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An intrinsic consequence of the three-dimensional nature of the stellarator equilibrium may be the
existence of local flattening of the pressure profile at the resonant surfaces. This local flattening of
the pressure profile significantly changes the stability properties. The localized interchange modes
are stabilized, and a new instability branch controls the critical beta. This instability is strongly
stabilized by shear at high poloidal mode numbers. As a consequence, the plasma stability properties
change, and the asymptotically derived local stability criteria often used in stellarator design are no
longer applicable. ©2001 American Institute of Physics.@DOI: 10.1063/1.1349877#
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I. INTRODUCTION

Theoretically, ideal interchange modes should play
role in limiting the accessible beta~b! values in stellarators
This instability is particularly important for stellarators wit
a magnetic hill in the outer plasma region, such as the to
tron and heliotron configurations. In these configuratio
low-n interchange instabilities may be defining the ope
tional range of the device.1 The Mercier criterion2 gives a
good estimate of the stability boundaries of both high-n and
low-n ideal interchange modes.3 However, it has been found
that the limits given by the Mercier criterion are violated
some experiments.4 To explain this disagreement, it may b
argued that finite Larmor radius and/or kinetic effects pro
ably stabilize the high-n modes. However, the issue of th
stability of the low-n interchange modes remains.

To understand the cause of the discrepancy betw
theory and experiment, we turn our attention to the press
profiles used in the estimates of stellarator stability. Th
are many reasons to suspect that pressure profiles with
gradient at the rational surfaces may be the relevant pro
for stellarators. The existence of a three-dimensional~3D!
toroidal equilibrium is still an unresolved mathematic
problem.5 Of course, numerical solutions of the equilibriu
magnetohydrodynamic~MHD! equations are commonly ca
culated. However, these solutions may just be weak solut
of these equations.6 If the 3D equilibrium exists, it may have
magnetic structures~magnetic islands and/or stochastic r
gions! around the rational surfaces that increase transpo
those regions; this increased transport will naturally lead
local decrease of the pressure gradient. Other arguments
be made for such a pressure profile. From the perspectiv
having smooth particle fluxes in a 3D equilibrium, Booze7

suggested that the pressure-gradient should be zero a
9901070-664X/2001/8(3)/990/7/$18.00
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singular surfaces. In contrast, in dynamical calculations
equilibria unstable to resistive interchanges, we have s
the formation of flat spots at the resonant surfaces even
very low values of beta. In those calculations, we have
served a delicate interplay between resistive and ideal in
change modes. The first causes the local flattening of
pressure profile, which causes a modification of the stab
threshold for the ideal modes. Finally, in experiment, hig
resolution electron temperature and density measuremen
TJ-II ~Ref. 8! show the existence of multiple structures th
may be related to the resonant surfaces. Therefore, it is
sonable to assume that the pressure profiles in stellara
have a complex structure with zero-gradient at each ratio
surface. The size of these flat spots can be very small,
even in such cases their presence has important co
quences for stellarator stability.

In this paper, we pursue this idea further and investig
the linear stability of ideal interchange modes in the cyl
drical geometry for plasmas with zero pressure gradien
the resonant surfaces. An analytical expression of the lin
growth rate is derived and compared to numerical resu
From these analytical results, we show that theb limits may
be substantially increased over the estimates made
asymptotic local criteria evaluated with smooth pressure p
files.

The rest of the paper is organized as follows: In Sec.
we introduce the equations used in the linear stability st
ies. The linear stability theory for pressure profiles with loc
flattening at the resonance surfaces is discussed in Sec. I
Sec. IV, we discuss the effect of magnetic shear on th
instabilities. The implications of these results for th
asymptotic stability criteria are presented in Sec. V. Fina
the conclusions of this paper are given in Sec. VI.
© 2001 American Institute of Physics
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II. STABILITY MODEL

Interchange modes, resistive and ideal, extend unifor
along the magnetic field lines. They are flutelike instabiliti
Therefore, for these instabilities it is possible to average o
the toroidal magnetic field modulation induced by the heli
windings. Using the Greene and Johnson formalism9 and as-
suming a straight helical system, the averaged equilibr
magnetic field geometry has cylindrical symmetry. In th
system, the magnetic field line curvature is given by the
eraged magnetic field line curvature,

k[
dV

dr
5

r

R0
B0

2V9, ~1!

where prime indicates the derivative with respect to the
oidal flux, andV85*dl/B is the specific volume enclosed b
a flux surface. In Eq.~1!, R0 is the major radius of the stel
larator,r the averaged minor radius of a flux surface, andB0

the toroidal magnetic field at the magnetic axis.
We use a reduced set of MHD equations to describe

ideal interchange stability properties. The geometry is cy
drical with minor radiusa and lengthL052pR0 , and the
cylindrical coordinates arer, u, and z. The reduced set o
MHD equations consists of the poloidal magnetic flux ev
lution equation,

]c

]t
52R0¹ iF; ~2!

the perpendicular momentum balance equation,

rm

]Ũ

]t
52rmV'•¹Ũ2¹ iJi1z•~“V3“P!; ~3!

and the equation of state,

] p̃

]t
52Ṽ'•¹ p̃2

dpeq

dr
Ṽr1D'¹'

2 p̃. ~4!

Here,p is the pressure,V' is the perpendicular flow velocity
U is thez-component of the vorticity,c is the poloidal mag-
netic flux function, andrm is the mass density. The tota
magnetic field can be expressed in terms of the poloidal
function as

B52~¹c3 ẑ!/R01B0ẑ; ~5!

and the perpendicular flow velocity can be expressed
terms of a stream functionF/B0 as

V'5~¹F3 ẑ!/B0 . ~6!

Here, ẑ is the unit vector in the toroidal direction. Th
z-component of the vorticity can be expressed in terms of
velocity stream function byŨ5¹'

2 F̃. The parallel deriva-
tive to the magnetic field,¹ i , is defined as¹ i f 5B•“ f .

In Eqs. ~2!–~4!, a tilde identifies perturbed quantitie
and the subindex eq identifies equilibrium quantities. For
linear stability calculations presented here, each equation
been linearized in the perturbed quantities.

The driving term of the interchange instability is th
pressure gradient in the bad curvature region (k.0). That
is, these modes are driven by2k(dpeq/dr).0. The second
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term on the right-hand side of Eq.~2! is the field-line bend-
ing term, which is responsible for the magnetic shear sta
lization effect.

For the numerical calculations, we use the averaged
vature of a helically symmetric system,

dV

dr
5«2M ~4r i1r 2i8!. ~7!

Here,« is the inverse aspect ratio,M is the number of toroi-
dal field periods, andi is the rotational transform. In calcu
lating the stability properties, we use the linearized form
Eqs.~2!–~4! and calculate the linear growth rate at differe
b values. The thresholdb is obtained by extrapolating to
zero linear growth rate. In all calculations presented here,
have chosen a configuration withM520 and«50.1.

III. LINEAR STABILITY PROPERTIES OF LOW- N
INTERCHANGE MODES FOR PRESSURE PROFILES
WITH ZERO GRADIENT AT THE SINGULAR
SURFACES

In studying the stability properties of the pressure p
files with zero gradient at the rational surfaces, we be
considering a smooth pressure profile. For a smooth pres
profile, like p0(r )5 p̄0(12r 2), the linear growth rate of an
interchange mode as a function ofb has been plotted in Fig
1 ~continuous line!. For this instability the eigenfunction is
sharply localized at and symmetric with respect to the sin
lar surfaces~Fig. 2!.

To investigate the changes in the stability propert
when we consider a pressure profile,p(r ), which is like
p0(r ) but with zero gradient at the resonant surfaces,
modify the pressure profile in the following way:

p~r !5p0~r !2(
m

~dp/dr !ur 5r m
@~r 22r m

2 !/~2r m!#

3expF2
~r 2r m!2

2Wm
2 G , ~8!

whereWm is a measure of the size of the flat spot. The ind
m refers to the different resonant surfaces considered in
calculation. In studying the linear stability properties, we c
start with one singular surface. For the rotational transfo

FIG. 1. Linear growth rate of the~m56; n53! mode for an equilibrium
with parabolic pressure profile andi50.32(112.2r 220.46r 412.5r 6).
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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profile considered, we will carry out most of the calculatio
at thei50.5 surface located at the radiusr s50.497.

Even for very small values ofWm , there is a qualitative
change of the stability properties. For instance, Fig. 1 sho
the linear growth of the instability~broken line! after modi-
fying the pressure profile as described by Eq.~8! with
Wm /a50.004. The result is that the instability threshold h
increased by more than 60%, and the form of the eigenfu
tion has changed. The localized interchange instab
branch~Fig. 2! is stable, and two other types of modes a
now the fastest growing modes~Fig. 3!. Their eigenfunctions
are mirror-symmetric with respect the resonant surfa
which is the one with the largest growth rate depends
details of the profiles and the exact location of the flatteni
Some of these changes in the stability properties of cylin
cal plasmas have already been discussed elsewhere10–13

Here we will derive an analytic form for the dispersion re
tion and test the analytical results with numerical calcu
tions. In Fig. 1, the linear stability results are for the~m
56; n53! mode. The lower-m (m,3) radially symmetric
interchange modes may require a larger flat spot for
stabilization.10 Note that the modification of the pressu
profile by local flat spots with a width ofWm /a50.004 is
hardly noticeable. For instance, Fig. 4 shows a parab
pressure profile modified in the way indicated by Eq.~8! at

FIG. 2. Eigenfunctions for them56 localized interchange mode for
smooth parabolic pressure profile.

FIG. 3. Eigenfunctions for them56 mode for the most likely unstable
modes once the localized interchange mode has been stabilized.
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the 15 lowest rational surfaces. Such a modification of
profile would require very high-resolution diagnostics to
detected in an experiment. Of course, in realityWm may be
larger than 0.004, and such detection may be possible. L
aspect ratio devices may be the most suitable ones for t
experiments. The linear stability calculations also requ
very high resolution, here, we have used a radial grid
Dr /a5431025.

To understand the changes on stability properties,
will derive an analytic form for the dispersion relation of th
new instability branch under some simplifying assumptio
From the set of reduced MHD equations, one can derive
eigenfunction equation for a mode (m;n),

d2F

dr2 1F1

r
2

2mi8~n2mi !

g21~n2mi !2G dF

dr
2H m2

r 2 1
1

g21~n2mi !2

3F S mi8

r
1mi9D ~n2mi !2

Dsm
2

r 2 GF50. ~9!

Here,g is the linear growth rate of the (m;n) mode and the
eigenvalue for this problem, andDs is

Ds52
b0

2«2

dp

dr

dV

dr
,

with b052m0p(0)/B2.
An analytical solution for the linear stability problem fo

a pressure profile with zero gradient at the resonant sur
can be found by dividing the minor radius in three regions
shown in Fig. 5. First we consider the case in which t
eigenfunction is zero in the outer region of the radius~Fig. 3,
broken line!. One region is between the magnetic axis a
r s2W/2, wherer s is the radial position of the singular su
face. In this region, we assume a constant rotational tra
form, i0 , and parabolic pressure profile. A second region
width W is centered at the singular surface, and we assu
that the profiles have zero pressure gradient and small m
netic shear. In the outer region, the values of the parame
do not matter because the eigenfunction is taken to be z
F III (r )50.

In region I, the eigenfunction equation, Eq.~9!, simpli-
fies to

FIG. 4. Parabolic pressure profile modified in the way indicated by Eq.~8!
at the 15 lowest rational surfaces.
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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d2F

dr2 1
1

r

dF

dr
1

m2

r 2 F Ds

g21~n2mi !221GF50. ~10!

For the smooth pressure profilep0(r )5 p̄0@1
2(r /r 0)2#, we haveDs5(r /r 0)2D̂s with D̂s54b0M i(0).
In this case, Eq.~10! can be transformed into a Bessel equ
tion, and the solution in region I verifying the origin boun
ary condition is

F I~r !5l1Jm~mr !, ~11!

with

m25
m2

r 0
2

D̂s

g21~n2mi0!2 . ~12!

In region II, the eigenvalue problem near the margin
point reduces to the Rosenbluth, Dagazian, and Ruther
solution14 for the internal kink mode:

F II~r !5l2

r

2 H 12
2

p
tan21FUmi8

g U~r 2r s!G J . ~13!

For r @r s , F II'0, and the solution in region II matche
the outer region solution. ForW@g/mui8u, F II→l2r . In this
case, we can match this asymptotic form to the inner reg
solution. From this match, we obtain a simple eigenva
condition

m~r s2W/2!5zms. ~14!

From the eigenvalue condition, we can obtain the disp
sion relation,

g25m2F S r s2W/2

r 0zms
D 2

D̂s2S n

m
2i0D 2G . ~15!

Here, zms is the s-zero of the functionFm(z)[zJm8 (z)
2Jm(z). For largem,zms' j ms8 , where j ms8 is the s-zero of
the derivative of theJm Bessel function of orderm. Note that
j ms8 scales asm10.81m1/3 for largem. Because the first zero
gives the highest growth rate, we will only consider this ze
in what follows.

For small values of the flattening regionW, we cannot
take F II'l2r . We have to use the full expression in E
~14!. In this case, the eigenvalue condition is obtained fr
the solution of a transcendental equation. This implies t

FIG. 5. Pressure and rotational transform profile used in the analytica
termination of the dispersion relation Eq.~15!.
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we still have Eq.~15! for the linear growth rate but substitut
zms for ẑm , whereẑm is a weak function of beta.

If the deviation from thezm1 value, Dz' ẑm2zm1 , is
small, we can estimate the correction by linearizing the tr
scendental equation inDz. We obtained

Dz5
Azm1AB2zm1

2

A~4B25zm1
2 !/AB2zm1

2 2~11zm1
2 2m2!/zm1

,

~16!

where

A5
2

Wp

~mi02n!2

D̂s~r s2W/2!
F r 0

m
G 2

and ~17!

B5S m

r 0
D 2 ~r s2W/2!2

~mi02n!2 D̂s .

To test the analytical results, we have used a rotational tra
form profile of the form shown in Fig. 5. The rotationa
transform is i50.32(112.2r 220.46r 412.5r 6) for r>r s

2W/2 and constant forr<r s2W/2. Therefore, this profile is
completely flat in the inner region of the plasma. The pr
sure profile used is parabolic with a flat region at thei
50.5 resonance surface.

When the size of the flat spot is very small, of the ord
of 1% of the radius, we have to solve the full transcenden
equation obtained from the matching condition to get a go
agreement between the analytical and numerical results.
result is illustrated in Fig. 6 for the~m56; n53! mode and
different values of the width of the flat spot.

For a width of the order of 10% of the minor radius, w
can use directly the dispersion relation Eq.~15! with the
correctionDz calculated by Eq.~17!. In this situation we get
good agreement with the numerical results again. Figur
shows the linear growth rate of the~m56; n53! for W
50.1a as a function of beta and is compared with the d
persion relation, Eq.~15!, with and without the correction
Dz.

e-FIG. 6. Square of the linear growth rate of the~m56; n53! mode vsb for
different values ofW. Numerical results are compared to the analytic
calculation. The equilibrium parameters are given in Fig. 5.
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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Equation~15! indicates that at a constant beta, the line
growth rate is strongly stabilized by flattening the press
profile. Relatively small values ofW/a can cause full stabi-
lization of these modes,

W52F r s2
r 0zm1ui02n/mu

D̂s
1/2 G . ~18!

A similar analysis can be followed to find the solutio
which is zero in the inner radial region. However, in this ca
using the constanti approximation in the outer region of th
plasma is less credible. Therefore, we will limit our study
the branch with zero eigenfunction in the outer region of
plasma.

IV. EFFECT OF MAGNETIC SHEAR IN THE STABILITY
RESULTS

The analytical calculations show that near the stabi
threshold, the linear growth rate goes to zero by cancella
between the two terms in the right-hand side~RHS! of Eq.
~15!, the pressure gradient drive and the shear stabiliz
term. Therefore, its value is very sensitive to the value
each of these two terms. In general, Eq.~15! can be used as
guidance for the behavior of the growth rate, but it cannot
used as a quantitative measure of the growth rate in the
of a rotational transform profile with shear. Even in a case
a very low shear profile, the interpretation of the line
growth rate on the bases of the analytical is difficult. It
difficult to know what is the proper value to use fori0 when
we compare with the numerical results for a realistici profile
with shear.

Let us consider thei50.5 resonant surface for the rota
tional transform profilei50.32(112.2r 220.46r 412.5r 6).
This is the same equilibrium considered before but with
the flattening of the rotational transform profile in the inn
region. The change of transform is small because the she
the inner region is about 1. However, there are signific
changes in the stability properties. The beta critical increa
due to the shear stabilization effect@second term in the right

FIG. 7. Square of the linear growth rate of the~m56; n53! mode vsb for
W50.1a. Numerical results are compared to the analytical calculation gi
by Eq. ~15! with and without correction terms. The equilibrium paramete
are given in Fig. 5.
Downloaded 01 Mar 2001 to 130.69.86.66. Redistribution subject to 
r
e

e

e

y
n

g
f

e
se
f

r

t
r
in
t

es

hand side of Eq.~15!#. In Fig. 8, the linear growth rate vs
beta for different modes and withW50.004 is plotted. The
linear growth rate squared is no longer a linear function
beta. The reason for this change is that the type of insta
ties discussed in the previous section is only relevant n
the threshold. As beta increases, the modes broaden an
come global modes~Fig. 9!, and the dispersion relation Eq
~15! is not applicable to these modes. However, the imp
tant issue is that the instability threshold is still controlled
the same type of instability we just discussed.

Also with magnetic shear, by increasingW, one can
achieve total stabilization of the pressure-driven modes
Fig. 10, this effect is shown for the~m56; n53! and for
several beta values. The size ofW required increases with
beta as indicated by Eq.~18!.

The changes in the stability properties for the press
profiles with flat spots at the resonant surfaces are not lim
to cylindrical geometry. The averaging method has been a
used to study the stability properties of a realistic stellara
configuration with pressure profiles with zero gradient at
resonant surfaces. Once the toroidal couplings are also
cluded in the model, one obtains similar changes in the
bility properties.12–15

n

FIG. 8. Linear growth rate of the~m52; n51!, ~m56; n53!, and ~m
510; n55! modes as a function ofb for an equilibrium with parabolic
pressure profile with a flat spot ofW50.004a and i50.32(112.2r 2

20.46r 412.5r 6).

FIG. 9. Eigenfunction of the~m56; n53! mode for different values ofb.
These results correspond to the same parameters used in Fig. 8.
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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V. ASYMPTOTIC BEHAVIOR AND BETA CRITICAL

In looking for the asymptotic behavior of the linea
growth rate withm, we can see from Eq.~15! that the growth
rate dependence withm is quite different from the depen
dence of the local ideal interchange instability. For the lat
the linear growth rate is very weakly dependent onm. How-
ever, in the case of pressure profiles with local flattenin
the highm modes are strongly suppressed. In Fig. 11 and
the same equilibrium parameters as the cases in Fig. 8
show the linear growth as a function ofm. These calculations
have been done withW50.004a. In Fig. 11, we can see th
decrease in the growth rates with increasingm and the total
stabilization of the high-m modes. They are contrasted wi
the behavior of the linear growth rate in case of a smo
profile with W50. Hence, the largem asymptotic stability
criteria cannot have any information on the stability of t
modes described by Eq.~15!. Furthermore, those criteria be
came undefined in the case of a zero pressure gradie
each rational surface. Therefore, for those pressure pro
the asymptotic local stability criteria cannot be applied.

From Eq.~15! we can calculate the corresponding cri
cal beta for these new instabilities. For fixedW, the critical
beta value scales asm2 becausezm1}m. Therefore, the beta
critical at a given surface is given by the beta critical for t
lowestm value,

FIG. 10. Linear growth rate of the~m56; n53! mode as a function ofW
for different values ofb. These results correspond to the same parame
used in Fig. 8.

FIG. 11. Linear growth rate as a function ofm for different values ofb.
These results correspond to the same parameters used in Fig. 8.
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b0
c5

1

4M i0
S r 0zm01

r s2W/2
D 2S n

m
2i0D 2

. ~19!

Here m0 is the lowestm value at the resonant surface co
sidered. For an equilibrium with magnetic shear, the b
critical scales qualitatively in a similar way as the zero-sh
case~Fig. 12!. That is, increases withm. However, the scal-
ing exponent is no longer 2, but somewhat smaller.

If we now take the smooth profile,p0(r ), corresponding
to the pressure profile with flat spots,p(r ), we can calculate
the critical beta given by the Suydam criterion,

b0s
c 5

~is8r 0!2

16M i0
, ~20!

where we have takenis8[di/drur 5r s
. The form is similar to

the one given by Eq.~19!. We can compare the real be
critical, Eq. ~19!, with the Suydam beta critical,b0S

c . If we
take i0'i(r s)1r sis8 , we obtain

b0
c'~2zm01!2b0s

c . ~21!

We see that the real beta critical can be an order
magnitude higher than the critical beta from the Suyd
criterion b0S

c calculated with a smooth pressure profile.
Therefore, local stability criteria like the Suydam crit

rion calculated with a smooth pressure profile cannot be
plied to configurations with a pressure profile with zero g
dient at each rational surface. Such criteria may be used
measure of stability if a convenient normalization const
can be found.

VI. CONCLUSIONS

For stellarator equilibrium with zero-pressure gradient
the rational surfaces local, asymptotic stability criteria ca
not be applied. For stellarators, the Mercier criterion has
same problems as the Suydam criterion in cylindrical geo
etry. It is a local stability criterion that cannot be applied
such pressure profiles. Calculations using the avera
method approach indicate that the stability properties for
low-m modes12–15 are similar to the case of cylindrical ge
ometry. The local interchange-like modes are stabilized,
the more global type eigenfunction are the residual instab

rs

FIG. 12. bc as a function ofm for different values ofW. These results
correspond to the same parameters used in Fig. 8.
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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ties. The beta critical also increases over the one obtaine
smooth pressure profiles. These results may explain the
parent violation of this criterion when smooth pressure p
files are used in calculation of the stability for interpretati
of the experimental measurements.4
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