the wall. Since the magnetic field has no shear in this system, the

Alfvén continuum is shrinked to give two point spectra propagating in the opposite

direction in ideal wall case, which turns into the ideal kink mode in case of no wall.

With finite resistivity of the wall, there appears a new eigenvalue on the imaginary

axis of the complex ω-plane, which is now called a resistive wall mode (RWM). This

mode, appearing from the origin, does not exist in the ideal wall case, and quite

59
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resembles the behavior of the tearing mode destabilized by the resistivity of plasma

itself. Other two Alfvén eigenmodes show slight damping due to the resistivity of

the wall, approach to the imaginary axis, and meet each other on negative side of

the imaginary axis when the resistivity is increased. If the resistivity is increased

further, one of the eigenvalue on negative side of the imaginary axis moves toward

negative infinity on imaginary axis, and the other constructs a pair with the one on

positive side of imaginary axis, which behaves as a pair to generate the ideal kink

modes.

Haney and Freidberg [80] discussed the stability of three dimensional perturba-

tions of toroidal plasma with arbitrary cross section and current profile by using a

variational principle. By introducing the effect of the resistive wall, they have ex-

tended the variational principle which is a well defined useful method for the linear

stability analysis of static plasmas. It is concluded that the RWM is a purely grow-

ing mode with zero frequency, and its critical stability condition is exactly equivalent

to the case with the ideal wall at infinity.

In experiments, RWMs were observed in reversed field pinch devices such as

OHTE or HBTX which required the conducting wall very close to the plasma for

keeping the stability [128, 34]. Since the characteristic time for the magnetic field

penetration becomes long for the thick conducting wall, RWM is relatively easily

suppressed. However, it becomes shorter than the discharge period when the con-

ducting wall is thin. Thus, some discharges are terminated by the growth of this

mode. These results are considered to coincide with theoretical predictions of RWMs

for static equilibria.

Recently, the stabilization of RWM was experimentally discovered at DIII-D toka-

mak in early 90’s [135, 121, 122]. According to the experimental results, this mode

did not appear for longer discharge period than the time scale of the resistive wall

even for the higher β value than the threshold of external kink modes. In DIII-D,

plasmas are rotating in the toroidal direction due to the tangential neutral beam

injection. Therefore, this plasma rotation was considered as the stabilizing effect on

the RWM.

Numerical calculation by Bondeson and Ward was the first theoretical investi-

gation for this topic [44, 147]. With an eigenvalue code including both the resistive

wall and the toroidal rigid rotation, they showed that the kink mode belonging to

the shear Alfvén branch is stabilized by the sound wave resonance generated by the

plasma rotation in the toroidal plasma. Betti and Freidberg has shown the existence

of the coupling even in cylindrical geometry, and also concluded that the RWM can

be stabilized by the sound wave resonance [41]. Moreover, several other stabilizing

mechanisms such as resonance due to Alfvén continuous spectra [153], resonance
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Figure 5.1: Dependence of growth rate or real frequency of the RWM in a cylin-

drical plasma with rigidly axial flow on the position of resistive wall. Growth rate

and frequency are normalized by the poloidal Alfvén time, and the wall position is

normalized by plasma radius.

due to cusp continuous spectra [42], resistivity [62] , or viscosity [64], were studied;

however, there is no clear correlation to the experimental results. In addition, from

the theoretical point of view, mathematical theory is not completed for the effect

of continuous spectra or non-Hermiticity of the operator on the stability problem.

Instead of solving this difficult problem, many theoretical studies are related to the

feedback control of dangerous mode or mode locking phenomena [70, 89, 63, 154].

In this chapter, we will focus on the appearance of non-Hermiticity for the linear

instability of the external kink mode under the existence of surrounding resistive

walls and rigid plasma flows. As a reference, typical growth rate dependence on

the position of the resistive wall relative to the plasma radius is shown in Fig. 5.1

[153]. This figure the obtained for a cylindrical plasma with a rigid axial flow. With

the ideal wall placed closer to the plasma column, the ideal external kink mode is

stabilized (solid line); however, for the resistive wall, the instability still remains in

a time scale of the resistive diffusion of magnetic field in the wall, which is called

the resistive wall mode or RWM. The growth rate of the RWM is monotonically

increasing and becomes almost equal to that of the ideal external kink mode when

the wall position is far from the plasma column if the plasma has no axial flow (dotted

line). However, if we introduce the rigid flow (dashed line), the growth rate becomes

large once at c/a ∼ 1.2, where c (a) denote the radius of the resistive wall (plasma
column). This small hump is observed in almost all calculations of growth rate of

RWM, e.g. Bondeson and Ward [44, 147], Betti and Freidberg [41], Finn [62], and

Fitzpatrick and Aydemir [64], and it seems that the wall position corresponding to

this small hump determines the closest threshold of the wall position for stabilizing

RWM. Nevertheless, no physical or mathematical discussion for the appearance of
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the small hump in Fig. 5.1 is found in literatures. From the plot of real frequency

for the case of rigidly flowing plasma (right side figure of Fig. 5.1), RWM is locked

to the wall in the region c/a <∼ 1.2. It begins to slip with respect to the wall at
c/a � 1.2, and has the finite frequency for c/a >∼ 1.2. Therefore, it is conjectured
that the non-Hermiticity plays an important role in the behavior of RWM. Also our

interest is in the mechanism for the appearance of the hump in the growth rate

shown in the left side figure of Fig. 5.1.

We will first show that the Kelvin-Helmholtz instability, which is well known in

fluid dynamics as an instability driven by a shear flow, could be described as an

interaction of two out-of-phase surface waves in Sec. 5.2. The rest of this chapter is

devoted for the detailed study the RWM. We will give the governing equations, then

discuss the difficulty in constructing exact mathematical theory in Sec. 5.3. Instead

of constructing the complete solutions of the system, we focus on the similarity

to the Kelvin-Helmholtz instability, we will introduce a surface current model in

Sec. 5.4. With the aid of this simplification, we have given a model with focusing

on the non-Hermiticity of RWM. The detailed analysis will be given in Sec. 5.5. We

will summarize the obtained results in Sec. 5.6.

5.2 Non-Hermiticity of Kelvin-Helmholtz insta-

bility

In this section, we will show that Kelvin-Helmholtz instability, which is one of the

most well-known instabilities in fluid dynamics arising from non-Hermiticity of the

generator, can be represented in a closed form describing an interaction of two

surface waves. We will revise here the piecewise linear shear flow model used in

Refs. [134, 73, 7].

For the y directed ambient flow which is sheared in the x direction, the perturbed

vorticity of two dimensional incompressible Euler fluid is written in the form of

Rayleigh equation:

i∂tΨ = [kv0(x) + kv′′0(x)K]Ψ, (5.1)

where the perturbed vorticity Ψ (x, t) and the integral operator K are expressed as

Ψ (x, t) = −∆φ(x, t), (5.2)

KΨ ≡ −∆−1Ψ =
1

2k

∫
e−k|x−ξ| Ψ (ξ, t) dξ, (5.3)

and φ and k denote a stream function and a wave number in the y direction, re-

spectively. Here, ∆ = ∂2
x + ∂2

y denotes the two dimensional Laplacian operator.
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Hereafter, we will investigate properties of the operator

A = kv0(x) + kv′′0 (x)K (5.4)

in the infinite domain. It is noted that the non-Hermiticity of this operator is orig-

inated from the non-commutativity of two Hermitian operators, the multiplication

v′′0(x) and the inverse Laplacian K. Actually, if v′′0(x) does not change its sign over
the domain, we can define a norm by introducing a weight function 1/|v′′0(x)| and
construct a Hermitian operator in such normed domain [38]; however, the Kelvin-

Helmholtz unstable system should have an inflection point of v0(x) [111], and thus,

this instability should be considered to be cause by the non-Hermiticity of the op-

erator kv′′0 (x)K.

Let us first consider the linear ambient velocity profile

v0(x) =
U

a
x, (−∞ < x <∞). (5.5)

Since the operator A is Hermitian due to v′′0(x) = 0, it has the continuous spectrum
λ ( ∈ R) and the corresponding singular eigenfunction is

ϕ = δ(x− µ), (5.6)

where µ = aλ/kU . Here we will pick up the following two eigenfunctions from the

continuous spectrum

ϕ1 = δ(x− a), ϕ2 = δ(x+ a), (5.7)

for later discussions. Taking these eigenfunctions as basis vectors for the linear

subspace, the operator will be expressed in terms of these vectors as

A =
(

kU 0

0 −kU

)
, (5.8)

which is a diagonal matrix.

Next, let us consider the equilibrium shear flow in which the velocity profile is

assumed to be constant in x ≤ −a and x ≥ a as illustrated in Fig. 5.2;

v0(x) =


−U (x ≤ −a)
Ux/a (−a < x < a)

U (a ≤ x)

. (5.9)

In this case, v′′0(x) is expressed by the two delta function placed at x = ±a, and
the operator is found to be non-Hermitian. Two eigenfunctions in Eq. (5.7) will be

modified and yield

ϕ̃1 = δ(x− a) + Aδ(x+ a), (5.10)

ϕ̃2 = Aδ(x− a) + δ(x+ a), (5.11)
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Figure 5.2: A model equilibrium velocity profile unstable against Kelvin-Helmholtz

instability.

where A denotes

A = (2ka− 1)e2ka +
√
(2ka− 1)2e4ka − 1. (5.12)

When the ambient velocity profile is snapped, two independent surface waves (ϕ1

and ϕ2) couple each other and they constitute new eigenstates (ϕ̃1 and ϕ̃2). The

eigenvalues corresponding to them are

λ̃1 = −
U

2a

√
(2ka − 1)2 − e−4ka, (5.13)

λ̃2 =
U

2a

√
(2ka− 1)2 − e−4ka, (5.14)

respectively. One of them with the eigenvalue λ̃1 corresponding to the eigenfunction

ϕ̃1 turns out to be unstable if the condition

(2ka− 1)2 < e−4ka (5.15)

is satisfied. Here we have defined
√
α− β = i

√
β − α for α < β.

The singular function ϕµ = δ(x − µ) (−a < µ < a), which is the eigenfunction

when the ambient velocity profile was completely linear in the whole space, will be

modified here as

ϕ̃µ = B−δ(x− a) + δ(x− µ) +B+δ(x+ a), (5.16)

although the eigenvalue does not change, where

B± =
[2k(a± µ)− 1]e−k(a∓µ) + e−k(a±µ) e−2ka

[2k(a− µ)− 1][2k(a+ µ)− 1]− e−4ka
. (5.17)
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Figure 5.3: Schematic pictures of Kelvin-Helmholtz instability. The piecewise linear

line in the left figure denotes the ambient velocity profile. It has the snapping point

at x = ±a and the perturbed vorticity will be excited there which is denoted in the
right figure by the wavy line.

If µ satisfies

µ = ±
√
(2ka− 1)2 − e−4ka, (5.18)

then ϕ̃µ will not be defined by the above expression and the system has a possibility

of resonance. However, if we consider the Kelvin-Helmholtz unstable system, the

right hand side of Eq. (5.18) becomes purely imaginary from the condition (5.15),

and we do not need to care about the resonance. This problem will be discussed

more carefully in Chap. 7.

Thus, by taking the eigenfunctions ϕ̃1, ϕ̃µ, and ϕ̃2 as basis vectors for the linear

subspace, the operator will be expressed in terms of these vectors as

A = U

2a

 2ka − 1 −e−k(a−µ) −e−2ka

0 2kµ 0

e−2ka e−k(a+µ) −(2ka− 1)

 , (5.19)

under the condition (5.15). Although this matrix may look to have a form of Jordan

type with the coincidence of its diagonal elements, when ±(2ka − 1) = 2kµ is

satisfied, it is semi-simple type and can be diagonalized. The important point here

is that, the singular eigenfunction does not affect the coupled surface waves, and

the instability is independent of the continuous spectrum.

Schematic pictures of the mechanism of Kelvin-Helmholtz instability are illus-

trated in Fig. 5.3. Physically, two surface waves, which are excited at the place

where the ambient velocity profile is snapped, are coupled each other to construct

the eigenstate. When the system is Kelvin-Helmholtz unstable, it is noted that the

relative amplitude A becomes complex and |A| = 1 from Eq. (5.12). Namely they
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have the same amplitude with out of phase and are connected by the harmonic field

∆φ = 0, (5.20)

in the region between two snapped points of v0(x) [v
′′
0(x) = 0]. Therefore, the

gradient field of the stream function points from positive vorticity position to the

negative one in the same way as that (electric field) of the electrostatic potential

produced by the electric charge. Since the perturbed velocity is orthogonal to the

gradient field of the stream function,

v = ∇φ× ez, (5.21)

it affects on the other surface to amplify the original disturbance, and vice versa.

Therefore, the mechanism of Kelvin-Helmholtz instability could be understood as

a positive feedback between two coupled surface waves, and it could be represented in

a closed form of the interaction of such surface waves. Kelvin-Helmholtz instability

is shown to be caused by the interaction of two out-of-phase surface waves with the

same amplitude which are placed at x = ±a [v′′0 (x) �= 0].

5.3 Model equations for resistive wall mode

Here we will regard the RWM as a current driven, ideal external kink mode in a low

β plasma for simplicity. By neglecting the plasma resistivity, the linearized reduced

MHD equations for a static incompressible low β plasma are shown as (see Chap. 2)

∂t∆φ =
1

µ0ρ0
(B0 · ∇∆ψ +B1 · ∇∆ψ0) , (5.22)

∂tψ = B0 · ∇φ. (5.23)

Combining them yields

∂2
t ψ =

1

µ0ρ0
(B0 · ∇∆−1B0 · ∇∆ψ +B0 · ∇∆−1B1 · ∇∆ψ0), (5.24)

where φ and ψ denote the stream function and the poloidal flux function, respec-

tively.

On the other hand, by writing the wall permeability and resistivity as µw and

ηw, the simple diffusion equation,

∂tψ =
ηw

µw
∆ψ, (5.25)

holds in the resistive wall. Since the order of time derivative differs between the

evolution equation of the plasma and that of the resistive wall, we formally adjust
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the order of them by taking the time derivative on both side of Eq. (5.25) and

combine these equations as

∂2
t ψ =

χ

µ0ρ0

[
B0 · ∇∆−1B0 · ∇∆ψ −LKψ

]
+ χ∗(ε∂t∆ψ − ∂tv0 · ∇ψ), (5.26)

where we have introduced the driving operator of the kink instability LKψ = B0 ·
∇∆−1B1 ·∇∆ψ0, χ is the function which has the value 1 in the plasma and 0 in the

resistive wall, respectively, and vice versa for χ∗. We have assumed that the plasma

is rigidly moving in the axial direction with velocity v0 with respect to the wall, and

Eq. (5.26) is written in the rest frame of the plasma. In Eq. (5.26), ε = ηw/µw.

In this formal evolution equation, the time derivative is included in the right

hand side. It is because the resistive wall has its own time scale which is different

from that of the plasma, and it reacts differently depending on the frequency of

fluctuations. That is, the magnetic fluctuation cannot deeply penetrate into the wall

if the frequency of the fluctuation is high, and the wall behaves as the conductor

with less penetrativity, while it behaves as vacuum-like with allowing the magnetic

field penetration more easily if the frequency is very low. Therefore, with the above

formal evolution equation, it is very difficult to evaluate the mirror current directly

by keeping the time derivative. We will study behavior of eigenmodes by assuming

the exponential dependence ψ ∝ eγt for fluctuations.

5.4 Surface current model

Consider a one dimensional straight cylindrical plasma with radius a surrounded

by a concentric conducting wall whose radius and thickness are c ( > a) and δ

( � a), respectively. Profiles of density and current of the plasma are assumed to

be constant as in Fig. 5.4. In this case, wave numbers m and kz in azimuthal (θ)
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and axial (z) directions become good quantum numbers, which reduces Eq. (5.24)

and yield (
1 +

µ0ρ0γ
2

F 2

)
∆ψ =

mµ0j
′
0(r)

rF (r)
ψ, (5.27)

where F = mB0θ/r+ kzB0z with the subscript 0 denoting the equilibrium quantity.

Prime denotes the derivative with respect to radial coordinate r, and γ denotes the

aforementioned time constant (growth rate). Hereafter, we will omit the subscript

1 denoting perturbations for simplicity. Since the safety factor is assumed constant

in the whole plasma, the Alfvén velocity does not vary in space. Therefore, Alfvén

continuum is shrinked to give point spectra in this system.

Under these assumptions, the system gives just Laplace equation

∆ψ = 0, (5.28)

both in plasma (r < a) and in vacuum (r > a) [62]．A dispersion relation is given
by the connection conditions at the plasma edge and the resistive wall which lead

to

ψ′(a+)−
(
1 +

µ0ρ0γ
2

F 2

)
ψ′(a−) = −mµ0j0

aF
ψ(a), (5.29)

dψ

dr

∣∣∣∣
c+

− dψ

dr

∣∣∣∣
c−
=
γ̄τw
c
ψ(c), (5.30)

where τw = cδµw/ηw and δ denotes the thickness of the wall. Here we have used

the solutions of vacuum region (a < r < c) and inside the wall region (c < r <

c+ δ), which are expressed with r±m and the Bessel functions, respectively. For the

thickness of the wall, δ � c is assumed. It is noted that, since the equations are

written in the rest frame of the plasma, the connection condition (5.30) contains the

Doppler shifted mode growth rate γ̄ ≡ γ+iΩ, where Ω = k·v0 denotes the axial flow

velocity of the plasma column normalized by the wave number. The eigenfunction

describing the surface current at the plasma edge and at the wall has a physical

meaning that the plasma surface current tends to be kink unstable, while the wall

surface current tends to suppress it.

Since the inner region (resistive wall) equation is described by the field diffusion

equation, the formulation is rather simple here comparing with the resistive insta-

bilities which contains the resistivity of the plasma itself [68, 4, 5, 24]. The time

scale of RWM is proportional to the resistive skin time of the wall, while resistive

instabilities are described by some fractions of the combination of resistivity and

Alfvén time due to the coupling of the plasma motion and resistivity even inside the

inner region.
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Figure 5.5: A slab model for the calculation of mirror image current.

5.5 Non-Hermiticity of resistive wall mode

In this section, we will discuss the non-Hermiticity on the linear stability problem

of RWMs. We have shown in Sec. 5.2 that, as an example for the treatment of

non-Hermitian operator, the Kelvin-Helmholtz instability could be described by an

interaction of two out-of-phase surface waves with the same amplitude. We will show

here that the RWM could also be described as an interaction of two out-of-phase

surface waves with the same amplitude in a certain situation.

5.5.1 Calculation of image current in slab geometry

In order to make a comparison between image current and plasma surface current,

we will stretch and approximate the shaded region in Fig. 5.4 by a slab geometry as

shown in Fig. 5.5. If the radial characteristic length, 1/kr, of the unstable mode is

much smaller than the radius of the plasma column (kra! 1), we can approximate

even the plasma region by a slab geometry with keeping the kink driving term. We

will take the origin x = 0 at a position of the wall, and assume the plasma to be

confined at x ≤ −d. The connection conditions (5.29) and (5.30) are then written
as

ψ′(−d+)−
(
1 +

µ0ρ0γ
2

F 2

)
ψ′(−d−) = −kµ0j0

F
ψ(−d), (5.31)

dψ

dx

∣∣∣∣
0+

− dψ

dx

∣∣∣∣
0−
=
γ̄τw
d
ψ(0), (5.32)

where τw = dδµw/ηw.
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No wall case If the system does not have any conducting wall, the eigenstate is

expressed by the surface current flowing on plasma edge;

j = δ(x+ d), (5.33)

where the corresponding eigenvalue is evaluated as

γ2 =
F

µ0ρ0
(µ0j0 − 2F ). (5.34)

The first term in the expression of the growth rate denotes the destabilizing effect

due to the plasma current, and the second one denotes the stabilizing effect due to

the Alfvén wave, respectively. Hereafter, we assume for the normalization that the

coefficient of the surface current perturbation given by the δ function at the plasma

edge to be unity as in Eq. (5.33).

Ideal wall case By assuming the ideal conducting wall at x = 0, the boundary

condition becomes

ψ̃|x=0 = 0, (5.35)

which can be represented by assuming the wall current

jw = −e−kdδ(x). (5.36)

The wall current at x = 0 can be moved to x = d with keeping the same magnetic

field in x < 0 as

j
(i)
im = −δ(x− d). (5.37)

Since the ideal wall does not have its own time constant, it reacts in the same way

as for any frequency of magnetic perturbation. Thus, the mirror image current flows

in the opposite direction with the same amplitude as the surface current of plasma

which is independent of the frequency. Then, corresponding eigenvalues are given

by

γ2 =
F

µ0ρ0

(
µ0j0 −

2F

1− e−2kd

)
. (5.38)

Comparing with Eq. (5.34), the effect of conducting wall appears in the second sta-

bilizing term here, which becomes larger than the previous no wall case. Hereafter,

we will mainly consider the following parameter regime

2F

µ0
< j0 <

2F

µ0(1− e−2kd)
, (5.39)

where the external kink mode is unstable without the wall [Eq. (5.34)], while for the

case with the ideal wall [Eq. (5.38)], it is stable.
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Resistive wall case If we put the resistive wall at x = 0, the connection condition

dψ̃

dx

∣∣∣∣∣
0+

− dψ̃

dx

∣∣∣∣∣
0−

=
γ̄τw
d
ψ̃(0), (5.40)

will be replaced by the following mirror image current;

j
(r)
im = −

(
1 +

2kd

γ̄τw

)−1

δ(x− d), (5.41)

instead of Eq. (5.37). Note that the amplitude and phase of the image current now

depends on the time constant of the unstable mode.

With the Alfvén time τ 2
A = µ0ρ0/F

2, the growth rate γ and axial flow frequency

Ω are normalized as

γ̂ = γτA, Ω̂ = ΩτA. (5.42)

By further introducing ε = τA/τw as an expanding parameter, the dispersion relation

leads to the third order algebraic equation in the form of

Aγ̂2(γ̂ + iΩ̂) + εBγ̂2 + C(γ̂ + iΩ̂) + εD = 0, (5.43)

where

A = 1− e−2kd,

B = 2kd,

C =

[
2− µ0j0

F
(1− e−2kd)

]
,

D = 2kd

(
2− µ0j0

F

)
.

Let us check the sign of them for the following analysis; A > 0 and B > 0 are always

valid. From the condition (5.39), it can be concluded that D < 0 holds since the

external kink mode is unstable without the wall, and that C > 0 holds since it is

stabilized by introducing the ideal wall. In summary, the signs of the coefficients in

the dispersion relation (5.43) satisfy

A > 0, B > 0, C > 0, D < 0, (5.44)

in our parameter regime.

5.5.2 Behavior of eigenvalue and eigenvector of resistive

wall mode

Let us solve analytically the dispersion relation (5.43) by means of perturbation

method under ε � 1. In the following, we will omit the hat on the eigenvalues for
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simplicity. By expanding the eigenvalue as

γ = γ0 + εγ1 + · · · , (5.45)

we have three solutions in O(1) as

γ0 = ±i
√
C

A
,−iΩ. (5.46)

Taking the next order in O(ε), they are written as

γ(0) = −iΩ − ε
BΩ2 −D

AΩ2 − C
, (5.47)

γ(±) = ±i
√
C

A
∓ ε

BC −AD

2A
√
C(±

√
C +

√
AΩ)

. (5.48)

Due to the signs of the coefficients shown in Eq. (5.44), we see that BΩ2 −D > 0

and BC − AD > 0 hold. Moreover, since AΩ2 − C gives

lim
kd→0

(AΩ2 − C) = −2, (5.49)

γ(0) gives the unstable solution for small kd, while other two roots γ(±) give the

damped oscillations. However, it can be seen from Eqs. (5.47) and (5.48) that the

denominator of γ1 has zero while the numerator keeps BΩ
2 − D > 0 from the

conditions B > 0 and D < 0.

It means that the perturbation expansion breaks down in the regime AΩ2 −
C ∼ O(ε−1). The position of the wall which gives zero of the denominator will be

evaluated by solving AΩ2 − C ∼ 0 for kd as

kd ∼ −1
2
log

[
1− 2

(
Ω2 +

µ0j0
F

)−1]
. (5.50)

After exceeding this value and AΩ2 − C ∼ O(1) holds again, then γ(0) turns out to

show damping and γ(−) represents unstable RWM which relates to the ideal external

kink mode. On the other hand, γ(+) shows always damping, and it does not have

any break down of the perturbation method.

In order to investigate the detailed behavior of eigenmodes near the wall position

expressed in Eq. (5.50), we will show the numerical results of Eq. (5.43) in Figs. 5.6

and 5.7. Analytic solutions γ(0) and γ(−) are also plotted in them. Numerical

calculation is carried out for the parameter τw/τA = 10
4, µ0j0/F = 2.01, and Ω =

0.15. In this case, the stabilizing parameter regime for the external kink mode with

the surrounding ideal wall is evaluated from Eq. (5.39) as

kd <∼ 2.65. (5.51)
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Figure 5.6: Real and imaginary part of the eigenvalue of the dispersion relation

(5.43), which corresponds to the unstable RWM.

The large growth rate for the wall position kd >∼ 2.65 in Fig. 5.6 corresponds to the
ideal external kink mode. For the imaginary part of the eigenvalue (frequency), it

is seen that the external kink mode moves together with the plasma for kd >∼ 2.65.
The wall position corresponding to the break down of the perturbation expansion is

evaluated from Eq. (5.50) as

kd ∼ 2.07. (5.52)

As described in Sec. 5.1, we see in Fig. 5.6 that a small hump of the growth rate in

the kink stable region (5.51) of the wall position approximately coincides with the

break down point of the perturbation expansion [Eq. (5.52)].

With the numerical solutions, we have evaluated the amplitude and phase of the

mirror image current compared to the plasma surface current by using Eq. (5.41)

(see Fig. 5.7). It is seen that the amplitude of the image current becomes smaller

when they are closer, while the interaction of two surface waves becomes stronger

then. Therefore, the RWM in the wall position closer than the value (5.52) is caused

by the decrease of the image current which has the effect to stabilize the external

kink mode by suppressing the perturbed plasma surface current [10]. However, it is

not the case with the wall position kd >∼ 2.

It is found that the amplitude of the image current is almost unity for the wall

position kd >∼ 2 in Fig. 5.7. Moreover, it is clearly seen from Fig. 5.7 that the phase
shift is quite localized at the wall position where the perturbation expansion breaks

down, which has not been obtained by the analytic solution γ(0). The phase shift

is evaluated to be relatively small, i.e. few degrees, which comes from the smallness

of the expansion parameter ε ∼ 10−4. Even for the small but finite phase shift, the

interaction of two surface waves in the RWM contains a similar effect to the Kelvin-
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Figure 5.8: Schematic view of the destabilizing mechanism of RWM.

Helmholtz instability, which is another destabilizing mechanism for the RWM as

shown in Fig. 5.8.

5.6 Summary

In this chapter, we have analyzed the resistive wall mode (RWM) in the rigidly

flowing plasma surrounded by the conducting wall and investigated the situation

where non-Hermiticity plays an important role for the destabilization mechanism.
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Figure 5.9: Physical mechanism of the destabilizing effect of the RWM. Two sur-

face waves are connected by the harmonic field, which is the same as the Kelvin-

Helmholtz instability in neutral fluids.

When the plasma is static with respect to the resistive wall, the amplitude of mirror

image current is small due to resistivity, and has the same phase as that of the plasma

surface current. When the plasma is rigidly flowing with respect to the resistive

wall, the phase shift arises between the plasma surface current and the mirror image

current, which brings about the destabilization with a positive feedback mechanism

in the same way as Kelvin-Helmholtz instability in neutral fluids. This destabilizing

effect creates the small hump of the growth rate depending on the wall position (see

Figs. 5.1 and 5.6).

We have derived a third order algebraic dispersion relation of RWM for a sim-

plified slab model, and solved it analytically by means of perturbation expansion

as Eqs. (5.47) and (5.48). Analytic solution γ(0) does not contain any phase shift,

however, we found that the perturbation expansion breaks down due to zero of the

denominator at a certain wall position [Eq. (5.50)]. By numerically solving the dis-

persion relation, the eigenvalue γ̄ becomes a complex number for the break down

condition, which actually gives a substantial phase shift between plasma surface

current and mirror image current.

The destabilizing mechanism of RWM can be qualitatively explained as follows.

In the situation illustrated in Fig. 5.5, the system has a homogeneous current density

j0z in the region x < −d and d < x. When we distort the surfaces at x = ±d as
illustrated in Fig. 5.9, positive and negative localized surface current streets are

alternatively produced with the wave form. Let us consider the effect of upper

surface current on the lower one in the situation shown in Fig. 5.9. Since the region

between the two surface current streets are vacuum, the eigenmode of the magnetic
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fluctuation satisfies the Laplace equation

∆ψ = 0, (5.53)

in this region. Therefore, harmonic field of the perturbed flux function ψ appears

between the two surface current streets. The gradient field ∇ψ governs the structure
of magnetic perturbation as illustrated in Fig. 5.9. Since the magnetic fluctuation

is expressed by

B = ∇ψ × ez, (5.54)

where B is perpendicular to the field ∇ψ in the xy-plane. For the Alfvén wave

branch, since the plasma is frozen in the magnetic field, the direction of the per-

turbed magnetic field is parallel to the velocity field, whose profile corresponds to

the amplification of the accompanying out-of-phase surface current. The lower sur-

face current in Fig. 5.9 will produce the velocity field which amplifies the upper one,

and vice versa. Thus, these two surface waves become unstable by amplifying each

other.

In previous papers, when the system contains any continuous spectra, it is ex-

pected that the RWM is stabilized due to the rigid flow for the outer wall position

than that corresponding to the small hump of the growth rate. Therefore, it may be

concluded that the resistive wall should be placed at somewhat outer position than

that expressed by Eq. (5.50) in order to obtain the stabilizing effect. The expression

(5.50) shows that, if the flow velocity is increased, kd becomes small and closer to

zero. This means that the wall position which gives the extremum of the growth

rate will become closer to the plasma edge; however, the dependence is weak as is

expressed from the logarithmic function. Thus, the flow velocity of the plasma does

not affect the result significantly.



Chapter 6

Interchange instabilities of slab

plasmas with sheared flows

6.1 Introduction

It is widely accepted that a shear flow yields stabilizing effects on various fluctuations

through convective deformations of disturbances [97, 99, 136]. However, rigorous

treatment of the shear flow effects encounters a serious difficulty arising from the

non-Hermiticity of the problem. We may not consider well-defined ‘modes’ and

corresponding ‘time constants.’ The standard normal mode approach breaks down,

and the theory may fail to give correct predictions of evolution even if perturbed

fields remain in the linear regime. The discrepancies between the theory and the

experiment on the stability limit of neutral fluids are reviewed in Ref. [140, 115].

The aim of this work is to establish a solid foundation for the analysis of shear

flow systems. We apply Kelvin’s method of shearing modes [139]. This scheme,

previously called as ‘nonmodal’ approach, actually consists in the combination of

two methods which have been widely used in solving wave equations; the modal and

the characteristics methods.

Many works have been done on instability problems of plasmas with shear flows

by means of the simple ‘modal’ approach. It is implicitly assumed in the application

of the modal scheme that the motion can be decomposed into a set of independent

‘normal modes’ with certain time constants [77, 43]. As is well-known, this method is

effective in solving problems involving Hermitian operators. However, when applying

it to non-Hermitian systems, we may overlook the secular and transient behaviors.

On the other hand, the characteristics method has been used in the context of rapid

distortion theory for the fluid turbulence [114] and in the eikonal representation of

the ballooning mode stability [79]. If we can treat the non-Hermitian part of the

77



78 Chapter 6: Interchange instabilities with sheared flows

whole operator as a singular perturbation to the Hermitian operator [66, 68, 151],

we may be able to construct a theory in the framework of the perturbation theory

for the operator [18]. But unfortunately the convergence of the perturbative series

seems to be very ambiguous in case of the shear flows due to the secularity of their

time evolutions [33, 84, 152]. Thus, a thorough mathematical treatment of the non-

Hermitian operators of shear flow systems has not been accomplished so far. In

this chapter, we have analyzed the shear flow effect on interchange instabilities and

its non-Hermitian mathematical background with the time asymptotic behavior by

means of Kelvin’s method.

Recently, Kelvin’s method has been applied to a variety of linear shear flow prob-

lems [57, 52, 53, 112, 100, 137, 143]. For neutral and magnetized fluids, many new

fascinating phenomena were discovered; exchanges of energy between background

flows and perturbed fields [53], shear flow induced coupling between sound waves

and internal waves and the excitation of beat wave [112], the asymptotic persistence

due to the periodic energy transfer for two dimensional shear flows [100], and the

emission of magnetosonic waves by the stationary vortex perturbations [137]. These

results show that the modes, which are independent for static fluids, are no longer

independent and the coupling of these modes induces the energy transfer in the pres-

ence of the shear flow. The basic properties of kink-type instabilities in the presence

of a background shear flow is also analyzed [143]. It is shown that the shear flow

mixing always overcomes the kink driving at sufficiently large time. However, the

mathematical significance of this method has not been clarified yet.

In this chapter, we will first revisit Kelvin’s method from the viewpoint of the

characteristics method in Sec. 6.2. We will review the spectral theory focusing

on the general mathematical concept of eigenmode for a better understanding of

Kelvin’s method. In Sec. 6.3, we will give the equations governing the interchange

instabilities. In Sec. 6.4, we will derive the ordinary differential equation (ODE)

for the time evolution of the amplitude of the interchange instabilities by applying

the analysis of shearing modes. In Sec. 6.5, by drawing an analogy with Newton’s

equation it will be shown that the solution to the above ODE for the flux function

exhibits an asymptotic damped behavior for any strength of instability drive. We

will also consider the electrostatic perturbations in Sec. 6.6. Here the solution of

the derived ODE for the stream function shows the asymptotic growth or decay

of algebraic type depending on the magnitude of instability drive. The difficulty

encountered by including the magnetic shear in the present formulation is addressed

in Sec. 6.7. We will summarize the obtained results in Sec. 6.8.
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6.2 Non-Hermiticity of shear flow systems

Before formulating the interchange instability equations, let us give a rough sketch

of the problem and explain the mathematical tool to analyze the non-Hermitian

dynamics. As is well known, the force operator governing the linear dynamics of

static MHD plasmas is Hermitian [10], and therefore the perturbed fields can be

decomposed into a set of orthogonal eigenmodes which show purely exponential

(unstable) or purely oscillating (stable) evolutions. A non-triviality stems from

the Alfvénic and acoustic continuous spectra; the phase mixing damping occurs.

This behavior, however, is totally within the framework of the well-known theory of

Hermitian operators due to von Neumann [28].

In the case where ambient the shear flow exists, however, the operator becomes

non-Hermitian and the resolution in terms of orthogonal eigenmodes fails. From a

dynamical point of view, the system experiences a complex type of non-exponential

evolutions. In the following sections, we will show examples of such kind of ‘non-

Hermitian’ dynamics where transient phenomena and secular evolutions play a dom-

inant role. Similar evolutions are found in the case of non-Hermitian operators in

finite dimensional vector spaces [61]. It is emphasized that the application of the

traditional modal paradigm to non-Hermitian systems, which assumes exponential

evolution of the perturbed fields, hinders these rich varieties of transient and al-

gebraic phenomena. In this section, we will discuss Kelvin’s method and show its

suitability to the analysis of shear flow induced non-Hermitian systems. We will re-

visit it from the viewpoint of the characteristics method showing that it represents

a generalization of the modal approach.

The linearized dynamics of fluid systems in the presence of sheared flow is gov-

erned by a general equation of the following type;

∂tu+ v · ∇u = Au, (6.1)

where A denotes a Hermitian differential operator (time-independent) defined in a

Hilbert space V , v is the stationary mean flow, and u ( ∈ V ) denotes a perturbed

field.

It is the convective derivative, v · ∇, that introduces the non-Hermiticity into
problem (6.1) and prevents the possibility of representing the dynamics of the sys-

tems in terms of orthogonal and complete set of eigenfunctions. This is a well known

difficulty in the stability analysis of neutral fluids, such as Couette or Poiseille flows,

where the predictions obtained by means of the modal methods do not match the

experiments [140, 115].

In the case of a spatially inhomogeneous stationary flow v, Eq. (6.1) becomes



80 Chapter 6: Interchange instabilities with sheared flows

non-Hermitian and a straightforward spectral resolution is not effective. However,

Kelvin’s method permits to resolve, for some classes of mean flows, the evolution

of the system (6.1) into new types of modes by means of which both transient

and secular asymptotic behaviors are effectively described. Let us now explain

mathematical foundations of this scheme.

As mentioned in Sec. 6.1, Kelvin’s method consists in the combined application

of two methods which have been extensively used in the analysis of wave equations.

Precisely the ‘Lagrangian’ part of Eq. (6.1), ∂t + v · ∇, is solved by means of the
characteristics method and the ‘Hermitian’ partA by means of the standard spectral
resolution.

The characteristics method is applied to solve the characteristic ODE associated

to the Lagrangian derivative, which is moving along the characteristic curve of the

ambient motion, given by
dx

dt
= v, x(0) = ξ. (6.2)

By inverting the modes, which are expressed in the Lagrangian coordinates as

ϕ(k, ξ), they will be represented in the Eulerian coordinates as

ϕ̃(t;k,x) = ϕ(k, ξ(t;x)), (6.3)

where ξ(t;x) denotes the inverse of x(t; ξ). The existence of the inverse mapping

x(t) �→ ξ is guaranteed in the case of incompressible mean flows. Due to Eq. (6.3),

ϕ̃(t;k,x) satisfies the characteristic equation

∂tϕ̃(t;k,x) + v · ∇ϕ̃(t;k,x) = 0. (6.4)

The essential condition for the applicability of Kelvin’s method consists in the

constraint for the functions ϕ̃(t;k,x) to form the complete set of eigenfunctions

of the operator A. If such a set of eigenfunctions exists, we can decompose the
perturbed field u by means of

u =

∫
ũk(t) ϕ̃(t;k,x) dk. (6.5)

We notice that due to Eq. (6.3) the eigenvalues of A become time dependent. The

new eigenvalue problem for A reads

Aϕ̃(t;k,x) = λk(t) ϕ̃(t;k,x). (6.6)

Plugging Eq. (6.5) into Eq. (6.1) and exploiting Eqs. (6.4) and (6.6), we have∫
[∂tũk(t)] ϕ̃(t;k,x) dk =

∫
ũk(t)λk(t) ϕ̃(t;k,x) dk. (6.7)
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Due to the orthogonality of the modes ϕ̃(t;k,x), the evolution of ũk is governed by

the equation
d

dt
ũk(t) = λk(t) ũk(t). (6.8)

If ϕ̃(t;k,x) do not satisfy both conditions given by the characteristic equation (6.4)

and the eigenvalue equation (6.6), Eq. (6.7) includes additional terms represent-

ing the complicated mode coupling. Thus, the applicability of Kelvin’s method is

compromised in this case.

Due to the time dependence in the eigenvalues λk(t), the evolution of ũk(t)

will not exhibit a simple exponential dependence as in the Hermitian case. More

complicated behaviors appear, which are characteristic of non-Hermitian systems.

By analyzing the ODE (6.8), the motion of each mode can be classified, and the

time asymptotic behavior can be also shown. The following sections will be devoted

to the derivation of ODE (6.8) and the discussion of the behavior of its solution for

the case of interchange instabilities in plasmas with shear flow.

6.3 Formulation of interchange instabilities

Interchange instabilities have been analyzed for static (ambient flow v0 = 0) magne-

tized plasmas by many authors [40, 96, 127, 103, 133]. In the case of static plasmas,

the ideal MHD equations can be reduced into a simple partial differential equation

of the form [10]

∂2
t ξ = Fξ, (6.9)

where ξ is the displacement vector and F is the force operator which is Hermitian

(selfadjoint) when the plasma is surrounded by an ideal conducting wall. In order

to analyze the stability of the system, we can apply the spectral method and rep-

resent the dynamics in terms of a superposition of harmonic oscillations of normal

modes. Another method of analyzing the stability of the static magnetized plasmas

is to apply the energy principle [40, 96] which is a variational approach based on

the Hermiticity of the force operator F . These methods show that the unstable

interchange modes have extremely spatially localized structures near the marginal

stability [127, 103] except when p′ � 0 on the rational surface [133] (see Chap. 3).

It is remarkably difficult to estimate the exact linear stability of the system in

the presence of a stationary shear flow, since, as seen in the previous sections, the

dynamics become non-Hermitian and both the spectral and the variational methods

lose their mathematical foundations. Dispersion relations have been studied in many

publications [66, 97, 77, 43], however, as discussed in Sec. 6.1, the evolution of

non-Hermitian system cannot be reconstructed from the formal dispersion relation,
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because we do not have a spectral theory. Since the proper asymptotic behavior of

interchange instabilities are not yet clearly shown in the presence of shear flow, we

will first analyze simplified systems focusing on the non-Hermiticity of the system.

In this section, we will derive the governing equations for magnetized plasmas with

stationary shear flows. Specifically, we will investigate the effect of shear flow on

interchange instabilities in plasmas with an ambient homogeneous magnetic field.

In the presence of gravitational force, the ideal incompressible MHD equations

are written as

ρ
dv

dt
= j ×B −∇p+ ρg, (6.10)

dρ

dt
+ ρ∇ · v = 0, (6.11)

∂tB −∇× (v ×B) = 0, (6.12)

∇ · v = 0, (6.13)

where ρ, B, and g are the density, magnetic field, and gravitational constant vector,

and d/dt = ∂t + v · ∇ denotes the Lagrangian derivative. Here we assume the

incompressibility of the velocity field v, instead of using the equation of state.

The ambient fields (denoted by the subscript 0) must satisfy

ρ0v0 · ∇v0 = j0 ×B0 −∇p0 + ρ0g. (6.14)

If we consider a parallel stationary shear flow of the form v0 = (0, vy(x), 0), straight

homogeneous magnetic field B0 = (0, By, Bz), and gravitational force acting in the

positive x direction, the convective derivative gives no contribution to the stationary

state and Eq. (6.14) is reduced to

∇p0 = ρ0g. (6.15)

The above equation denotes that the pressure gradient is balanced by the gravita-

tional force in the x direction. This is the same condition which holds for static

neutral fluids.

The perturbed magnetic and velocity fields are assumed to be two dimensional

in the xy plane, and thus we can introduce the poloidal flux function and stream

function;

B1⊥ = ∇ψ × ez,
v1⊥ = ∇φ× ez, (6.16)

where the subscript 1 denotes the perturbed quantities, ⊥ expresses the direction

perpendicular to the dominant magnetic field directed along the z axis, and ez
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denotes the unit vector in the z direction. Using these representations, we can

eliminate the pressure from governing equations.

Taking the curl of the equation of motion and projecting it along ez, we obtain

µ0ρ0[(∂t + vy∂y)∆φ− v′′y∂yφ] = B0 · ∇(∆ψ) + µ0∂yρ1g, (6.17)

where ∆ = ∂2
x + ∂2

y . In deriving Eq. (6.17) we have used the Boussinesq approx-

imation which neglects the spatial variation of the stationary state density in the

inertial term of equation of motion, but does not in continuity equation, since it

is the driving term for the interchange instability. Physically it is valid provided

that the variability in the density is due to variations in the temperature of only

moderate amounts [7]. The component of the flow perpendicular to the ambient

magnetic field can be considered consistently coming from the E ×B drift, taking

into account the ideal Ohm’s law. It is noted that, if we neglect the effect of the

magnetic field, we recover Rayleigh equation for Kelvin-Helmholtz instability of the

incompressible neutral fluid [9].

The density fluctuation can be expressed as

(∂t + vy∂y)ρ1 = −ρ′0∂yφ. (6.18)

where the prime denotes the derivative with respect to x. Now ρ′0 is considered as a

constant which introduces a destabilizing force. The induction equation is the same

as in the ordinary reduced MHD equations [123, 124]. Under the above assumptions

on the stationary fields, it reads as

(∂t + vy∂y)ψ = B0 · ∇φ. (6.19)

Equations (6.17)-(6.19) constitute a closed system of equations. It is seen that

the static system (vy = 0) governed by these equations is Hermitian. It is the

convective derivative (vy �= 0) that brings the non-Hermiticity into our system.

Actually, the system of equations (6.17)-(6.19) can be obtained directly by replacing

g = 2p/ρR0 in the high β reduced MHD equations describing tokamak plasmas [124],

where R0 denotes the major radius of the toroidal device. We will investigate the

effect of the shear flow on the interchange instabilities in following sections.

6.4 Derivation of ordinary differential equation

for Kelvin’s mode

In this section, we derive the ordinary differential equation (ODE) for the ampli-

tude of Kelvin’s mode, given in Eq. (6.8), in the case of interchange instabilities of
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plasmas. Let us first consider the electromagnetic case where B0 · ∇ �= 0. From

Eqs. (6.18)-(6.19), we have

φ = −∂−1
y ρ′−1

0 (∂t + vy∂y)ρ1 = (B0 · ∇)−1(∂t + vy∂y)ψ. (6.20)

Since we have assumed the mean velocity vy = vy(x) and the homogeneous ambient

fieldB0 = (0, By, Bz), the operator ∂t+vy∂y commutes with both ∂
−1
y and (B0·∇)−1.

Thus acting on both sides of Eq. (6.20) with the operator (∂t + vy∂y)
−1 gives

ρ1 = −ρ′0∂y(B0 · ∇)−1ψ. (6.21)

From Eq. (6.19),

∆φ = ∆(B0 · ∇)−1(∂t + vy∂y)ψ. (6.22)

Substituting Eqs. (6.20) and (6.22) into Eq. (6.17), and acting with B0 · ∇ on both

sides, we obtain

(∂t + vy∂y)∆(∂t + vy∂y)ψ =
(B0 · ∇)2
µ0ρ0

∆ψ − ρ′0g

ρ0

∂2
yψ. (6.23)

It is noted that the linearity of the ambient velocity profile allows us to eliminate

v′′y .

Since the operator on the right hand side is Hermitian, we can decompose the

flux function ψ by means of the shearing eigenmodes

ψ(x, t) =

∫
ψ̃k(t) ϕ̃(t;k,x) dk, (6.24)

where each eigenmode can be expressed by the sinusoidal function in our simplified

case

ϕ̃(t;k,x) = exp[ikxx+ iky(y − vyt) + ikzz]

= exp[ik̃x(t)x+ ikyy + ikzz]. (6.25)

Here the mean flow is assumed to be vy(x) = σx and k̃x(t) = kx−kyσt. It is explicitly
shown that the wave number in the flow shear direction is linearly increasing with

time by the distortion of perturbation due to the sheared mean flow. However,

the completeness of the modes ϕ̃ in the Hilbert space will not be lost due to the

time dependent wave number k̃x, therefore, the expansion (6.24) still gives a general

solution of the system. Since continuous variation of k̃x(t) prevents from imposing

the boundary condition in the bounded domain, we will concentrate on the analysis

of localized perturbations by considering the infinite domain. Note that ϕ̃ are the

eigenfunctions of the right hand side of Eq. (6.23), and also satisfy the characteristic

equation (6.4). It should be noted that the presence of the Laplacian operator in
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Figure 6.1: Kelvin’s mode ϕ̃(t;k,x).

the left hand side of Eq. (6.23) does not hinder the application of Kelvin’s method

since the modes ϕ̃ are as well eigenfunctions of the Laplacian ∆.

Thus, the time evolution equation for the amplitude ψ̃k can be written as

d

dt

[(
k̃x(t)

2 + k2
y

) dψ̃
dt

]
= − F 2

µ0ρ0

(
k̃x(t)

2 + k2
y

)
ψ̃ − k2

y

ρ′0g

ρ0
ψ̃, (6.26)

where F = k · B0 = kyB0y + kzB0z, and we have dropped the subscript k for

simplicity. We notice that in the absence of shear flow (σ = 0) the usual interchange

instability equation for static equilibrium can be obtained.

Our procedure can be readily shown to coincide with the traditional formulation

of Kelvin’s method consisting in the coordinate transform (t, x, y, z) �→ (T, ξ, η, ζ)

defined by

T = t, ξ = x, η = y − σtx, ζ = z, (6.27)

and the Fourier transform with respect to the new coordinates

ũ(kξ, kη, kζ;T ) =

∫∫∫ +∞

−∞
u(ξ, η, ζ ;T ) ei(kξξ+kηη+kζζ) dξ dη dζ. (6.28)

Normalizing the time t by the poloidal Alfvén time τA = a
√
µ0ρ0/F , we can

rewrite Eq. (6.26) in dimensionless form as

d

dt

[(
k̃x(t)

2 + k2
y

) dψ̃
dt

]
= −

(
k̃x(t)

2 + k2
y

)
ψ̃ + k2

y

τ 2
A

τ 2
G

ψ̃, (6.29)
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where the wave vectors are normalized by the characteristic length scale a and

τ 2
G = −ρ0/ρ

′
0g. Further we can rewrite Eq. (6.29) in the form

d2ψ̃

dt2
+ µ(t)

dψ̃

dt
+ [1− S(t)]ψ̃ = 0, (6.30)

where

µ(t) = − 2σkyk̃x(t)

k̃x(t)2 + k2
y

,

S(t) =
k2
yG

k̃x(t)2 + k2
y

,

and G = τ 2
A/τ

2
G. Drawing an analogy with Newton’s equation, µ(t) represents

the frictional term and S(t) the interchange drive term. Equation (6.30) is the

correspondent of Eq. (6.8). As we have mentioned in Sec. 6.2, the time evolution

for the amplitude of each eigenmode is no longer described by a simple exponential

function. The behavior of ψ̃ will be discussed in the following sections.

6.5 Asymptotic and transient behavior of Kelvin’s

mode

In the absence of a density gradient or shear flow, µ(t) = S(t) = 0 in Eq. (6.30)

and we have a pure oscillation representing the Alfvén wave. When we include the

density gradient, then S(t) becomes nonzero. Then, we obtain an exponentially

growing interchange instability for negative ρ′0 which exceeds the threshold value.

Since a homogeneous magnetic field is assumed here, we have no stabilizing effect

of the magnetic shear. The operator is Hermitian in these two cases, therefore we

have the simple exponential evolution with time constants for each mode.

When we include the shear flow, we have µ(t) �= 0 and we may consider an

analogy for the dynamics of a damped oscillator with time dependent frictional

coefficient µ(t). In the following subsections, we will describe both the asymptotic

and transient behavior of the amplitude ψ̃.

6.5.1 Transient behavior

In this subsection, we will analyze the transient behavior of each perturbed mode.

Since an analytic expression is not available, we discuss the time evolution by qual-

itatively analyzing the ODE (6.30). In the absence of the instability drive, we have

d

dt

[(dψ̃
dt

)2

+ ψ̃2
]
= −µ(t)

(dψ̃
dt

)2

, (6.31)
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Case σkxky µ(t = 0) µ(t→∞)
(a) − + +

(b) + − +

Table 6.1: The relation between the sign of quantity σkxky and that of effective

frictional coefficient µ(t).

where

µ(t) = − 2σkyk̃x(t)

k̃x(t)2 + k2
y

,

k̃x(t) = kx − σkyt.

Therefore, the frictional coefficient µ(t) acts as a damping term for µ > 0. It may

be considered that this damping is caused by mixing in the same way as Landau

damping which is caused by shear flow in the phase space. On the other hand, if

µ(t) < 0, the oscillator will be amplified due to shear flow.

Since the sign of the denominator in µ(t) is always positive, the behavior of the

solution will be determined by the sign the numerator

µ(t) ∝ −2σkyk̃x(t) = −2σkxky + 2(kyσ)2t. (6.32)

It can be easily understood from Eq. (6.32) that µ(t) will certainly be positive for

large t regardless of the sign of the wave number or the flow shear. Thus, we may

conclude that the shear flow acts to damp the oscillation in a time asymptotic sense.

For the negative product σkxky [Table 6.1(a)], the frictional coefficient µ(t) is always

positive, therefore, the mode will be damped from the beginning. On the other hand,

for the positive product σkxky [Table 6.1(b)], µ(t) is negative at first, and goes to

positive through zero at the instant t∗ = kx/σky. Therefore the mode experiences

an initial amplification lasting until the time t∗, which is even faster than the case

with the interchange drive only.

It is interesting to see the relations between the frictional coefficient and the wave

vector. We will take here as σ > 0 and ky > 0 for simplicity, and the same conclusion

may be drawn if we change the corresponding signs appropriately in other cases. As

is shown in Fig. 6.1, the eigenfunction is being distorted due to the stretching effect

of the shear flow, and the direction of the corresponding wave vector is also shifted.

The |k̃x(t)| of the mode with negative initial kx [see Figs. 6.1(c) and 6.2(a)] will be
increased monotonically, and its structure becomes finer and finer. Then the mixing

is promoted and its amplitude is damped. On the other hand, the |k̃x(t)| of the mode
with positive initial kx [see Figs. 6.1(a) and 6.2(b)] will be decreased in t < t∗, its
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Figure 6.2: Distortion of the wave vector due to shear flow and its effect on the

amplitude of magnetic flux.

structure once becomes the most coarse at time t = t∗, and becomes finer and finer.

Thus the amplitude of the mode is amplified in the period t < t∗, and damped after

that due to the mixing effect. One example of the numerical solutions of Eq. (6.30)

is shown in Fig. 6.3. The result corresponds to the Case (b) of the Table 6.1. It is

also seen in this figure that the initial amplification of the perturbation lasts until

the turning point t∗ = 50, then it is followed by the asymptotic decaying phase.

We have observed in the numerical solutions that there is a case where the

amplitude is amplified to the value of 1030 times larger than the initial one. From a

physical point of view, such huge amplifications may break down the linearity of the

perturbations and may lead to a nonlinear stage. This case is beyond the scope of

the linear theory and no sure conclusion can be drawn from Kelvin’s method. Such

huge amplifications are experienced by modes with large t∗ and G.

6.5.2 Asymptotic behavior

In order to study the time asymptotic behavior, we assume t ! kx/σky, 1/σ. In

this time asymptotic limit we obtain the following ODE

d2

dt2
ψ̃ +

2

t

d

dt
ψ̃ +

(
1− G/σ2

t2

)
ψ̃ = 0, (6.33)

where G = τ 2
A/τ

2
G denotes the magnitude of the instability drive term. In the absence

of the instability drive G, the time asymptotic behavior of the solution of Eq. (6.33)

is expressed as

ψ̃ ∼ 1

t
sin t, (6.34)

which coincides with the result of Koppel [92] who studied a time dependent non-

perturbative state. Since Eq. (6.33) corresponds to the spherical Bessel equation,
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Figure 6.3: Numerical integrations of Eq. (6.30) for the parameters kx = 10, ky = 1,
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its general solution for G �= 0 is expressed as

ψ̃ =
1√
t
(C1Jν(t) + C2Yν(t)), (6.35)

where Jν and Yν denote the Bessel functions, and ν = (G/σ
2 + 1/4)1/2. Therefore

the time asymptotic behavior of the mode is expressed generally as

ψ̃ ∼ 1

t
sin

(
t− πν

2
+ δ

)
, (6.36)

where δ denotes a constant phase depending on the initial condition. Therefore,

the mode oscillates with amplitude ψ̃ and decays with the inverse power of time.

While the x component of the perturbed magnetic field b̃x is proportional to ψ, the

y component b̃y is proportional to k̃x(t)ψ̃. Thus b̃y tends to the pure oscillatory

behavior

b̃y ∼ sin
(
t− πν

2
+ δ

)
, (6.37)

as k̃x(t) increases with proportional to time (see Fig. 6.3). It should be noted

that there is no threshold value for the stabilization of the interchange instability,

since we obtain the same spherical Bessel equation (6.33) for all modes. All modes

asymptotically evolve by following Eq. (6.33) independently of wave numbers k.

The final amplitude of each mode depends sensitively on the parameters. As

the shear parameter increases, the final amplitude of b̃y tends to be larger as is also

shown by Chagelishvili et al. [52], while the mixing effect on b̃x increases. It should

be noted that the instability drive G asymptotically has the effect to shift the phase

of the oscillations as seen in Eqs. (6.36) and (6.37). However, it does not affect the

principal time dependence. The combined effect of the Alfvén wave propagation

and shear flow mixing always overcomes the interchange drive. The oscillation of

the magnetic flux asymptotically decays with proportionality to the inverse power

of time.
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6.6 Interchange perturbations perpendicular to am-

bient magnetic field

When the wave vector is purely perpendicular to the ambient magnetic field, the

formulation using the flux function (6.23) fails. As for the condition with k‖ = 0, we

discuss the evolution of the stream function φ, where k‖ is a parallel wave number

to the ambient magnetic field. The governing equations are Eqs. (6.17) and (6.18),

since the flux freezing equation can be decoupled due to the fact that B0 · ∇ = 0.

Applying ∂t + vy∂y to both sides of Eq. (6.17) and substituting it into Eq. (6.18),

we obtain

(∂t + vy∂y)
2∆φ = −ρ

′
0g

ρ0

∂2
yφ, (6.38)

for a case of linear shear flow. We represent φ in terms of the shearing mode given

in Eq. (6.25),

φ(x, t) =

∫
φ̃k(t) ϕ̃(t;k,x) dk. (6.39)

By substituting Eq. (6.39) into Eq. (6.38), the following ODE is obtained

d2

dt2

[(
k̃x(t)

2 + k2
y

)
φ̃
]
= k2

yγ
2
Gφ̃, (6.40)

where γ2
G = −ρ′0g/ρ0 (= τ−2

G ) denotes the characteristic growth rate of the inter-

change instability. Here again we have dropped the subscript k for the sake of

simplicity. In order to investigate the time asymptotic behavior of each mode, we

assume t! kx/kyσ and t! 1/σ. Then Eq. (6.40) becomes

d2

dt2
φ̃+

4

t

d

dt
φ̃+

2− α

t2
φ̃ = 0, (6.41)

where α = γ2
G/σ

2 denotes the ratio between the interchange destabilizing effect

and flow shear stabilizing one (Richardson number). Note that this ODE is not

dependent on the wave numbers k. The general solution of Eq. (6.41) is

φ̃ = C1t
m+ + C2t

m− , (6.42)

where

m± =
−3±

√
1 + 4α

2
. (6.43)

The time asymptotic behavior is therefore determined by the larger index m+. Thus

we can state the condition for the boundedness of φ̃ as

α ≤ 2 ⇒ −1
2

ρ′0g

ρ0
≤ σ2. (6.44)

The condition for the boundedness of φ̃ is improved compared with the static case

(ρ′0 ≥ 0) due to the mixing effect of the shear flow. It is noted that this interchange
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Figure 6.4: Numerical integrations of Eq. (6.40) for different α. The parameters are

follows: kx = 10, ky = 2, σ = 1 and initial perturbations φ̃ = 0 and dφ̃/dt = 1.0 at

t = 0. The amplitude of the stream function in case of α = 3.3 shows the algebraic

growth corresponding to m+ � 0.35.

instability can be linearly unstable while the case with k‖ �= 0 is completely stabi-
lized. The numerical integrations of the ODE (6.40) are illustrated in Fig. 6.4. The

transient behavior is observed until t∗ = 5, and the asymptotic behavior follows.

The asymptotic behavior is algebraic with the power of m+ as analytically pointed

out.

We notice that the ‘stability condition’ is not well defined here. If we impose

the boundedness of ṽy = ik̃x(t)φ̃ ∼ t1+m+ , the same condition ρ′0 ≥ 0 as the static
case is obtained. However, if we consider the boundedness of other fields which are

represented by higher derivatives, e.g. the vortex perturbation, more strict condition

will be required. Since the mixing effect of the shear flow distorts the structure of the

perturbations into smaller scales, the fields characterized by the higher derivatives

will have stronger secularities. Unlike the static case where the evolution of the

perturbations can be expressed in the common exponential form, different quantities

exhibit different time evolutions in shear flow systems. This could be a pathological

problem of defining the ‘stability condition’ for shear flow systems.

6.7 Effect of magnetic shear on sheared plasma

flow

In order to consider the effect of the magnetic shear on sheared plasma flow, let us

consider the original linearized MHD equations instead of stream and flux functions,

which can be written in the Cartesian coordinates as

ρ0

(
∂tv1 + v0 · ∇v1 + v1x∂xv0

)
=
B0 · ∇b

µ0
−∇

(
p0 +

B0 · b
µ0

)
, (6.45)
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∂tb+ v0 · ∇b = B0 · ∇v1 + bx∂xv0, (6.46)

where b denotes the perturbed magnetic field and v0 = (0, σx, 0). Assuming B0 =

(0, B0y(x), B0z(x)), we can transform the coordinate as (x, y, z) �→ (x, η, ζ) with ζ

along the local ambient magnetic field line and η perpendicular to x and ζ . In this

coordinates, we have the stationary flow expressed as (0, v0η(x), v0ζ(x)). Here, the

spatial dependence of the velocity components is,

v0η =
1

B0
B0zσx,

v0ζ =
1

B0
B0yσx. (6.47)

If the magnetic field is homogeneous, the coordinate transformation is also spatially

homogeneous and these velocity components are still linear functions with respect

to x. Writing the above MHD equations in the new coordinates yields

ρ(∂tu+ v0η∂ηu+ v0ζ∂ζu) =
B0∂ζbx
µ0

− ∂x

(
p+

B0bζ
µ0

)
, (6.48)

ρ
(
∂tv + v0η∂ηv + v0ζ∂ζv +

B0z

B0
σu

)
=
B0∂ζbη
µ0

− ∂η

(
p+

B0bζ
µ0

)
, (6.49)

ρ
(
∂tw + v0η∂ηw ++v0ζ∂ζw +

B0y

B0

σu
)
=
B0∂ζbζ
µ0

− ∂ζ

(
p+

B0bζ
µ0

)
, (6.50)

∂tbx + v0η∂ηbx + v0ζ∂ζbx = B0∂ζu, (6.51)

∂tbη + v0η∂ηbη + v0ζ∂ζbη = B0∂ζv +
B0z

B0
σbx, (6.52)

∂tbζ + v0η∂ηbζ + v0ζ∂ζbζ = B0∂ζw +
B0y

B0

σbx, (6.53)

where u, v, and w denote the x, η, and ζ components of the perturbed velocity,

respectively. Here the evolution of the amplitude b̃x is governed by the same equation

as Eq. (6.30) for ψ̃.

If we include the magnetic shear, the inhomogeneity is also introduced in the

above coordinate transformation. As is seen from Eqs. (6.47), it brings about a

nonlinear spatial dependence of the background shear flow profile even if it is as-

sumed to be linear in original Cartesian coordinates. Thus, it is considered that

introduction of the magnetic shear seems equivalent to the study of the shear flow

different from the linear dependence on x.

6.8 Summary

Kelvin’s method of shearing modes is interpreted as a combination of both modal

and characteristic methods for the analysis of a non-Hermitian system. The shear
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flow distorts each Fourier mode, resulting in change of the wave number, which

represents the stretching effect of the shear flow (see Fig. 6.1). It is noted that the

solution obtained by this method gives the general solution of the system due to the

completeness of the sinusoidal function in the Hilbert space.

By means of this method, we have first analyzed the incompressible electromag-

netic perturbations in the presence of an interchange drive and obtained the ordinary

differential equation (6.30) for the amplitude of the modes ψ̃k. All modes show an

asymptotic decay proportional to the inverse power of time (non-exponential) with-

out any threshold value. This means that the interchange instabilities are always

damped away at sufficiently large time due to the combined effect of the Alfvén

wave propagation and distortion of modes by means of the background shear flow;

i.e. the phase mixing effect. However, the transient behavior is not common for all

modes, which depends on the initial wave numbers. Some of them show transient

amplifications which are even faster than the interchange mode in the static case.

These amplifications are so conspicuous that they may lead to the break down of

the linearity of the perturbations.

It should be noted that, since our treatment considers the case of parallel linear

shear flow, Kelvin-Helmholtz instabilities, which originate from the second order

spatial derivative of the background shear flow [7, 9], are beyond the scope of the

present theory. From a mathematical point of view, we stress that the Kelvin-

Helmholtz instability is a problem involving purely non-Hermitian operators in the

sense that the operator A of Eq. (6.1) itself becomes non-Hermitian. Thus, the

method developed in Sec. 6.2 cannot be applied. This is a well known instability in

fluid mechanics whose rigorous mathematical treatment includes highly non-trivial

difficulties. We will try to construct a spectral theory on this problem in Chap. 7.

We note that the ODE which gives the evolution of the amplitudes of the in-

terchange modes (6.30) and that of kink-type modes (Eq. (32) in Ref. [143]) are

mathematically equivalent. Of course these two modes may have spatially different

structures at least for static equilibria. However, these modes have no difference in

time evolution by means of our treatment. Thus, we can say that these terms have

the same effect in the sense that they enlarge the spectrum to unstable eigenvalues.

The equivalence stems from the assumption of a spatially homogeneous magnetic

field. However, as discussed in Sec. 6.7, the inhomogeneity of the magnetic field

hinders the applicability of Kelvin’s method.

We have also investigated the time evolution for purely perpendicular perturba-

tions (k ·B0 = 0), which do not excite the Alfvén wave, since they do not bend the

magnetic field line during their growth. The flow shear has been shown to have a sta-

bilizing effect also on purely perpendicular disturbances; however, the phase mixing
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effect alone cannot completely stabilize the interchange instabilities. The condition

for the boundedness of the mode amplitudes φ̃k can be expressed in Eq. (6.44) by

means of a ratio of instability drive to shear parameter of the mean flow. We have

shown that the time evolution of these unstable modes is again of algebraic type.

Notice that the conditions for the boundedness of different quantities do not coin-

cide. The discrepancies originate from the fact that, in shear flow systems, different

fields experience algebraic evolutions characterized by different powers of time, while

the time evolutions for any fields are expressed in a common exponential form for

static systems.



Chapter 7

Spectral theory for surface wave

model of Rayleigh equation

7.1 Introduction

A variety of complex phenomena occur in non-Hermitian dynamical systems. Non-

orthogonality of eigenfunctions (modes) is the deterministic characteristic of such

systems, which brings about interactions among different modes. This aspect resem-

bles the mode couplings in nonlinear systems, and hence, the diversity of transient

behavior in non-Hermitian systems is rather rich [143, 131, 84].

Let us consider an autonomous evolution equation of the Schrödinger type{
i∂tu = Hu
u(0) = u0

, (7.1)

where H is a certain linear operator. When we can generate an exponential function
(propagator) e−itH, we can write the solution of Eq. (7.1) as

u(t) = e−itHu0.

When u ∈ C and H ∈ C, then e−itH is nothing but the exponential function of

elementary mathematics. For vectors u ∈ C
N and a linear map H : C

N → C
N , we

can define e−itH by the standard power series

e−itH =

∞∑
n=1

(−itH)n
n!

, (7.2)

or the Cauchy integral (inverse Laplace transform)

e−itH =
1

2πi

∮
e−itλ(λI −H)−1 dλ, (7.3)

95
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where I denotes the identity operator. For u in a Hilbert space V , H is an operator

in V . For some different classes of operators, we have theories to generate e−itH

[28]. A most general theory of generating an exponential function of the type etA

for positive t (so-called semigroup theory) may be the one due to Hille and Yosida.

Although this theory warrants the solvability of initial value problems for a wide class

of generators, understanding of the behavior of the solution is not simple. Indeed,

the exponential functions of matrices or operators are not necessarily ‘exponential’

in the conventional sense.

The von Neumann theory for Hermitian (selfadjoint) operators provides a deep

insight into the structure of e−itH, which invokes the spectral resolution of the gen-

erator H in terms of a complete set of orthogonal modes. The basic idea is that

the e−itH may be represented as a sum of independent harmonic oscillators, each

of which is an eigenfunction of H and the corresponding eigenvalue (real number)

gives the frequency of the oscillation. Unlike the case of finite dimensional vector

space, however, the conventional eigenfunctions may not be complete to span the

Hilbert space. The most essential generalization needed to study the infinite dimen-

sional space was the introduction of continuous spectra that correspond to singular

eigenfunctions. The spectral resolution of H is, in general, given by an integral over

the spectra (an example will be given in Sec. 7.3). The contribution to the e−itH

from the continuous spectra brings about the ‘phase mixing’ of oscillations with

continuous frequencies, resulting in various types of damping. Hence, the reality of

the spectra of an Hermitian operator does not necessarily imply a simple sum of

harmonic oscillations.

For a linear map in a finite dimensional vector space, the spectral resolution

yields the Jordan canonical form, and the explicit representation of e−itH can be

constructed using the canonical form. In a Hilbert space, however, such a general

theory of spectral resolution is limited to either compact operators or Hermitian ones

[11, 6]. This chapter is an attempt to obtain a spectral resolution of a non-Hermitian

operator that is not included in the above mentioned categories. The operator is

related to an important physics problem (e.g. Kelvin-Helmholtz instability in neutral

fluids [83, 138, 7]).

Before formulating the equation, we highlight the essential characteristic of non-

Hermitian operator by revisiting the spectral resolution in a finite dimensional vector

space. When H is not a normal map, we can transform it into the Jordan canonical

form. By a regular map P , we can transform

P−1HP = J1+̇J2+̇ · · · +̇Jν ,

where +̇ denotes the direct sum of linear maps, and each Jj is the Jordan block

corresponding to the eigenvalue λj of H [(λjI − Jj) is a nilpotent of order Nj , i.e.,
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(λjI −Jj)
Nj = 0], which is represented by the Jordan matrix of order Nj:

Jj =


λj 1 0 0

0
. . .

. . . 0
. . .

. . . 1

0 0 λj

 . (7.4)

When H is a normal map, all Nj are unity. Then, H can be diagonalized, and

all modes (eigenvectors) are decoupled. A Jordan block of order ≥ 2 represents

‘unremovable’ interactions among modes. It is remarkable that the canonical repre-

sentation (7.4) shows such interactions in the form of one-by-one couplings.

Writing

e−itH = e−itλjeit(λjI−H) = e−itλj

[
I + it(λjI − H)−

t2(λjI − H)2
2

+ · · ·
]
,

we find that the e−itH acting on the (generalized) eigenspace belonging to λj includes

factors

e−itλj , te−itλj , · · · , tNj−1e−itλj .

Therefore, even if every eigenvalue λj is real, the e
−itH can describe an ‘instability’

(growth of oscillation amplitude). The algebraic growth of amplitudes (the factors

tp) is called ‘secularity.’

On the stability analysis of a fluid, we mainly have two methods which are widely

used in literatures. One is based on variational problem [65, 78, 142], and the other

is based on the spectral method [37, 98]. Actually, necessary and sufficient condition

of Rayleigh equation to have complex eigenvalues is shown in Ref. [37] by means of

Nyquist criterion, however, the completeness of the solution is still left open. We will

focus on the completeness of the spectral solution and investigate the possibility of

the secular behavior. We will introduce a generalized Rayleigh equation in Sec. 7.2,

and discuss the properties of two consisting operators in Sec. 7.3. By introducing

surface wave model [134, 73, 7], we can describe the system rather simply. Firstly, we

will formally investigate the possibility of resonance among modes in Secs. 7.4 and

7.5. Spectral resolution of the generator is given in Sec. 7.6, which will be compared

with the Laplace transform method in Sec. 7.7. In Sec. 7.8, we will summarize the

obtained results.

7.2 Generalized Rayleigh equation

The vortex dynamics equation in R2 [the coordinates are denoted by (x, y)] reads

as a Liouville equation

∂tΨ + {H, Ψ} = 0, (7.5)
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where Ψ is the vorticity, H is the Hamiltonian (stream function) of an incompressible

flow v = (∂yH,−∂xH)t that transports the vortices, and

{a, b} = (∂ya)(∂xb)− (∂xa)(∂yb) = −∇a×∇b · ∇z

is the Poisson bracket.

When the HamiltonianH depends on Ψ , the evolution equation (7.5) is nonlinear.

The dynamics of Ψ can couple with other fields when they are included in H . The

simplest example of nonlinear vortex dynamics is the Euler fluid (incompressible

ideal flow), where

−∆H = Ψ, (7.6)

or, denoting the Green operator of the Laplacian −∆ by K

H = KΨ. (7.7)

Physical examples of relevant phenomena are rather rich; the Rossby waves of per-

turbations in geological jet streams, the diocotron waves in non-neutral plasmas,

and the drift waves in magnetized plasmas.

Let us linearize Eq. (7.5) with decomposing Ψ and H into their ambient (denoted

by subscript 0) and fluctuation (denoted by subscript 1) parts:

Ψ = Ψ0 + Ψ1,

H = H0 +H1 = KΨ0 +KΨ1.

By neglecting the second-order terms, Eq. (7.5) leads to

∂tΨ1 + {H0, Ψ1}+ {∆H0,KΨ1} = 0. (7.8)

Hereafter we will omit the subscript 1 denoting the perturbed field for simplicity.

In this chapter, we consider one-dimensional problem with

H0 = H0(x).

Since the ambient HamiltonianH0 is independent of y, the wavenumber in y becomes

a good quantum number and we can replace ∂y by ik. We write

v(x) = −∂xH0(x),

to obtain the standard Rayleigh equation

i∂tΨ = kv(x)Ψ + kv′′(x)KΨ. (7.9)
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The Green operator K is represented by a convolution integral

(Kf)(x) =
∫ +∞

−∞

e−k|x−ξ|

2k
f(ξ) dξ. (7.10)

In the following, we denote the Green function by K(x, ξ);

K(x, ξ) =
e−k|x−ξ|

2k
. (7.11)

Here we will define a generalized Rayleigh equation as

i∂tΨ = LΨ (7.12)

L = kv(x) + kw(x)K, (7.13)

where v(x) and w(x) can be independent arbitrary functions. It corresponds to the

generalization of the Rayleigh equation (7.9). The case when w(x) = v′′(x) recovers

the physically relevant equation (7.9) where v(x) denotes the steady flow velocity in

the y direction.

7.3 Formal spectra of generalized Rayleigh equa-

tion

The generator of the vortex dynamics equation (7.12) consists of two terms, each

of which describes different mechanism of the vortex motion. The first term on the

right-hand side of Eq. (7.12) [originating from {H0, Ψ} in Eq. (7.8)] represents the
transport of the vorticity by the ambient flow v(x). An inhomogeneous (sheared)

flow distorts vortices, and hence, no stationary structure can persist in a shear flow

[v(x) �= const]. Such a dynamics is described by a continuous spectrum. On the

other hand, the second term [originating from {∆H0,KΨ} in Eq. (7.8)] describes
the interaction between the perturbation and the ambient field. When the ambient

vorticity Ψ0 = −∆H0 has a spatial gradient, a flow induced by a perturbation yields

a local change of the vorticity. This term, hence, can create perturbed vortices from

the ambient field.

Firstly, let us assume w(x) = 0 in Eq. (7.13) and consider

i∂tΨ = kv(x)Ψ (7.14)

with a ‘continuous’ real function v(x), which reads as a Schrödinger equation with

a Hamiltonian kv(x).
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The formal eigenvalue and the corresponding eigenfunction of the generator of

Eq. (7.14), with setting

kv(x)Ψ = λΨ

[i.e., Ψ (t) = e−iλtΨ ], is given by

λ = kv(µ), Ψ = δ(x− µ), (7.15)

where µ is an arbitrary real number and δ denotes the delta-measure. For conve-

nience, we write

(δ(x− µ), f(x)) =

∫ +∞

−∞
δ(x− µ)f(x) dx = f(µ).

A formal spectral resolution of the generator is written as

kv(x)f(x) =

∫ +∞

−∞
kv(µ)(δ(x− µ), f) δ(x− µ) dµ (7.16)

=

∫ +∞

−∞
kv(µ)f(µ)δ(x− µ) dµ.

Rigorous mathematical representation of this ‘continuous spectrum’ is given by

the spectral resolution of the coordinate operator:

xf(x) =

∫ +∞

−∞
µ dE(µ)f(x), (7.17)

where {E(µ); µ ∈ R} is a family of projectors defined by

E(µ)f(x) =

{
f(x) for x ≤ µ

0 for x > µ
. (7.18)

The projector E(µ) gives a resolution of the identity:

I =
∫ +∞

−∞
dE(µ). (7.19)

Using this representation of the coordinate operator, we can write

kv(x)f(x) =

∫ +∞

−∞
kv(µ) dE(µ)f(x), (7.20)

which represents the spectral resolution of the generator kv(x) in terms of its gen-

eralized eigenfunctions [this corresponds to the continuous version of Eq. (B.28)].

The solution of Eq. (7.14) with initial condition Ψ (x, 0) is given by

Ψ (x, t) =

∫ +∞

−∞
e−itkv(µ) dE(µ)Ψ (x, 0) = e−itkv(x)Ψ (x, 0). (7.21)
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Next, let us assume

v(x) = 0, (7.22)

w(x) = −U
a
[δ(x− a)− δ(x+ a)], (7.23)

then the operator can be written as

L1 = −
U

2a
[δ(x− a)− δ(x+ a)]

∫ ∞

−∞
e−k|x−ξ| · dξ (7.24)

There are two solutions which match with the exponential time evolution. Assuming

ϕ ∝ e−iλt and substituting it in the place of Ψ , then we obtain the eigenvalue problem

λϕ(x) = − U

2a
[δ(x− a)− δ(x+ a)]

∫ ∞

−∞
e−k|x−ξ|ϕ(ξ) dξ. (7.25)

The eigenvalues and the corresponding eigenfunctions are

λ = ± U

2a

√
1− e−4ka, ϕ(x) = δ(x− a)−

(
1±

√
1− e−4ka

)
e2ka δ(x+ a). (7.26)

Therefore we can write the operator L in the form of the matrix by taking the basis
vector as δ(x− a) and δ(x+ a),

L1 =
U

2a

(
−1 −e−2ka

e−2ka 1

)
. (7.27)

These oscillation denote the coupled diocotron modes which are excited on both

surfaces x = ±a. Note that these modes are stable for positive k in the case of no
continuous spectra. Since the governing equation is same as the case of diocotron

instabilities in non-neutral plasmas [60, 91], these oscillations are called ‘diocotron

oscillation.’

If we take v(x) to be consistent with w(x) of Eq. (7.23) as

v(x) =


−U (x ≤ −a)
Ux/a (−a < x < a)

U (a ≤ x)

, (7.28)

and again focusing on the subspace spanned by two surface waves, then the operator

L2 is expressed in the matrix form as

L2 =

(
kU 0

0 −kU

)
+ L1. (7.29)

This 2× 2 matrix L2 can be readily diagonalized in terms of the non-unitary trans-

form and thus it turns out to be a semi-simple type supposed that k �= 1/2a. Its

two eigenvalues denote the famous Kelvin-Helmholtz instability [7], whose dispersion

relation is written as

λ2 =
U2

4a2

[
(1− 2ka)2 − e−4ka

]
. (7.30)

If λ degenerates to zero, we may have secularity, and moreover, the other part of

the matrix may include Jordan block. These details will be discussed later.
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7.4 Resonance between point and continuous spec-

tra

We have studied the spectra of the operators separately in the previous section.

However, we have to be careful about the resonance (frequency overlapping) be-

tween modes. Namely the eigenvalues Eqs. (7.15) and (7.26) may overlap. In this

section, we will formally show the effect coming from such resonance or frequency

overlapping.

Let us first consider the following consistent case where the operator is expressed

as

L3 = kv(x)− U

2a
δ(x− a)

∫ ∞

−∞
e−k|x−ξ| · dξ, (7.31)

v(x) =

{
Ux/a (x < a)

U (a ≤ x)
. (7.32)

By taking the component proportional to δ(x−a) separately, we divide the vorticity
as

Ψ (x, t) = α(t)δ(x− a) + Ψ̃ (x, t) (7.33)

where Ψ̃ does not include any singularity on x = a. Then, we can divide the time

evolution equation as

i
d

dt
α(t) =

U

2a
(2ka− 1)α(t)− U

2a

∫ ∞

−∞
e−k|a−ξ|Ψ̃ (ξ, t) dξ, (7.34)

i∂tΨ̃(x, t) = kv(x)Ψ̃ (x, t). (7.35)

The second equation can be readily integrated for each x, which gives

Ψ̃ (x, t) = e−itkv(x)Ψ̃(x, 0). (7.36)

Plugging it into Eq. (7.34), we have

i
d

dt
α(t) =

U

2a
(2ka− 1)α(t)− U

2a

∫ ∞

−∞
e−k|a−ξ|e−itkv(ξ)Ψ̃ (ξ, 0) dξ, (7.37)

where the last integration denotes the phase mixing of each singular eigenfunction.

It can be integrated to give

α(t) = e−iω1tα(0) +
U

2a

∫
e−k|a−ξ|e

−iω1t − e−itkv(ξ)

kv(ξ)− ω1
Ψ̃(ξ, 0) dξ, (7.38)

where ω1 = (2ka− 1)U/2a represents the Doppler shifted diocotron frequency.

By assuming ϕ ∝ e−iλt, we will obtain the following eigenvalue problem.

λϕ(x) = kv(x)ϕ(x)− U

2a
δ(x− a)

∫ ∞

−∞
e−k|x−ξ|ϕ(ξ) dξ. (7.39)
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For this eigenvalue problem, we have the following sets of eigenvalues and the cor-

responding eigenfunctions:

1. For λ0 = kU ; the corresponding eigenfunctions are arbitrary continuous func-

tions ϕ0(x) which satisfy∫ ∞

a

ek(a−ξ)ϕ0(ξ) dξ = 0, ∧ ϕ0(x) = 0 (x < a). (7.40)

2. For λ1 = kU − U/2a; the corresponding eigenfunction is

ϕ1(x) = δ(x− a). (7.41)

3. For λµ = kUµ/a (µ < a ∧ µ �= a − 1/2k); the corresponding eigenfunctions
are

ϕµ(x) = δ(x− µ) +
e−k(a−µ)

2k(a− µ)− 1δ(x− a). (7.42)

However, these eigenvalues are not complete and we have another eigenfunction

in a wider sense. That is ϕ2(x) = δ(x−µ0) where µ0 = a− 1/2k. We can easily see
that

(λ1 − L3)ϕ2(x) =
U

2a
e−k(a−µ0)ϕ1(x), (7.43)

where λ1 = kU − U/2a. Of course (λ1 − L3)
2ϕ2(x) = 0 also holds. These relations

are quite similar to the eigenfunction in a wider sense for the finite dimensional

matrix operator. Thus we may be able to write the operator L3 in the following

matrix form including the case µ = µ0:

L3 =

 kU − U

2a
− U

2a
e−k(a−µ)

0 kU
µ

a

 , (7.44)

where a Jordan block is obtained when kU − U/2a = kUµ/a (µ = µ0).

Let us evaluate the time evolution of the perturbation when we have taken this

ϕ2(x) as an initial condition. As we can see from Eq. (7.43), we will have ϕ1(x)

component by applying the generator L3 on the initial condition ϕ2(x). Here we

may be able to consider the evolution to be closed in the functional space spanned

by ϕ1(x) and ϕ2(x). Thus it may be natural to assume Ψ as

Ψ (x, t) =
2∑

i=1

αi(t)ϕi(x). (7.45)
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Substituting this expression into the original equation (7.12), we obtain

i∂t(α1ϕ1 + α2ϕ2) = L3(α1ϕ1 + α2ϕ2)

= λ1α1ϕ1 + α2L3ϕ2

=
(
λ1α1 −

U

2a
√
e
α2

)
ϕ1 + λ1ϕ2 (7.46)

When we decompose Eq. (7.46) into ϕ1 and ϕ2 by considering them to be indepen-

dent, we obtain two coupled time evolution equations;

dα1

dt
= −iλ1α1 + i

U

2a
√
e
α2, (7.47)

dα2

dt
= −iλ1α2. (7.48)

The latter one can be readily integrated to give

α2(t) = α2(0)e
−iλ1t. (7.49)

The former equation can also be readily solved with the variable constant method.

α1(t) =
[
i
U

2a
√
e
α2(0)t+ α1(0)

]
e−iλ1t. (7.50)

Here we see that for α2(0) �= 0, we may have a secularity due to the resonance of the
diocotron mode with one of the singular eigenfunction in the continuous spectrum.

It is noted that even if all eigenvalues are real, we may have instability due to its

secular evolution. However, by introducing a proper Hilbert space, we may show

that this apparent secularity is virtual. Physically, it is considered that the algebraic

growth of the surface wave does not occur when the resonance is the form that the

wave energy flows from inner singular function to surface wave.

7.5 Kelvin-Helmholtz system

Let us consider the case with two singular breaks which may lead to the well known

Kelvin-Helmholtz instabilities. The generator is written as

L4 = kv(x)− U

2a
[δ(x− a)− δ(x+ a)]

∫ ∞

−∞
e−k|x−ξ| · dξ, (7.51)

where the velocity field is defined as

v(x) =


−U (x ≤ −a)
Ux/a (−a < x < a)

U (a ≤ x)

. (7.52)
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If we put the basis vectors as ϕ1(x) = δ(x− a), ϕµ(x) = δ(x− µ), and ϕ3(x) =

δ(x + a), then we can obtain the following matrix representation for the operator

L4;

L4 =
U

2a

 2ka− 1 −e−k(a−µ) −e−2ka

0 2kµ 0

e−2ka e−k(a+µ) −(2ka− 1)

 (7.53)

Note here that µ = ±µ0 does not create a Jordan block any more since the frequen-

cies of diocotron oscillations are shifted due to their coupling.1

If we expand the perturbed vortex field as

Ψ (x, t) =
3∑

i=1

αi(t)ϕi(x), (7.54)

and substitute it into the Rayleigh equation, we obtain

i
dα1

dt
=

U

2a

[
(2ka− 1)α1 − e−k(a−µ)α2 − e−2kaα3

]
, (7.55)

i
dα2

dt
= kU

µ

a
α2, (7.56)

i
dα3

dt
=

U

2a

[
e−2kaα1 + e−k(a+µ)α2 − (2ka− 1)α3

]
. (7.57)

The coupling between two diocotron oscillations is eliminated by diagonalizing

the matrix of 2× 2 part of the outermost. The eigenvalues are found to be

λ†
1 =

U

2a
e−2ka sinhψ, (7.58)

λ†
3 = −

U

2a
e−2ka sinhψ, (7.59)

and the corresponding eigenfunctions are

ϕ†
1(x) = δ(x− a) + e−ψδ(x+ a), (7.60)

ϕ†
3(x) = e−ψδ(x− a) + δ(x+ a), (7.61)

1It may be easily understood by considering a simple example

A =

 3 2 1
0 3 0
−1 −2 −3

 .

This matrix can be readily diagonalized and the eigenvalues become

λ = 3, ±2
√

2,

which are no longer degenerated, and the corresponding eigenfunctions are

ϕ =
(

1,
1
10

,−1
5

)
, (1, 0,−3± 2

√
2).
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where coshψ = (2ka − 1)e2ka. Thus we define new coefficients which denote the

amplitudes of ϕ†
1 and ϕ

†
2 as

α1ϕ1 + α3ϕ3 = β1ϕ
†
1 + β3ϕ

†
3. (7.62)

From this relation we obtain(
β1

β3

)
=

2

sinhψ

(
eψ −1
−1 eψ

)(
α1

α3

)
. (7.63)

With these new coefficients, we can decouple the diocotron modes, and obtain

the following three equations;

i
dβ1

dt
= λ†

1β1 −
U

a sinhψ
[e−k(a−µ)eψ + e−k(a+µ)]α2, (7.64)

i
dα2

dt
= kU

µ

a
α2, (7.65)

i
dβ3

dt
= λ†

3β3 +
U

a sinhψ
[e−k(a−µ) + e−k(a+µ)eψ]α2. (7.66)

The solution of Eq. (7.65) is given as

α2(t) = α2(0) e
−i(kUµ/a)t. (7.67)

If we assume

kU
µ

a
= λ†

1 or λ†
3, (7.68)

then we might have secularity due to the resonance with the simple oscillator ϕ†
2.

On the other hand, we do not have it, when the eigenvalues λ†
1,3 are complex or pure

imaginary, namely when the system is unstable in a Kelvin-Helmholtz sense.

7.6 Spectral resolution of coupled non-Hermitian

generator

In this section, we formulate the vortex dynamics equation (7.12) for a case with a

sum of the delta-measure field

w(x) =

N∑
j=1

Ajδ(x− aj) (Aj , aj ∈ R, j = 1, . . . , N), (7.69)

as an evolution equation in an appropriate Hilbert space, and give a spectral reso-

lution of the generator. The generator reads

LΨ = kv(x)Ψ + kw(x)KΨ

= kv(x)Ψ +
N∑
j=1

kAjδ(x− aj)

∫ +∞

−∞
K(x, ξ)Ψ (ξ) dξ, (7.70)
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where kv(x) ∈ C(R), Aj ∈ R, aj ∈ R (j = 1, . . . , N), and K(x, ξ) = e−k|x−ξ|/2k is

the Green function [see Eq. (7.11)]. In what follows, we assume

|v(x)| < c (∀x)

with a finite number c.

It is noted that, since the delta measure δ(x−aj) is not a member of the Lebesgue
space, we encounter a difficulty in formulating the problem in the conventional L2

Hilbert space.

7.6.1 Mathematical formulation of the generator

Let us consider a Hilbert space

V = C
N ⊕ L2(R), (7.71)

where C
N is the unitary space of dimension N , and L2(R) is the complex Lebesgue

space on R endowed with the standard inner product. The member of V is written

as

Ψ =

(
α

Ψ̃ (x)

)
[α ∈ C

N , Ψ̃ (x) ∈ L2(R)]. (7.72)

The inner product of V is, thus, defined as

(Ψ |Ψ †) = (α,α†) + (Ψ̃ , Ψ̃ †)

=

N∑
j=1

ᾱjα
†
j +

∫ +∞

−∞

¯̃Ψ (x)Ψ̃ †(x) dx (7.73)

We identify

Ψ =

(
α

Ψ̃(x)

)
⇔ Ψ (x) =

N∑
j=1

αjδ(x− aj) + Ψ̃ (x). (7.74)

It is essential to decompose the delta-measure part (representing the surface waves)

from the total vorticity Ψ . Although the supports (in the sense of distributions) of

both components δ(x − aj) and Ψ̃(x) may overlap, we separate them into different

degrees of freedom. Because KΨ ∈ C(R) for all Ψ ∈ V , the generator L is a bounded
operator on V .

Following Eq. (7.74), the generator L of Eq. (7.70) is now written in a matrix
form

LΨ =


ω1(a1) · · · kA1K(a1, aN)

∫
kA1K(a1, x) · dx

...
. . .

...
...

kANK(aN , a1) · · · ωN(aN)
∫
kANK(aN , x) · dx

0 · · · 0 ωc(x)




α1

...

αN

Ψ̃(x)

 ,

(7.75)
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where we have introduced the notation

ωj(aj) = kv(aj) +
Aj

2
(j = 1, . . . , N), (7.76)

denoting the Doppler shifted diocotron frequency, and ωc(x) = kv(x), respectively.

In the previous section, we dealt delta functions in a formal way and did calcula-

tions with δ(x−µ) for an arbitrary µ ∈ R [see Eq. (7.15)]. We note that such formal

functions are not the member of the Hilbert space V . In this section, however, they

are justified as generalized eigenfunctions corresponding to ‘continuous spectra.’

7.6.2 Spectral resolution of the generator

First, we consider the simple case of single ‘source,’ i.e., w(x) = Aδ(x − a) (see

Sec. 7.4). The surface wave mode has only one degree of freedom (N = 1). Here,

the generator L of Eq. (7.75) simplifies as

L =
(

ω1(a)
∫
kAK(a, x) · dx

0 ωc(x)

)
. (7.77)

As we have shown in Sec. 7.4, there are mainly two different classes of for-

mal eigenfunctions [see Eq. (7.41) and Eq. (7.42)]. According to the notation of

Eq. (7.72), the eigenvalues and the corresponding eigenfunctions are shown as

ω1(a) = kv(a) +
A

2
, U 1 =

(
1

0

)
(7.78)

ωc(µ) = kv(µ), Ũ c(µ) =

(
m(µ)kAK(a,µ)
ωc(µ)−ω1(a)

m̃(µ)δ(x− µ)

)
, (7.79)

where m̃ is defined in order to unify both the non-resonant and resonant (nilpotent)

cases as

m̃(µ) =

{
m(µ) if ωc(µ) �= ω1(a)

(kAK(a, µ))−1 if ωc(µ) = ω1(a) (i.e. m(µ) = 0),
(7.80)

with the normalizer

m(µ) =

[
1 +

(
kAK(a, µ)

ωc(µ)− ω1(a)

)2
]−1/2

. (7.81)

The first eigenfunction (7.78) represents the surface wave. The second one (7.79)

includes an arbitrary real number µ, corresponding to the continuous spectrum, and
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a singular function δ(x− µ). We must integrate Eq. (7.79) over µ ∈ R to span the

complete basis of V . Formally, we can define the non-unitary transform

T =
(
U 1

∫
(δ(x− µ), · )Ũ c(µ) dµ

)
=

(
1

∫
(δ(x− µ), · )m(µ)AK(a,µ)

ωc(µ)−ω1(a)
dµ

0
∫
(δ(x− µ), · )m̃(µ)δ(x− µ) dµ

)
. (7.82)

To cast this formal expression in an appropriate mathematical representation,

we invoke the resolution of the identity (7.19). The formal correspondence is∫ +∞

−∞
(δ(x− µ), u(x)) δ(x− µ) dµ =

∫ +∞

−∞
dE(µ)u = u.

We also define

F (µ)u =

∫ µ

−∞
u(x) dx, (7.83)

which gives

dF (µ)u = u(µ) dµ.

With this notation, we can write∫
f(µ) dF (µ)u(x) =

∫
f(µ)u(µ) dµ =

∫
f(x)u(x) dx.

The operator T is now written in a rigorous form as

T =
(
1

∫ m(µ)kAK(a,µ)
ωc(µ)−ω1(a)

dF (µ)

0
∫
m̃(µ) dE(µ)

)
=

(
1

∫ m(x)kAK(a,x)
ωc(x)−ω1(a)

· dx
0 m̃(x)

)
(7.84)

Reflecting the non-Hermitian property of the generator L, the operator T is not a

unitary transform. By combing both non-resonant and resonant (nilpotent) cases,

this T gives a regular transform. The inverse operator is

T −1 =

(
1 −

∫ (
m(x)
m̃(x)

)(
kAK(a,x)

ωc(x)−ω1(a)

)
· dx

0 m̃(x)−1

)
. (7.85)

With the transforms T and T −1, we obtain the Jordan canonical form of L;

T −1LT =
(

ω1

∫
ρ(µ) dF (µ)

0
∫
ωc(µ) dE(µ)

)

=

(
ω1

∫
ρ(x) · dx

0 ωc(x)

)
, (7.86)

where

ρ(x) =

{
1 if ωc(µ) = ω1(a)

0 if ωc(µ) �= ω1(a)
.

The support of ρ(x) may have a finite measure when the resonance condition ωc(µ) =

ω1(a) holds on a finite interval of x.
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7.6.3 Spectral representation of the propagator

The propagator e−itL is defined by solving the initial value problem for Eq. (7.12){
i∂tΨ = LΨ
Ψ (0) = Ψ 0

, (7.87)

and writing the solution as

Ψ (t) = e−itLΨ 0.

By introducing Ψ = T χ, Eq. (7.87) is transformed into{
i∂tχ = T −1LT χ
χ(0) = T −1Ψ 0

. (7.88)

Using the spectral resolution (7.86), the solution of Eq. (7.88) is given by

e−itT −1LT =

(
e−itω1 −

∫
ite−itω1ρ(µ) dF (µ)

0
∫
e−itωc(µ) dE(µ)

)

=

(
e−itω1 −

∫
ite−itω1ρ(x) · dx

0 e−itωc(x)

)
. (7.89)

The solution of Eq. (7.87) is given by

Ψ (t) = T
[
e−itT −1LT

]
T −1Ψ 0.

With Eqs. (7.84) and (7.85), we obtain

e−itL = T
(

e−itω1 −
∫
ite−itω1ρ(x) · dx

0 e−itωc(x)

)
T −1

=

(
e−itω1 X

0 e−itωc(x)

)
, (7.90)

where

X =

∫ (
[1− ρ(x)]

[e−itωc(x) − e−itω1(a)]kAK(a, x)

ωc(x)− ω1(a)
− ite−itω1kAK(a, x)ρ(x)

)
· dx,

and we have used the relations
m(x)

m̃(x)
= 1− ρ(x)

ρ(x)

m̃(x)
= kAK(a, x)ρ(x)

.

In the case of multiple sources [see Eq. (7.69)], the first class of formal eigen-

functions are obtained by solving ω1(a1) · · · kA1K(a1, aN)
...

. . .
...

kANK(aN , a1) · · · ωN(aN)


 α1

...

αN

 = ω

 α1

...

αN

 , (7.91)
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and the second class by ω1(a1)− ωc(µ) · · · kA1K(a1, aN)
...

. . .
...

kANK(aN , a1) · · · ωN(aN )− ωc(µ)


 α1

...

αN

 = −β

 kA1K(a1, µ)
...

kANK(aN , µ)

 .

(7.92)

Then we can define the transform as

T =
(
U 1 · · · UN

∫
(δ(x− µ), · )Ũ c(µ) dµ

)
, (7.93)

where U 1, . . . ,UN denote the formal eigenfunctions of the first class, respectively,

and Ũ c denote those of second class which are obtained in the way shown above.

Again by combining both non-resonant and resonant (nilpotent) cases, this trans-

form T is not unitary but regular. Thus, the inverse operator T −1 can be defined

and e−itT −1LT can be generated.

7.7 Laplace transformation

In this section, we will solve the same initial value problem by means of Laplace

transformation which is another method to give a general solution for bounded

operators. The Laplace transformation is defined here by

f̂(x, s) =

∫ ∞

0

f(x, t) e−st dt, (7.94)

where s satisfies the condition that its real part is larger than any temporal singu-

larity of the function f(x, t) for the convergence of the integration. The inversion

will be given by

f(x, t) =
1

2πi

∫ s0+i∞

s0−i∞
f̂(x, s) est ds, (7.95)

where s0 = Re(s) > 0. Due to the definition of our Hilbert space (7.71), perturbed

vorticity will be transformed as

Ψ̂(x, s) =

(
α̂(s)
ˆ̃Ψ(x, s)

)
=



∫ ∞

0

α(t) e−st dt

∫ ∞

0

Ψ̃(x, t) e−st dt

 . (7.96)

The generalized Rayleigh equation (7.12) will be transformed by multiplying e−st

on both sides and integrating with respect to time as

[is− v(x)]Ψ̂ − w(x)KΨ̂ = iΨ(0), (7.97)
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where the integrations with respect to ξ (in the operator K) and t has been com-

muted.

Let us consider at first the single source case. Plugging

w(x) = Aδ(x− a) (7.98)

and Eq. (7.96) into Eq. (7.97), we have

[s + iω1(a)]α̂(s) + i

∫ ∞

−∞
kAK(a, ξ) ˆ̃Ψ(ξ, s) dξ = α(0), (7.99)

[s + iωc(x)]
ˆ̃Ψ (x, s) = Ψ̃(x, 0), (7.100)

or (
s+ iω1(a) i

∫
kAK(a, ξ) · dξ

0 s+ iωc(x)

)(
α̂
ˆ̃Ψ

)
=

(
α(0)

Ψ̃(0)

)
, (7.101)

in the matrix form. Equation (7.100) for the inner vorticity fluctuation will be

readily solved for each x as

ˆ̃Ψ (x, s) =
Ψ̃ (x, 0)

s+ iωc(x)
, (7.102)

and its pole at s = −iωc(x) will give a simple oscillation

Ψ̃ (x, t) = Ψ̃(x, 0) e−itωc(x), (7.103)

which exactly coincides with the result obtained by Case [50]. It is shown for the

Couette flow that the continuous spectrum exhibits the phase mixing damping of

the velocity field v1x proportional to 1/t when integrated.

Equation (7.102) will be substituted into Eq. (7.99), which now reads as

α̂(s) =
α(0)

s+ iω1(a)
− i

s+ iω1(a)

∫ +∞

−∞

kAK(a, ξ) Ψ̃(ξ, 0)

s+ iωc(ξ)
dξ, (7.104)

where the isolated pole in the first term gives again the simple oscillation when

inverted. By inverting the Laplace transformation, we formally obtain

α(t) = α(0) e−itω1(a) − 1

2π

∫ s0+i∞

s0−i∞

est

s+ iω1(a)

∫ +∞

−∞

kAK(a, ξ) Ψ̃(ξ, 0)

s+ iωc(ξ)
dξ ds. (7.105)

The second term has two singularities which apparently looks same as the case of

kinetic treatment for electrostatic oscillations (see Appendix C). However, since the

numerator of the integrand is not an analytic function in all region on the real

axis of ξ, the analytic continuation cannot be properly defined. Thus, we have to

choose another method here. Fortunately, double integrations in the second term
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are commutable since both of them are uniformly converging. Thus, the integration

with respect to s can be evaluated by deforming the integration path as

1

2π

∫ s0+i∞

s0−i∞

est

s+ iω1(a)

∫ +∞

−∞

kAK(a, ξ) Ψ̃(ξ, 0)

s + iωc(ξ)
dξ ds

=
1

2π

∫ +∞

−∞
dξ AK(a, ξ) Ψ̃(ξ, 0)

∫ s0+i∞

s0−i∞

est

[s + iω1(a)][s+ iωc(ξ)]
ds

=
1

2π

∫ +∞

−∞
dξ

kAK(a, ξ) Ψ̃(ξ, 0)

iωc(ξ)− iω1(a)

∫ s0+i∞

s0−i∞

(
1

s+ iω1(a)
− 1

s+ iωc(ξ)

)
est ds

=

∫ +∞

−∞

[e−itω1(a) − e−itωc(ξ)]kAK(a, ξ)

ωc(ξ)− ω1(a)
Ψ̃(ξ, 0) dξ. (7.106)

Then, the final expression for the surface wave evolution is given by

α(t) = α(0) e−itω1(a) +

∫ +∞

−∞

[e−itω1(a) − e−itωc(ξ)]kAK(a, ξ)

ω1(a)− ωc(ξ)
Ψ̃ (ξ, 0) dξ. (7.107)

By combining Eq. (7.103) with Eq. (7.107), the solution for the initial value problem

is expressed in the following matrix form;(
α(t)

Ψ̃(x, t)

)
=

(
e−itω1(a)

∫ +∞
−∞

[e−itω1(a)−e−itωc(x)]kAK(a,x)
ω1(a)−ωc(x)

· dx
0 e−itωc(x)

)(
α(0)

Ψ̃(x, 0)

)
,

(7.108)

which exactly coincides with the previous expression (7.90) obtained by means of

the spectral method. It is noted that the value of the function

[e−itω1(a) − e−itωc(x)]

ω1(a)− ωc(x)
(7.109)

at zeros of the denominator should be defined by the value −ite−itω1(a) of the limit

ωc(x)→ ω1(a).

7.8 Summary

We have obtained the spectral resolution of the non-Hermitian operator for the sur-

face wave model of Kelvin-Helmholtz instability. With the aid of dividing the Hilbert

space into a finite discrete part and an infinite continuous part, we have shown that

the operator of Rayleigh equation is bounded. It is found that the system has a

resonance (frequency overlapping) between the inner vorticity fluctuation and the

surface wave. When the resonance occurs in a finite measure region which introduces

the point spectra in the inner vorticity fluctuation, the resonance gives the energy

transfer from the inner vorticity fluctuation to the surface wave. This leads to the

secular behavior of the surface wave. However, when the resonance occurs in a zero
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measure region, the energy cannot be transferred from the continuous spectrum to

the point one. Therefore, the surface wave just represents the asymptotic oscillation.

In the case of kinetic treatment for electrostatic oscillations [95], the multipli-

cation is given by a simple coordinate operator which only contains the continuous

spectrum. Therefore, the resonance happens to balance with the phase mixing due

to continuum damping, and leads to the stationary asymptotic behavior. Here, the

situation of Kelvin-Helmholtz instability is quite similar to the electrostatic oscil-

lations, but the multiplication is given by a function. Thus, the Kelvin-Helmholtz

instability may bring about the point spectra and secular behavior of the surface

wave. In the physical situation, however, the resonance with finite measure may

not be rarely satisfied. In this case, it may not be considered to produce secularity.

By modifying the system, resonance may happen between two continuous spectra.

Then, a realistic secular behavior is produced [84].



Chapter 8

Concluding remarks

In this thesis, one dimensional linear spectral properties in incompressible single

fluid magnetohydrodynamic (MHD) plasma were explored for several cases related

to stability problem in magnetically confined plasmas for fusion research.

In Chap. 2, we have discussed the Hermiticity in connection with the norm of the

operator in detail. Boundary conditions are well known to affect the spectra of the

operators, however, in this chapter, it is explicitly described that the Hermiticity

strongly depends on how we take the norm for the operator. If we may prove the

Hermiticity of the operator with a certain norm, we can construct a spectral reso-

lution under this norm. We have reviewed the basic spectra of shear Alfvén waves

for static plasma (Hermitian generator) in both the slab and cylindrical geometry.

Moreover, it is shown that the linearized equation of two dimensional incompressible

Euler fluid can be also shown Hermitian if the ambient shear flow does not include

any inflection point (Rayleigh’s criterion). However, the system which contains any

complex eigenvalue is not such a case.

Chapters 3 and 4 are devoted to the analysis of Hermitian operators. In Chap. 3,

we have shown the analysis for non-resonant interchange instabilities (point spec-

tra). It has been discussed why the prediction of the Mercier (Suydam) criterion

for localized interchange modes does not explain some stable discharges achieved

in stellarators. Usually, the destabilizing pressure gradient at the mode resonant

surface makes the unstable mode to be localized. However, the local flattening of

the pressure profile prohibits the localization of the unstable eigenmode even in the

limit of marginal stability. With the numerical computation of the spectral ordinary

differential equation, it is shown that the unstable eigenmode tends to have a step

like structure at the resonant surface in this case. It is also found that the growth

rate of the non-resonant mode decreases to zero without the tail formation near the

beta (ratio of plasma pressure to magnetic pressure) limit like the Suydam modes.

115
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The obtained beta limit of the non-resonant mode becomes mostly an order of mag-

nitude higher than that obtained from Suydam criterion for the smooth pressure

profile. This may explain the discrepancy of the experimental result that the beta

exceeded the Mercier limit. Furthermore, we have shown the situation where the

unstable non-resonant mode sets the beta limit which is lower than calculated from

Mercier (Suydam) criterion. These perspectives obtained from cylindrical plasma

model are also confirmed with a toroidal model for interchange modes.

In Chap. 4, we have calculated the damping of the surface Alfvén wave due to

continuous spectra induced by the rapid change of equilibrium density profile in

a slab geometry by means of the Laplace transformation method. As is shown in

Sec. 2.6, every singular eigenfunction corresponding to the Alfvén continuous spectra

has logarithmic singularity originated from the regularity of the singular point in

the spectral ordinary differential equation. When we solve the problem by means of

the Laplace transformation, it brings about the singularity of the Green’s function

in the analytically continuated Riemannian surface, which yields the damping rate

(exponential damping) of the magnetic fluctuation. The results were compared with

experimental observation of the pellet injection in Heliotron-E. The damping rate

has a maximum in relation to the sharpness of density gradient, and numerical

results show that the damping rate is consistent with experiment for an adequate

physical parameters. In the sharp density limit (step function), this damped solution

connects to the surface eigenmode.

Chapters 5, 6, and 7 are devoted for the spectral analyses of non-Hermitian

(non-selfadjoint) operators. In Chap. 5, the effect of surrounding resistive wall

on rigidly flowing plasma has been investigated. Since the whole system is not

represented in the form of single evolution equation, it is difficult to construct a

spectral representation. However, the detailed property and the behavior of an

eigenmode (a point spectrum) are explored. By approximating the system in a

slab geometry, we have estimated the effect of the resistive wall with replacing the

wall current by a mirror image current. In static plasmas, the external kink mode

(surface current driven instability) with surrounding resistive wall carries a smaller

image current, which causes the instability in the resistive wall time scale. However,

when plasma is rigidly flowing with respect to the wall, the image current is not

only weak compared to the plasma surface current, but also becomes phase shifted,

which yields another destabilizing mechanism similar to Kelvin-Helmholtz instability

in neutral fluids. The combination of the magnitude and relative phase of the image

current produces a small hump of the growth rate with respect to the wall position,

which is related to the closest limit of wall position for the stabilization of external

kink instability due to continuous spectrum. The dispersion relation is analytically



Chapter 8: Concluding remarks 117

solved by means of the perturbation method, and the wall position of the maximum

growth rate is evaluated from the breakdown point of the perturbation expansion.

It is predicted that, if the flow velocity is increased, the extremum of the growth

rate will become closer to the plasma edge, however, the dependence of growth rate

on the flow velocity is very weak (logarithmic).

In Chap. 6, transient and secular behaviors of interchange fluctuations are ana-

lyzed in an ambient shear flow by invoking Kelvin’s method of shearing modes. The

expansion with Kelvin’s modes is shown to give general solutions in the case of linear

shear flow profile. However, since it is only applicable to the system with infinite

domain unfortunately, we cannot study the effect of shear flow on the point spectra.

By means of this method, we have first analyzed the incompressible electromagnetic

perturbations in the presence of an interchange drive and obtained the ordinary dif-

ferential equation for the amplitude of the modes. All modes show asymptotic decay

proportional to the inverse power of time (non-exponential) without any threshold

value. This means that the interchange instabilities are always damped away at suf-

ficiently long time due to the combined effect of the Alfvén wave propagation and

the distortion of mode structure by means of the background shear flow; i.e. phase

mixing effect. However, the transient behavior is not common for all modes. Fluc-

tuations with particular wave numbers show transient amplifications which are even

faster than the growth rate of interchange modes in static plasmas. These amplifica-

tions are so prominent that they may lead to the break down of the linearity of the

perturbation. On the time evolution for the perturbations with purely perpendicu-

lar wave vectors to the ambient magnetic field, which do not excite the Alfvén wave,

the flow shear has been also shown to have a stabilizing effect. However, the phase

mixing effect alone cannot completely stabilize the interchange instabilities and the

algebraic growth of the perturbation still remains. The condition for the bounded-

ness of mode amplitude of the stream function is obtained; however, the conditions

of different physical quantities do not coincide. The discrepancies originate from

the fact that, in shear flow systems, different perturbations experience algebraic

evolutions characterized by different powers of time, while the time evolutions for

any fields are expressed in a common exponential form for static systems. This may

represent a pathological aspect of the stability problem in shear flow plasmas.

In Chap. 7, the spectral theory of Rayleigh equation is demonstrated with sur-

face wave model by invoking a proper definition of the Hilbert space. When the

system is Kelvin-Helmholtz unstable with complex eigenvalues, the generator can

be properly diagonalized. The generator turns out to be an infinite dimensional one

correspondent to the semi-simple matrix in the finite dimensional linear space. It

is shown, however, that the system contains the resonance of point spectra (cor-
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responding to diocotron modes) and continuous spectra (corresponding to entropy

waves) in the case where the equilibrium is stable to the Kelvin-Helmholtz mode

(no complex eigenvalue). Simple resonance among point spectra will cause a secular

growth of the mode; however, it is shown that the resonance, which contains the

energy flow from continuous spectra to point ones, may not cause secularity of the

perturbed quantities. It is noted that, by considering the another model, e.g. paral-

lel dynamics of electrons, such secular behavior will be realized due to the inclusion

of the resonance between two continuous spectra. It means that, even if we do not

have any unstable eigenvalue, we may have growth of the algebraic type, which may

cause an instability of the system.



Appendix A

Equations of state

In this chapter we consider the relation between the Poisson relation in thermody-

namics and the adiabatic equation in MHD [10, 12], which are rare to be described

simultaneously in references. Moreover, we will show that the incompressibility

condition can be derived as a singular limit of the adiabatic equation of state.

We define a fluid element as what occupies a local space surrounded by a certain

boundary surfaces. In a plasma, the fluid element consists of innumerable charged

particles, however, from macroscopic viewpoint, the fluid element must be suffi-

ciently small in order to treat the macroscopic quantities as a common value. By

assuming to take such an element for a plasma, we may define the plasma pressure,

volume, and other macroscopic quantities for this element. Rigorously speaking, it

is not evident whether the volume for fluid element is well defined. Since the density

for the element can be defined, we define the volume in terms of local density of

the fluid element. Therefore the volume is considered as a local quantity. More-

over, although the plasma consists of electrons and ions, we do not distinguish the

difference and treat as a single fluid within the context of MHD.

Here we assume that each plasma element is at thermodynamical equilibrium

in every time and every space. For p, V , n, R, T denoting pressure, volume, mol

number of particles in an element, constant of gas, and temperature, respectively,

Boyle-Charles’ law;

pV = nRT (A.1)

is assumed valid for a plasma.

For Q, S describing heat and entropy, the specific heat at constant volume Cv

and that at constant pressure Cp are represented as

Cv =
(∂Q
∂T

)
V
= T

(∂S
∂T

)
V
, (A.2)
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Cp =
(∂Q
∂T

)
p
= T

(∂S
∂T

)
p
. (A.3)

Here the subscripts for partial derivatives represent the fixed variable explicitly.

For x = x(y, z), y = y(z, x), z = z(x, y) and t = t(x, y, z), there are following

relations; (∂x
∂y

)
z

(∂y
∂z

)
x

(∂z
∂x

)
y
= −1, (A.4)(∂x

∂y

)
z
=

(∂x
∂y

)
t
+

(∂x
∂t

)
y

( ∂t
∂y

)
z
. (A.5)

At first, regarding x, y, z, t as S, T , V , p, respectively, in Eq. (A.5), and using

equation of state (A.1) leads straightforwardly to the Mayer’s relation;

Cp − Cv = nR. (A.6)

And next, regarding x, y, z, t as p, V , S, T , respectively, Eq. (A.5) becomes( ∂p

∂V

)
S
=

( ∂p

∂V

)
T
+

( ∂p
∂T

)
V

(∂T
∂V

)
S
. (A.7)

Using Eq. (A.4), we can write the last term as(∂T
∂V

)
S
= −

(∂T
∂S

)
V

( ∂S
∂V

)
T
= − T

Cv

( ∂p
∂T

)
V
= − p

Cv
. (A.8)

In the last form of Eq. (A.8) we used the equation of state (A.1). Substituting this

relation into Eq. (A.5) and using Mayer’s relation (A.6), we obtain( ∂p

∂V

)
S
= − p

V

(
1 +

nR

Cv

)
= − p

V

Cp

Cv
, (A.9)

and integrating this equation leads to the following relation known as Poisson rela-

tion;

pV γ = const, (A.10)

where γ denotes the specific heat ratio γ = Cp/Cv. The relation (A.10) is called

adiabatic law, since variation of the system with a fixed S means no heat conduction

not only between the system and the outer region, but among all fluid elements. In

other words, when the system suffers an adiabatic variation, the Poisson relation is

applicable.

For a mass density of particles ρ, the volume is inversely proportional to the

mass density, V ∝ ρ−1. Since the time derivative of Eq. (A.10) vanishes, the

Poisson relation can be written as

d

dt

(
pρ−γ

)
= 0, (A.11)
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where d/dt = ∂t + v · ∇ and v denotes a fluid velocity. Since we are looking at

a certain fluid element, the time derivative should be taken in Lagrangian way.

Substituting the continuity equation (2.1);

dρ

dt
= −ρ∇ · v, (A.12)

into Eq. (A.11), we obtain the pressure evolution equation (2.3);

dp

dt
+ γp∇ · v = 0. (A.13)

For the degree of freedom of the macroscopic system N , the specific heat at

constant volume is given as Cv = NR/2 from equipartition law of energy. Then the

Mayer’s relation (A.6) yields γ = (N + 2)/N , i.e. for higher N , γ becomes smaller

and approaches to unity. It can be interpreted intuitively that for the system with

a larger degree of freedom, the fluid element can be deformed in a higher degree

of freedom and can escape from the compression when external force is applied.

Therefore, the adiabatic compression needs more pressure in the higher N than the

lower one in order to decrease the same volume of the fluid element.

Following the above discussion, we can define the incompressibility condition as

a singular limit of the adiabatic relation for the ideal gas (A.13). Incompressible

fluid is that, the fluid element does not suffer any compression against any strong

external pressure, i.e. n/V does not change for any large p. Even if the fluid element

is deformed when exposed to an external force, however, it cannot be diverse freely

and suffers the tightening from all direction due to its incompressibility, which is

connected with the limitN → 0. This gives a singular limit of the adiabatic equation

of state γ →∞, which leads to the incompressible equation of state as

∇ · v = 0. (A.14)

By replacing the adiabatic equation of state (A.13) by the incompressible one (A.14),

we can close the system of MHD equations.

In the same way, we can take the incompressible limit of the solution obtained

by means of the compressible equation of state, however, it should be noted that the

solution is consistent with the original adiabatic equation only in the limit γ → ∞
in the way that

γ(∇ · v)→ −1
p

dp

dt
. (A.15)

This is the case discussed in Sec. 4.3. The limit γ →∞ corresponds to the situation

where the sound wave will be excluded by putting vs → ∞. Considering the fact
that the phase velocity of the sound wave is much faster in the less compressible

water than in the more compressible atmosphere, this result can be acceptable.
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It is also noted that the condition of isothermal variation is obtained from Eq.

(A.1) as T = const. Sometimes the anisotropic variation is considered. Such a case

is discussed in Refs. [10, 12].
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Spectral theory

This chapter is devoted to the explanation of mathematical background of the spec-

tral theory. Spectral theory of linear operators is quite widely used in linear stabil-

ity or linear wave analyses in plasma physics. The mathematical basis is, however,

rarely quoted in literatures, which might lead to the improper understanding of the

complicated phenomena of plasmas.

The examples described here might be somewhat trivial, at least in mathematics.

However, detailed analyses of basic problems may sometimes help the physicists for

better understandings. First, we will review the spectral theory of finite dimensional

linear matrix operator, which has been completed due to the great works by Jordan.

Next, we will treat infinite dimensional differential operator, which is, in any sense,

far from complete theory unlike the finite dimensional one. Since whole part of this

thesis is devoted to the analyses of such infinite dimensional operators, we will focus

on the simple description here and explain the basis of well-known methods widely

used in literatures.

B.1 Finite dimensional operators

Let us first describe the complete classification of the finite dimensional operators.

The finite dimensional operators can be classified in a suitable way for the spectral

theory as follows;

1. Hermitian (selfadjoint) matrix

All eigenvectors can be taken orthogonal and all eigenvalues are real.

2. Normal matrix (commutable with its adjoint)

All eigenvectors can be taken orthogonal, but some eigenvalues are complex.
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Jordan

semi-simple

normal

Hermite

Figure B.1: Classification of finite dimensional linear matrix operators.

3. Semi-simple matrix

Eigenvectors cannot be taken orthogonal, but linear space is spanned only by

eigenvectors.

4. Jordan matrix

Eigenvectors are not enough to span whole linear space.

The schematic view is shown in Fig. B.1. In general, any finite dimensional matrix

operator belongs to one of the above sets. We can recognize how small is the region

occupied by the Hermitian operators in the whole linear operators even in the finite

dimensional case. In some sense, there may expand rich varieties of unknown sea

out of Hermitian operators.

B.1.1 Spectral resolution of Hermitian matrices

Here we will discuss the solution of the abstract Schrödinger type evolution equation

i∂tψ = Aψ, (B.1)

where the generator A is assumed a Hermitian matrix defined in N ( ∈ N) dimen-

sional vector space V = CN . The definition of Hermitian matrix will be given later.

The scalar product for two elements φ,ψ ∈ V is defined as

(φ |ψ) =
N∑
j=1

φ̄jψj , (B.2)

where φj (ψj) denotes the j-th component of the vector φ (ψ). Then the vector

space V is found to be an N dimensional Hilbert space. Here, the bar denotes the

complex conjugate.
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An eigenvector ϕ of the matrix A is defined by a nonzero element of V which

satisfies

Aϕ = λϕ, (B.3)

where λ ∈ C is called the eigenvalue. Then, the zero vector and the totality of ϕ,

which belong to the eigenvector corresponding to the eigenvalue λ, are denoted as

W . This constitutes the A-invariant subspace of V . HereW is called an eigenspace

corresponding to the eigenvalue λ.

Adjoint matrix A∗ is a matrix which satisfies

(A∗φ |ψ) = (φ | Aψ), (B.4)

for any φ,ψ ∈ V . The A∗ is represented by the complex conjugate of the transposed

matrix. Hermitian (selfadjoint) matrix is the one which satisfiesA∗ = A. It is readily
shown that all eigenvalues of the Hermitian matrix are real.1 Moreover, it is known

that all eigenvectors can be taken orthogonal and the totality of eigenspaces span

the original vector space:

V =W 1 ⊕W 2 ⊕ · · · ⊕WN , (B.5)

where ⊕ denotes the direct orthogonal sum of the eigenspaces. It is noted that

normal matrices also allow the orthogonal decomposition of the vector space V by

their eigenvectors, however, the semi-simple matrices allow the decomposition

V =W 1 +̇W 2 +̇ · · · +̇WN , (B.6)

where +̇ denotes the simple direct sum in which eigenspaces may not be orthogonal.

The spectral resolution of the Hermitian matrix A will be described with use of
the commutability with its adjoint.2 Let Pn be the projection operator from V onto

W n, then it will be expressed as

Pn = ϕn(ϕn| · ), (B.7)

where ϕn ∈ V denotes the normalized eigenvector of the operator A which cor-

responds to the eigenvalue λn. Here the dimension of the eigenspace W n is as-

sumed as unity for simplicity. It is noted that Eq. (B.7) is sometimes expressed as

Pn = |ϕn)(ϕn| in the quantum mechanics context by following Dirac [8]. It is shown
that any Hermitian operator A will be expressed in terms of the projector as

A =
N∑

n=1

λnPn, (B.8)

1For any eigenvalue λ and the corresponding eigenvector ϕ, (ϕ | Aϕ) = λ(ϕ |ϕ) holds. On the
other hand, (ϕ | Aϕ) = (Aϕ |ϕ) = λ̄(ϕ |ϕ) also holds, which supports λ = λ̄.

2Therefore, the following orthogonal spectral resolution is applicable to more general normal
matrix which satisfies A∗A = AA∗.
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which is called a spectral resolution of the Hermitian matrix operator A. Here the
resolution of identity can be produced as

N∑
n=1

Pn = I, (B.9)

where I denotes the identity matrix, and the orthogonality of the projector

PiPj = 0 (i �= j) (B.10)

holds due to the orthogonality of the eigenvectors.

Based on the above knowledges, we can solve Eq. (B.1) by means of spectral res-

olution method. Substituting the spectral resolution (B.8) into original Schrödinger

type equation (B.1) leads to

i∂tψ =

N∑
n=1

λnPnψ

=
N∑

n=1

λnϕn(ϕn |ψ). (B.11)

Taking the scalar product of both sides with ϕi (i ∈ N) gives

i∂t(ϕi|ψ) = λi(ϕi|ψ), (B.12)

due to the orthogonality of eigenvectors. Equation (B.12) is readily solved and we

obtain the time evolution of each ‘mode’ as

(ϕi|ψ)(t) = e−iλit(ϕi|ψ)(0) (B.13)

Substituting it into resolution of ψ(t)

ψ(t) =
N∑

n=1

Pnψ(t)

=

N∑
n=1

ϕn(ϕn|ψ)(t), (B.14)

we obtain the general solution as

ψ(t) =
N∑

n=1

ϕne
−iλit(ϕi|ψ)(0). (B.15)

Since the whole linear vector space V is spanned by only eigenfunctions with real

eigenvalues for the Hermitian matrix A, the time evolution is written in the form of
the superposition of simple harmonic oscillators (eigenmodes).

It is noted that, up to semi-simple matrix, this method works with slight modi-

fications. The time evolution of the whole system is determined by the exponential

function with eigenvalues of the operator as its exponent, even though the orthogo-

nality of eigenmodes may not follow in the case of semi-simple matrix.
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B.1.2 Algebraic instability of Jordan matrices

In this section, the pathology of applying the spectral resolution for Jordan matrices

is shown. We will invoke here a different method from the previous section. Since

finite dimensional matrix operator is a bounded one, we can define the exponential

function of the operator as

eA = I +A+ 1

2!
A2 + · · · , (B.16)

where I denotes the identity matrix. It is shown that this expression gives a conver-
gent series. Using the exponential function of the matrix, we can write the solution

of the original Schrödinger equation (B.1) as

ψ(t) = e−itAψ(0). (B.17)

If A were a Hermitian (semi-simple) matrix, the linear space V would be spanned

by eigenvectors. Therefore, the expansion

e−itA = e−iλte−it(A−λI)

= e−iλt
[
I − it(A− λI)− t2

2
(A− λI)2 + · · ·

]
, (B.18)

applied for the component of the eigenspace corresponding to the eigenvalue λ, would

give no contribution except for the first term in the square bracket. It made the

problem possible to represent the whole dynamics of the system by the superposition

of exponential time evolution.

However, the eigenvectors are not enough, in general, to span the whole linear

space V for the Jordan matrix. Let ϕ be one of eigenvectors in a wider sense

belonging to the eigenvalue λ, and (A− λI)nϕ vanishes at first for n ∈ N (n > 1).

That is shown as

(A− λI)jϕ
{
�= 0 for j < n

= 0 for j ≥ n
. (B.19)

Suppose that the initial condition is taken as ϕ. From the expressions shown in

Eqs. (B.17) and (B.18), we have

ψ(t) = e−iλte−it(A−λI)ϕ

= e−iλt

n−1∑
j=0

(−it)j
j!

(A− λI)jϕ.

Thus, the fastest growing mode of the eigenvector in a wider sense belonging to the

eigenvalue λ shows divergence of the dependence t(n−1)e−iλt, which corresponds to

an instability even if the eigenvalue λ is real. The algebraic growth of amplitudes is

called ‘secularity.’
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B.2 Differential operator

In this section, we will show an example of spectral resolution for the differential

operator corresponding to Schrödinger equation, and compare two widely used meth-

ods for the spectral analysis, i.e. Fourier transformation and Laplace transformation.

Difficulties of constructing the complete spectral theory for differential operators are

coming from the infinity of their dimensions, which leads to the appearance of con-

tinuous spectra, and unboundedness of their spectra. However, we will not discuss

such difficulties in this section. For readers who are interested in such profound

problems, several mathematical books are useful [28, 11, 6]. It is also noted that the

following discussions may not follow with the terminology of modern mathematics.

B.2.1 Spectral resolution

First, we will consider the one dimensional Laplacian operator

A = ∂2
x, (B.20)

defined in the Sobolev space H1
0 [0, 1]. Here, H

1
0 [0, 1] denotes the set of the once dif-

ferentiable functions f(x) defined in the region x ∈ [0, 1] which satisfies the boundary
condition f(0) = f(1) = 0. The scalar product in this functional space is defined by

(u | v) =
∫ 1

0

ūv dx, (B.21)

for the elements u, v ∈ H1
0 [0, 1], where the bar denotes the complex conjugate. It

is readily shown that the operator A is Hermitian (selfadjoint) in this functional

space.

Since
d2

dx2
sin(nπx) = −(nπ)2 sin(nπx) (B.22)

holds, the eigenvalues of the operator A are

λn = −(nπ)2 (n ∈ N), (B.23)

and the corresponding normalized eigenfunctions are

un =
√
2 sin(nπx). (B.24)

It is known that this set of eigenfunctions un constitutes a complete orthogonal

basis in H1
0 [0, 1] with the scalar product (B.21). Therefore, an arbitrary function

φ ∈ H1
0 [0, 1] will be expanded as

φ(x) =

∞∑
n=1

anun(x), (B.25)
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where an is given by

an = (un |φ). (B.26)

It is noted here that the operator

Pn = |un)(un| = un(x)

∫ 1

0

un(x) · dx (B.27)

describes the projection from H1
0 [0, 1] onto the subspace spanned by |un) and the

spectral resolution of A is denoted as

A =
∞∑
n=1

λnPn, (B.28)

which shows the formal equivalence between the matrix representation and the dif-

ferential one in quantum mechanics [8, 22]. Furthermore,

∞∑
n=1

Pn = 1 (B.29)

is called the resolution of identity for the operator A, which is obtained from the

Parseval’s equality

‖φ‖2 =

∞∑
n=1

|(un |φ)|2, (B.30)

where ‖φ‖ = (φ |φ) denotes the norm of the element φ. The possibility of con-

structing the resolution of identity by means of eigenfunctions is guaranteed only

for Hermitian operators (von Neumann theorem). Although this resolution is not

always expressed by the summation — in general, the Hermitian operator of the

Hilbert space contains the continuous spectra, we have taken such a space for sim-

plicity. In the extension of the previous sections, it is quite natural to consider that

non-Hermitian operators may include eigenfunctions in a wider sense.

Based on the above knowledges, we can solve the following time evolution equa-

tion (Schrödinger equation for a free particle);

i∂tψ = ∂2
xψ, (B.31)

by means of the spectral resolution of the operator A. Expanding ψ by the eigen-
functions un of the operator A as

ψ(x, t) =

∞∑
n=1

an(t)un(x), (B.32)

and substituting it into Eq. (B.31), we have

∞∑
n=1

(i∂tan − λnan)un = 0. (B.33)
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Since un is orthogonal for different n, the equation can be decomposed into the one

for each ‘mode’ to give

i∂tan = λnan, (B.34)

which leads to the solution of each mode as

an(t) = an(0)e
−iλnt. (B.35)

Thus, the general solution for an arbitrary initial perturbation ψ(x, 0) can be ob-

tained as

ψ(x, t) =
∞∑
n=1

√
2an(0)e

in2π2t sin(nπx), (B.36)

where an(0) is obtained by

an(0) = (un |ψ(x, 0)). (B.37)

B.2.2 Fourier transformation

Let us solve the Schrödinger equation (B.31) by means of the Fourier transformation.

This method is intrinsically parallel to the spectral resolution.

Fourier transformation is formally defined as

ψ̂(k, ω) =

∫ 1

0

∫ ∞

−∞
ψ(x, t) e−i(kx−ωt) dt dx, (B.38)

where the inversion will be given by

ψ(x, t) =
1

2π

∑
k

∫ ∞

−∞
ψ̂(k, ω) ei(kx−ωt) dω, (B.39)

where the inversion with respect to k is expressed by the discrete summation since

we have taken the finite domain [0,1]. The wave number k is chosen as

k = nπ (n ∈ N). (B.40)

We will apply the Fourier transformation to the Schrödinger equation and obtain

(ω + k2)ψ̂(k, ω) = 0, (B.41)

which is readily solved for ψ̂ to give

ψ̂(k, ω) = δ(ω + k2). (B.42)

The relation

ω = −k2, (B.43)
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denoting the singularity of ψ̂, is called the ‘dispersion relation’ since only these

values which satisfy Eq. (B.43) will give the contribution when inverted.

The way of solving the initial value problem is described as follows. Since an

initial perturbation can be spatially Fourier transformed as

â(k) =

∫ 1

0

ψ(x, 0) e−ikx dx, (B.44)

the solution will be given by the superposition of singular eigenfunction ψ̂(k, ω)

multiplied by â(k), which leads to

ψ(x, t) =
∑
k

∫ −∞

∞
â(k)δ(ω + k2) ei(kx−ωt) dω

=

∞∑
n=1

ân exp[i(nπx+ n2π2t)], (B.45)

where we have defined ân = â(k) with the relation (B.40). This expression exactly

coincides with the solution obtained by the spectral resolution (B.36) by taking the

real part of Eq. (B.45).

It should be noted that the Fourier transformation in time corresponds to the

expression with whole superposition on the spectra, which now has a discrete sum

of projections onto point eigenvalues.

B.2.3 Laplace transformation

Here we will solve the same Schrödinger equation (B.31) with an another method,

i.e. Fourier transformation in space and Laplace transformation in time.

Fourier-Laplace transformation of the perturbed field is defined as

ψ̃(k, s) =

∫ 1

0

∫ ∞

0

ψ(x, t) e−ikx−st dt dx, (B.46)

where the real part of s is chosen to be larger than any temporal singularity of the

function ψ(t) for the convergence of the integration. The inversion will be given by

ψ(x, t) =
1

2πi

∑
k

∫ s0+i∞

s0−i∞
ψ̃(k, s) eikx+st ds, (B.47)

where s0 = Re(s) > 0 and k satisfies the condition (B.40).

The Fourier-Laplace transformation of the Schrödinger equation (B.31) gives

isψ̃ = −k2ψ̃ + iψ̄(k, 0), (B.48)
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which leads to

ψ̃(k, s) =
ψ̄(k, 0)

s− ik2
. (B.49)

Here ψ̄(k, 0) denotes the spatially Fourier transformed initial value

ψ̄(k, 0) =

∫ 1

0

ψ(x, 0) e−ikx dx. (B.50)

By inverting Eq. (B.49), we obtain

ψ(x, t) =
1

2πi

∑
k

∫ s0+i∞

s0−i∞

ψ̄(k, 0)

s− ik2
eikx+st ds,

=

∞∑
n=1

ψ̄(k, 0) exp[i(nπx+ n2π2t)], (B.51)

which again coincides with the previous two methods.

It is noted that the Laplace transformation method in time corresponds to the

expression with whole integration around the spectra, which is now rewritten by the

discrete sum of independent eigenmodes due to Cauchy’s integral theorem.
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Electrostatic oscillations in an

unmagnetized plasma

C.1 Langmuir oscillation

Let us first derive the dispersion relation of plasma oscillations by means of the fluid

description. The governing equations for describing the one dimensional electrostatic

oscillation (electron plasma oscillation) in an cold unmagnetized plasma are

∂tn+ ∂x(nv) = 0, (C.1)

mn(∂tv + v∂xv) = qnE, (C.2)

ε0∂xE = qn. (C.3)

Assuming the static homogeneous background plasma and linearizing Eqs. (C.1)-

(C.3) for a plane wave with the dependence ei(kx−ωt) yields

−iωn1 + ikn0v1 = 0, (C.4)

−iωmv1 = qE1, (C.5)

ikε0E1 = qn1. (C.6)

Combining Eqs. (C.5) and (C.6), we obtain

v1 =
q2

ε0mωk
n1. (C.7)

Substituting Eq. (C.7) into Eq. (C.4) leads to the dispersion relation

ω = ±ωp = ±

√
n0q2

ε0m
, (C.8)

which is called a plasma oscillation.
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It is known that the dispersion effect appears due to the finite electron pressure.

Here we modify the equation of motion (C.2) as

mn(∂tv + v∂xv) = qnE − ∂xp, (C.9)

and add the adiabatic pressure equation

∂tp+ v∂xp+ γp∂xv = 0, (C.10)

as a closure of the fluid model. Linearizing these equations with the same plane

wave dependence ei(kx−ωt), we have

−iωmn0v1 = qn0E1 − ikp1, (C.11)

−iωp1 + ikγp0v1 = 0. (C.12)

Substituting Eq. (C.12) into Eq. (C.11) and using Eq. (C.6) leads to

v1 =
ωn0q

2

kε0(ω2mn0 − k2γp0)
n1. (C.13)

Plugging Eq. (C.13) into (C.4) yields the dispersion relation

ω2 = ω2
p + k2 γp0

mn0
,

= ω2
p + k2γT0

m
, (C.14)

where we have used the fact that the electron pressure can be expressed by p = nT .

Equation (C.14) explicitly shows the dispersion effect coming from the ∇p term in

the equation of motion coupled with the adiabatic pressure equation.

C.2 Vlasov-Poisson system

The governing equations for describing Landau damping of one dimensional electro-

static oscillation (electron plasma oscillation) are

∂tf + v∂xf +
qE

m
∂vf = 0, (C.15)

ε0∂xE = q

∫ +∞

−∞
f dv, (C.16)

where f denotes the particle distribution function defined in the phase space, E

the electric field, q and m the electric charge and mass of a particle (electron),

ε0 the vacuum susceptibility, respectively. Here x (v) denotes the coordinate space

(velocity space) variable. Let us assume here that the background plasma is spatially
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homogeneous and electrically neutral (E = 0). For linearizing Eqs. (C.15) and

(C.16), we can define a wave number k in the x direction. Combining these two

equations with eliminating electric field yields

∂tf1 + ikvf1 −
iq2

ε0mk
(∂vf0)

∫ +∞

−∞
f1 dv = 0, (C.17)

where the subscripts 0 and 1 denote the equilibrium and the perturbation of distri-

bution function, respectively. The distribution function f1 belongs to L
1(R) in the

velocity space. Hereafter, we will omit the subscript 1 for simplicity.

Defining the Laplace transformation of the perturbed fields as

ψ̃(s) =

∫ ∞

0

ψ(t) e−st dt, (C.18)

where the real part of s is chosen to be larger than any temporal singularity of the

function ψ(t) for the convergence of the integration. The inversion will be given by

ψ(t) =
1

2πi

∫ s0+i∞

s0−i∞
ψ̃(s) est ds, (C.19)

where s0 = Re(s) > 0.

Transforming Eq. (C.17) by multiplying e−st and integrating with respect to

time, we obtain

(s+ ikv)f̃ − iq2

ε0mk
(∂vf0)

∫ +∞

−∞
f̃ dv = f(v, t = 0). (C.20)

Let us try an another calculation for comparison which can be seen in the litera-

ture [12]. Transforming Eqs. (C.15) and (C.16) by multiplying e−st and integrating

with respect to time yield

(s+ ikv)f̃ +
q

m
Ẽ∂vf0 = f(0), (C.21)

ikε0Ẽ = q

∫ +∞

−∞
f̃ dv, (C.22)

where the subscript 0 denotes the equilibrium field. The perturbations are Laplace

transformed here. The initial condition for the electric field should be related with

the distribution function through Poisson equation at t = 0 as

ikε0E(0) = q

∫ +∞

−∞
f(v, 0) dv. (C.23)

Dividing Eq. (C.21) by (s− ikv) and plugging it into Eq. (C.22) lead to[
1 +

q2

ε0mk

∫ +∞

−∞

∂vf0

is− kv
dv

]
Ẽ =

q

ε0k

∫ +∞

−∞

f(0)

is− kv
dv. (C.24)
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The time evolution of the electric field can be obtained by inverting the Laplace

transformation expressed in Eq. (C.19). From Eq. (C.24), we formally obtain

E(t) =
1

2πi

∫ s0+i∞

s0−i∞

q

ε0k

∫ +∞

−∞

f(0)

is− kv
dv

1 +
q2

ε0mk

∫ +∞

−∞

∂vf0

is− kv
dv

est ds. (C.25)

C.3 Spectrum of operators in Vlasov-Poisson sys-

tem

The operator in the evolution equation (C.17) consists of two parts. In this subsec-

tion, we will discuss the properties of each part separately. The evolution equation

for the perturbed distribution function is written as

i∂tf = kvf −
ω2

p

k
(∂vf0)

∫ +∞

−∞
f dv, (C.26)

where we have normalized the equilibrium distribution function as

f0(v)→ n0f0(v). (C.27)

C.3.1 Ballistic response

The first operator kv is the multiplication operator which gives rise to continuous

spectrum on the whole real axis of λ, where λ is the spectrum of the operator defined

by

λf = kvf. (C.28)

The spectra given by this multiplication operator are continuous ones and their

generalized eigenfunctions are

f = δ(v − λ/k), (C.29)

where corresponding eigenvalues are

λ = kv. (C.30)

The initial value problem of the multiplication operator is readily solved as

f(v, t) = e−ikvtf(v, 0), (C.31)
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which is called the ballistic response of the plasma, since it describes the free stream-

ing of particles with keeping their memory of initial disturbances [19]. The distri-

bution function does not lose the initial memory f(v, 0), however, if we observe the

integrated physical quantities such as density, there appears continuum damping

given by

n(t) =

∫ ∞

−∞
f(v, t) dv

t→∞→ 0, (C.32)

due to Riemann-Lebesgue theorem [28].

C.3.2 Operator (∂vf0)
∫
· dv

Let us consider here the spectrum of the second operator (∂vf0)
∫
· dv in Eq. (C.26),

which denotes the combination of linear functional and multiplication. Since the

definite integral with respect to v and the multiplication of the function (∂vf0)(v)

does not commute, this operator is non-Hermitian. The spectral problem is written

as

λf = −
ω2

p

k
h(v)

∫ ∞

−∞
f dv, (C.33)

where we have introduced h(v) = ∂vf0. Since the definite integral gives just a

constant, it is clear that the eigenfunction is written as

f = ah(v), (C.34)

where a is assumed as a constant coefficient. The eigenvalue is proportional to the

integral of f . Suppose ∫ ∞

−∞
h(v) dv = c (C.35)

with a real number c, then we have the eigenvalue

λ = −
ω2

p

k
ac. (C.36)

For an equilibrium distribution function f0 which gives a finite c (positive or nega-

tive), the spectrum of this operator continuously occupies the whole real axis, and

all eigenfunctions are parallel and integrable. It is clear that such eigenfunctions

will not span any physical linear space. However, to complete it is so difficult that

we do not discuss how to solve this problem.

It seems strange that the eigenvalue depends on the magnitude of eigenfunction

itself. In a realistic situation, however, we have to choose f0(v) as a member of a

certain linear functional space, e.g. L1(R), thus∫ ∞

−∞
h(v) dv =

∫ ∞

−∞
∂vf0 dv (C.37)

= [f0(v)]
∞
−∞ (C.38)
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holds. Consequently, the eigenvalue becomes zero if we take integrable f0(v).

C.4 Cold plasma with f0(v) = n0δ(v)

Let us consider the cold electron plasma in this section by assuming

f0(v) = n0δ(v). (C.39)

In order to formulate the Hilbert space with following the discussion of Sec. 7.6, we

have to include δ′(v) term in f(v, t) as

f(v, t) = α(t)δ(v) + β(t)δ′(v) + ϕ(v, t). (C.40)

Here prime denotes the derivative with respect to its argument and ϕ(v, t) denotes

the continuous part of the perturbed distribution function, respectively. Then, the

Laplace transformed equation (C.20) will give for the continuous part,

(s+ ikv)ϕ̃(v, s) = ϕ(v, 0). (C.41)

There appear couplings between singular surface wave parts. Using the formula

vδ′(v) = −δ(v), we obtain
sα̃(s)− ikβ̃(s) = α(0) (C.42)

for the δ(v) component and

sβ̃(s)−
iω2

p

k
α̃(s)−

iω2
p

k

∫ ∞

−∞
ϕ̃(v, s) dv = β(0) (C.43)

for the δ′(v) component, respectively. Multiplying (iω2
p/k) on Eq. (C.42) and s on

Eq. (C.43), and adding each other, we obtain

(s2 + ω2
p)β̃(s)−

isω2
p

k

∫ ∞

−∞
ϕ̃(v, s) dv =

iω2
p

k
α(0) + sβ(0). (C.44)

From this equation,

β̃(s) =
1

(s− iωp)(s+ iωp)

[
iω2

p

k
α(0) + sβ(0) +

isω2
p

k

∫ ∞

−∞

ϕ(v, 0)

s+ ikv
dv

]
, (C.45)

is given, where we have used Eq. (C.41). It is noted that this system also contains

the resonance where the energy is transferred from the continuous spectrum to the

point spectrum (surface wave). Inverting this expression, we obtain

β(t) =
iωp

k
α(0) sin(ωpt) + β(0) cos(ωpt)

+
1

2πi

∫ s0+i∞

s0−i∞

isω2
p/k

(s− iωp)(s+ iωp)

∫ ∞

−∞

ϕ(v, 0)

s+ ikv
dv ds. (C.46)
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On the other hand, if we partially integrate the denominator of Eq. (C.25) as∫
∂vf0

is− kv
dv =

n0

k

∫
δ′(v)

v − (is/k) dv

=
n0

k

[
δ(v)

v − (is/k)

]+∞

−∞
+
n0

k

∫
δ(v)

[v − (is/k)]2 dv

= −n0k

s2
, (C.47)

then the denominator of Eq. (C.25) will have zeros for

1 +
q2

ε0mk

∫ +∞

−∞

∂vf0

is− kv
dv = 0. (C.48)

This gives

s± = ±iωp (C.49)

in the complex s-plane. In this case, we can formally rewrite E(t) by substituting

Eq. (C.47) into Eq. (C.25) as

E(t) =
1

2π

∫ s0+i∞

s0−i∞

s2est

(s− iωp)(s+ iωp)

q

ε0k

∫ +∞

−∞

f(0)

s+ ikv
dv ds. (C.50)

We consider the completely cold plasma by assuming

f(x, v, 0) = n̂1e
ikxδ(v), (C.51)

where n̂1 denotes the real number expressing the amplitude of the initial disturbance.

Then, the integration with respect to v is easily carried out,

E(t) =
n̂1e

ikx

2π

q

ε0k

∫ s0+i∞

s0−i∞

sest

(s− iωp)(s+ iωp)
ds. (C.52)

This expression gives the simple oscillation

E(t) =
iq

ε0k
n̂1e

ikx cos(ωpt) (C.53)

which exactly coincides with the analysis based on the fluid description.

On the other hand, if we introduce a finite temperature in the initial perturbation

as

f(x, v, 0) = n̂1e
ikxF (v), (C.54)

where F (v) denotes arbitrary analytic function. In this case, we can commute the

integration with respect to v and s in Eqs. (C.46) and (C.50), and obtain the formal

resonance which corresponds to the second order pole where

v = ±ωp

k
, (C.55)

is satisfied. By performing the integration with respect to s, we may be able to

write the explicit form which only contains the integration with respect to v.
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C.5 General continuous profile f0(v)

In the case where f0(v) is a continuous function, van Kampen [90] and Case [49] have

found the complete set of eigenfunctions. According to these references, all eigen-

values are real continuous ones in the case of Maxwellian equilibrium distribution,

although the system may contain some complex point spectra in general. Construc-

tion of the propagator semi-group for the Vlasov-Poisson generator including such

general distribution functions is discussed in Ref. [58]. Since the non-Hermitian

operator (∂vf0)
∫
· dv gives fairly close effect to the inhomogeneous terms with its

rank unity, they could have found those eigenfunctions by introducing the normal-

ization of f in a tricky way. It is concluded that Landau’s exponential damping for

Maxwellian distribution function f0(v) does not denote a spectra of the operator,

but just a consequence of the phase mixing damping due to the superposition of the

continuous spectra.

It is pointed out by Weitzner [148, 149] that the Landau’s prescription of taking

a detour at the pole is not appropriate in general even though phase mixing will

surely cause sometimes non-exponential Landau damping [in the sense of Eq. (C.32)].

However, it is experimentally confirmed to be exponential [102]. There might be

something which we do not understand yet. It is also noted that a spatially inhomo-

geneous density profile will give rise to another continuous spectra in the coordinate

space [39, 117].



Vector Relations
A · (B ×C) = B · (C × A) = C · (A × B) = (ABC) (1)

A × (B× C) = B(A · C) − C(A ·B) (2)

(A × B) · (C × D) = (A ·C)(B · D) − (A · D)(B ·C) (3)

(A × B) × (C × D) = (ABD)C − (ABC)D = (ACD)B − (BCD)A (4)

∇ · (fA) = A · ∇f + f∇ · A (5)

∇× (fA) = ∇f × A + f∇×A (6)

∇(A · B) = A× (∇× B) + B × (∇× A) + A · ∇B + B · ∇A (7)

∇ · (A × B) = B · (∇× A) − A · (∇×B) (8)

∇× (A ×B) = A(∇ · B) − B(∇ · A) + B · ∇A −A · ∇B (9)

∇×∇× A = ∇(∇ · A) −∇2A (10)

∇×∇f = 0 (11)

∇ · (∇× A) = 0 (12)

A · ∇A = ∇
(

1

2
A2

)
− A× (∇× A) (13)

∇× (A · ∇A) = A · ∇(∇× A) + ∇ ·A(∇× A) − {(∇× A) · ∇}A (14)

A · {B · ∇(∇f)} = B · {A · ∇(∇f)} (15)

A · (B · ∇C) = B · (A · ∇C) − (A × B) · (∇× C) (16)

A · ∇(B · ∇f) = (A · ∇B) · ∇f + (AB : ∇∇)f (17)

A · ∇(B · ∇C) = (A · ∇B) · ∇C + (AB : ∇∇)C (18)

[(A × B) ×∇] × C = B × (A · ∇C) − A× (B · ∇C) (19)

(A ×∇) ×B = (∇B) · A− A(∇ · B) (20)



Quasi-toroidal Coordinates

R0

θ

r

y

x

z

ζ

Definition


x = (R0 + r cos θ) sinφ
y = (R0 + r cos θ) cosφ
z = r sin θ

(1)

Unit vectors


er = ex cos θ sin φ + ey cos θ cosφ + ez sin θ
eθ = −ex sin θ sinφ − ey sin θ cos φ + ez cos θ
eφ = ex cosφ − ey sin φ

(2)

Metric

d	2 = dr2 + r2dθ2 + (R0 + r cos θ)2dφ2 (3)

Jacobian matrix

∂(r, θ, φ)

∂(x, y, z)
=




cos θ sinφ cos θ cos φ sin θ

−1

r
sin θ sinφ −1

r
sin θ cos φ

1

r
cos θ

cos φ

R0 + r cos θ
− sinφ

R0 + r cos θ
0




(4)

∣∣∣∣∣
∂(r, θ, φ)

∂(x, y, z)

∣∣∣∣∣ =
1

r(R0 + r cos θ)
(5)

Gradient operator

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

R0 + r cos θ

∂

∂φ
(6)
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