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An intrinsic consequence of the three-dimensional nature of the stellarator equilibrium may be the
existence of local flattening of the pressure profile at the resonant surfaces. This local flattening of
the pressure profile significantly changes the stability properties. The localized interchange modes
are stabilized, and a new instability branch controls the critical beta. This instability is strongly
stabilized by shear at high poloidal mode numbers. As a consequence, the plasma stability properties
change, and the asymptotically derived local stability criteria often used in stellarator design are no
longer applicable. ©2001 American Institute of Physic§DOI: 10.1063/1.1349877

I. INTRODUCTION singular surfaces. In contrast, in dynamical calculations of
equilibria unstable to resistive interchanges, we have seen
Theoretically, ideal interchange modes should play ahe formation of flat spots at the resonant surfaces even for
role in limiting the accessible betg®) values in stellarators. very low values of beta. In those calculations, we have ob-
This instability is particularly important for stellarators with seryed a delicate interplay between resistive and ideal inter-
a magnetic hill in the outer plasma region, such as the torsahange modes. The first causes the local flattening of the
tron and heliotron configurations. In these conflguratlonspressure profile, which causes a modification of the stability
low-n interchange instabilities may be defining the operareshold for the ideal modes. Finally, in experiment, high-

tional range of the deviceThe Mercier criteriofi gives @ osoiution electron temperature and density measurements in
good estimate of the stability boundaries of both higand TJ-Il (Ref. 8 show the existence of multiple structures that

low-n ideal interchange modéstiowever, it has been found may be related to the resonant surfaces. Therefore, it is rea-

that the limits given by the Mercier criterion are violated in sonable to assume that the pressure profiles in stellarators

some expenmt_enf’S.‘l’o explaln. this d|sagrgem§nt, it may be have a complex structure with zero-gradient at each rational
argued that finite Larmor radius and/or kinetic effects prob-

ably stabilize the higl+ modes. However, the issue of the Zugﬁc.en' EhihSIZch?sﬂlﬁse?r ﬂartezgﬁtcseCir;sbemv?r/t;r:?acl:l(,)r?su;
stability of the lown interchange modes remains. ven in-su rp 'mp

To understand the cause of the discrepancy betweef/€nces for stellarator stab|I|ty_. . . .
theory and experiment, we turn our attention to the pressure " thiS paper, we pursue this idea further and investigate
profiles used in the estimates of stellarator stability. Therd"€ linéar stability of ideal interchange modes in the cylin-
are many reasons to suspect that pressure profiles with zefbical geometry for plasmas with zero pressure gradient at
gradient at the rational surfaces may be the relevant profiled1® resonant surfaces. An analytical expression of the linear
for stellarators. The existence of a three-dimensid8a)) growth rate is der-lved and compared to nurrTerllcaI results.
toroidal equilibrium is still an unresolved mathematical From these analytical results, we show that ghkmits may
problem® Of course, numerical solutions of the equilibrium b€ substantially increased over the estimates made with
magnetohydrodynami@VHD) equations are commonly cal- asymptotic local criteria evaluated with smooth pressure pro-
culated. However, these solutions may just be weak solution iles.
of these equation$If the 3D equilibrium exists, it may have The rest of the paper is organized as follows: In Sec. Il
magnetic structure¢magnetic islands and/or stochastic re-We introduce the equations used in the linear stability stud-
gions around the rational surfaces that increase transport ifeS. The linear stability theory for pressure profiles with local
those regions; this increased transport will naturally lead to dattening at the resonance surfaces is discussed in Sec. lIl. In
local decrease of the pressure gradient. Other arguments c&ec. IV, we discuss the effect of magnetic shear on these
be made for such a pressure profile. From the perspective ¢fistabilities. The implications of these results for the
having smooth particle fluxes in a 3D equilibrium, Bodzer asymptotic stability criteria are presented in Sec. V. Finally,
suggested that the pressure-gradient should be zero at ttiee conclusions of this paper are given in Sec. VI.
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Il. STABILITY MODEL 0.040 T
0.035} — Wa=0
Interchange modps, r_esistive and ideal, gxtepd unifqrmly 0.030F —+ Wia = 0.004
along the magnetic field lines. They are flutelike instabilities. 0.025k /]
Therefore, for these instabilities it is possible to average over 2
the toroidal magnetic field modulation induced by the helical g 0020
windings. Using the Greene and Johnson formaliamd as- 0.015}
suming a straight helical system, the averaged equilibrium 0.010¢}
magnetic field geometry has cylindrical symmetry. In this 0.005
system, the magnetic field line curvature is given by the av- 0.000 . : 4.
0.004 0.005 0.006 0.007 0.008

eraged magnetic field line curvature,

_do
T dr
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FIG. 1. Linear growth rate of thém=6; n=3) mode for an equilibrium
. o o ] with parabolic pressure profile ang=0.32(1+2.2r2—0.46 %+ 2.5°5).
where prime indicates the derivative with respect to the tor-

oidal flux, andVv'’ = [dI/B is the specific volume enclosed by
a flux surface. In Eq(1), Ry is the major radius of the stel- term on the right-hand side of E¢Q) is the field-line bend-
larator,r the averaged minor radius of a flux surface, &d ing term, which is responsible for the magnetic shear stabi-
the toroidal magnetic field at the magnetic axis. lization effect.

We use a reduced set of MHD equations to describe the  For the numerical calculations, we use the averaged cur-

ideal interchange stability properties. The geometry is cylinvature of a helically symmetric system,
drical with minor radiusa and lengthL,=27R,, and the

cylindrical coordinates are, 6, andz. The reduced set of
MHD equations consists of the poloidal magnetic flux evo-
lution equation,

r 2
- BV, (1)

K

e’M(4ru+r2).

dr

Here, e is the inverse aspect ratih] is the number of toroi-

)

i dal field periods, and is the rotational transform. In calcu-
ot RoV,@; 2 lating the stability properties, we use the linearized form of
Egs.(2)—(4) and calculate the linear growth rate at different
the perpendicular momentum balance equation, B values. The threshol@ is obtained by extrapolating to a
0 zero linear growth rate. In all calculations presented here, we
P = —puV, VU=V, 342 (VOXVP): 3) have chosen a configuration wiN =20 ande=0.1.
and the equation of state, IIl. LINEAR STABILITY PROPERTIES OF LOW- N
P dp INTERCHANGE MODES FOR PRESSURE PROFILES
— = eqy 2= WITH ZERO GRADIENT AT THE SINGULAR
—=-V,-Vp——V,+ .
ot~ Vo VP Vi +DLVID @ SUREACES

Here,pis the pressurey, is the perpendicular flow velocity, In studying the stability properties of the pressure pro-
U is thez-component of the vorticity) is the poloidal mag- files with zero gradient at the rational surfaces, we begin
netic flux function, andpy, is the mass density. The total considering a smooth pressure profile. For a smooth pressure
magnetic field can be expressed in terms of the poloidal fluprofile, like po(r)=po(1—r?), the linear growth rate of an
function as interchange mode as a function @thas been plotted in Fig.
B=— (VX 2)/Ry+ By (5) 1 (contmuou_s ling For this mstapﬂny_ the elgenfuncuon_ is
sharply localized at and symmetric with respect to the singu-
and the perpendicular flow velocity can be expressed inar surfacegFig. 2).
terms of a stream functio®/B, as To investigate the changes in the stability properties
V, =(V®X2)/B,. 6) when we cqn5|der a pressure profifg,r), which is like
po(r) but with zero gradient at the resonant surfaces, we
Here, z is the unit vector in the toroidal direction. The modify the pressure profile in the following way:
z-component of the vorticity can be expressed in terms of the
velocity stream function byJ=V2®. The parallel deriva-
tive to the magnetic fieldy, is defined as/;f=B- V.

p(r)=po(r) = 2, (dp/dn)|r—r [(r=r{)/(2rm)]

In Egs. (2)—(4), a tilde identifies perturbed quantities,

and the subindex eq identifies equilibrium quantities. For the
linear stability calculations presented here, each equation has

been linearized in the perturbed quantities.

The driving term of the interchange instability is the
pressure gradient in the bad curvature regian-Q). That
is, these modes are driven byx(dpey/dr)>0. The second

(r—rm?

oW ®

whereW,, is a measure of the size of the flat spot. The index
m refers to the different resonant surfaces considered in the
calculation. In studying the linear stability properties, we can
start with one singular surface. For the rotational transform
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FIG. 2. Eigenfunctions for then=6 localized interchange mode for a

smooth parabolic pressure profile. FIG. 4. Parabolic pressure profile modified in the way indicated by(&qg.

at the 15 lowest rational surfaces.

profile considered, we will carry out most of the calculations

at the.=0.5 surface located at the radiugs=0.497. the 15 lowest rational surfaces. Such a modification of the
Even for very small values oWy, there is a qualitative  profile would require very high-resolution diagnostics to be
change of the stability properties. For instance, Fig. 1 showgetected in an experiment. Of course, in realdy, may be
the linear growth of the instabilitybroken ling after modi-  |arger than 0.004, and such detection may be possible. Low
fying the pressure profile as described by E8) with  aspect ratio devices may be the most suitable ones for these
W,,/a=0.004. The result is that the instability threshold hasexperiments. The linear stability calculations also require
increased by more than 60%, and the form of the eigenfuncyery high resolution, here, we have used a radial grid of
tion has changed. The localized interchange instabilityAr/a=4x1075.
branch(Fig. 2) is stable, and two other types of modes are  To understand the changes on stability properties, we
now the fastest growing modesig. 3). Their eigenfunctions  will derive an analytic form for the dispersion relation of this
are mirror-symmetric with respect the resonant surfacepew instability branch under some simplifying assumptions.

which is the one with the largest growth rate depends ornFrom the set of reduced MHD equations, one can derive the
details of the profiles and the exact location of the flatteningeigenfunction equation for a moden(n),

Some of these changes in the stability properties of cylindri-

cal plasmas have already been discussed elsewhére. d*® 1 2m/(n—my) ﬁ_[m2+ 1

Here we will derive an analytic form for the dispersion rela- dr? " |r 77+(n— mn)z dr r ‘y§+(n—mb)z
tion and test the analytical results with numerical calcula- V' D.m?

tions. In Fig. 1, the linear stability results are for tfm < — +my” (n—mL)——SZ—F:O. (9)
=6; n=3) mode. The lowem (m<3) radially symmetric r r

interchange modes may require a larger flat spot for fulljere, y is the linear growth rate of thex;n) mode and the
stabilization'® Note that the modification of the pressure eigenvalue for this problem, arfdl, is

profile by local flat spots with a width o#/,,/a=0.004 is

hardly noticeable. For instance, Fig. 4 shows a parabolic _ Bo @d_ﬂ
pressure profile modified in the way indicated by E8). at = 2&%2dr dr’

An analytical solution for the linear stability problem for
a pressure profile with zero gradient at the resonant surface
can be found by dividing the minor radius in three regions as
shown in Fig. 5. First we consider the case in which the
eigenfunction is zero in the outer region of the radieig. 3,
broken ling. One region is between the magnetic axis and
r<— WI/2, wherer is the radial position of the singular sur-
face. In this region, we assume a constant rotational trans-
form, o, and parabolic pressure profile. A second region of
width W is centered at the singular surface, and we assume
that the profiles have zero pressure gradient and small mag-
netic shear. In the outer region, the values of the parameters
do not matter because the eigenfunction is taken to be zero,

1.0

05 }

-0.5

-1.0

0.40 0.45 0.50 0.55 0.60

rla —
<I>,,,(r)—0j _ _ _ o
FIG. 3. Eigenfunctions for then=6 mode for the most likely unstable In region 1, the eigenfunction equation, E®), simpli-
modes once the localized interchange mode has been stabilized. fies to
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FIG. 5. Pressure and rotational transform profile used in the analytical deg ;¢ Square of the linear growth rate of tre=6; n=3) mode vsg for
termination of the dispersion relation EG5). different values ofW. Numerical results are compared to the analytical
calculation. The equilibrium parameters are given in Fig. 5.

d’» 1dd m?

— - —+ — Ds
dr® r dr r?

-1
Y2+ (n—me)?

¢=0. (10 we still have Eq(15) for the linear growth rate but substitute

i _ Zms for z,,, wherez,, is a weak function of beta.

F0r2 the  smooth presgLAjre -proAfllepO(r)=p0[1 If the deviation from thez,,; value, Az~2,—24, iS
—(r/ro)°], we haveDg=(r/ro)°Ds with Ds=48,M¢(0).  small, we can estimate the correction by linearizing the tran-
In this case, Eq(10) can be transformed into a Bessel equa-gcendental equation iAz. We obtained
tion, and the solution in region | verifying the origin bound-

ary condition is N Az #B—zﬁﬂ
7= ]
Dy(r)=NgIm(pr), 11 A(4B—522,)/\B—22,— (1+22,—m?)/z
with (16)
. m2 D, 1 where
. rg ¥2+(n—mep)? 2 (Mug=m? [ 2
In region I, the eigenvalue problem near the marginal A= W A m
point reduces to the Rosenbluth, Dagazian, and Rutherford 7 Dy(rs—Wi2)
solution* for the internal kink mode: and 17)
d(r)=x i 1—3tan—1 —L,(r—r ) (13 m\ 2 (rs—W/2)2
1 25 - s)| (- B (rg )e A
7 B=1r,) mig—m?z P
0 t—n)

Forr>rg, ®,~0, and the solution in region Il matches
the outer region solution. F&W>y/m|.'|, ®;—X\,r. Inthis  To test the analytical results, we have used a rotational trans-
case, we can match this asymptotic form to the inner regiofiorm profile of the form shown in Fig. 5. The rotational
solution. From this match, we obtain a simple eigenvaluaransform is :=0.32(1+2.2r2—0.46%+2.5%) for r=rq
condition —W/2 and constant for<r,—W/2. Therefore, this profile is
_ _ completely flat in the inner region of the plasma. The pres-
w15 WI2)=2Zms. (14 sure profile used is parabolic with a flat region at the
From the eigenvalue condition, we can obtain the disper—= 0.5 resonance surface.
sion relation, When the size of the flat spot is very small, of the order
ro—W/2\2. n 2 of 1% of the radius, we have to solve the full transcendental
2 (S—> D,— (—— LO) . (15  equation obtained from the matching condition to get a good
foZms m agreement between the analytical and numerical results. The
Here, z,s is the szero of the functionF(z)=zJ,(2) result is illustrated in Fig. 6 for thém=6; n=3) mode and
—Jm(2). For largem,z,,&~j ., Wherej/ . is theszero of different values of the width of the flat spot.
the derivative of the,,, Bessel function of ordem. Note that For a width of the order of 10% of the minor radius, we
j s scales asn+0.81m'” for largem. Because the first zero can use directly the dispersion relation Hd5) with the
gives the highest growth rate, we will only consider this zerocorrectionAz calculated by Eq(17). In this situation we get
in what follows. good agreement with the numerical results again. Figure 7
For small values of the flattening regidid, we cannot shows the linear growth rate of then=6; n=3) for W
take ®,,~A,r. We have to use the full expression in Eg. =0.1a as a function of beta and is compared with the dis-
(14). In this case, the eigenvalue condition is obtained frompersion relation, Eq(15), with and without the correction
the solution of a transcendental equation. This implies thai\z.

y?=m
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FIG. 8. Linear growth rate of thém=2; n=1), (m=6; n=3), and (m
=10; n=5) modes as a function g8 for an equilibrium with parabolic
pressure profile with a flat spot 0V=0.004 and :=0.32(1+2.2?
—0.46%+2.5°5).

FIG. 7. Square of the linear growth rate of ttm=6; n=3) mode vsg for
W=0.1a. Numerical results are compared to the analytical calculation give
by Eqg. (15) with and without correction terms. The equilibrium parameters
are given in Fig. 5.

hand side of Eq(15)]. In Fig. 8, the linear growth rate vs

Equation(15) indicates that at a constant beta, the linearbeta for different modes and witW=0.004 is plotted. The
growth rate is strongly stabilized by flattening the pressurdinear growth rate squared is no longer a linear function of
profile. Relatively small values diV/a can cause full stabi- beta. The reason for this change is that the type of instabili-
lization of these modes, ties discussed in the previous section is only relevant near

the threshold. As beta increases, the modes broaden and be-

(18) come global modegFig. 9), and the dispersion relation Eq.

(15) is not applicable to these modes. However, the impor-

o ] ] . tantissue is that the instability threshold is still controlled by
A similar analysis can be followed to find the solution, {ne same type of instability we just discussed.

which is zero in the inner radial region. However, in this case a0 with magnetic shear, by increasing, one can
using the constantapproximation in the outer region of the 5chieve total stabilization of the pressure-driven modes. In
plasma is less credible. Therefore, we will limit our study to Fig. 10, this effect is shown for thén=6: n=3) and for
the branch with zero eigenfunction in the outer region of thegeyeral beta values. The size b required increases with
plasma. beta as indicated by Eq18).
The changes in the stability properties for the pressure
IV. EFFECT OF MAGNETIC SHEAR IN THE STABILITY profiles with flat spots at the resonant surfaces are not limited
RESULTS to cylindrical geometry. The averaging method has been also
Th tical calculati how that the stabilit used to study the stability properties of a realistic stellarator
€ analytical calcuiations snow that hear the staoli yconfiguration with pressure profiles with zero gradient at the
threshold, the linear growth rate_ goes to ZEro by Cancellat'opesonant surfaces. Once the toroidal couplings are also in-
between the two terms n b _rlght-hand SI@RHS) of Eq_._ ._cluded in the model, one obtains similar changes in the sta-
(15), the pressure gradient drive and the shear stabilizin

) . o ility propertiest?~1°
term. Therefore, its value is very sensitive to the value o?’ y prop

each of these two terms. In general, Etf) can be used as

guidance for the behavior of the growth rate, but it cannot be

I oZma|to—n/m|

A 1/2
DS

W=2|r

S

used as a quantitative measure of the growth rate in the case 10 - Bl = '066'7&'3' AR
of a rotational transform profile with shear. Even in a case of 121 o=
a very low shear profile, the interpretation of the linear --+ P, = 0.00688 ;
growth rate on the bases of the analytical is difficult. It is 0.8 | P =0.0075 ¢
difficult to know what is the proper value to use fgrwhen
we compare with the numerical results for a realisficofile 06
with shear. 04l
Let us consider the=0.5 resonant surface for the rota-
tional transform profile.=0.32(1+2.2r2— 0.4 4+ 2.5°5). 02¢F
This is the same equilibrium considered before but without
the flattening of the rotational transform profile in the inner 002 0.8

region. The change of transform is small because the shear in
the inner region is about 1. However, there are significant

changes in the stability properties. The beta critical increasesg o Eigenfunction of thém=6: n=3) mode for different values gf.
due to the shear stabilization eff¢second term in the right- These results correspond to the same parameters used in Fig. 8.
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FIG. 12. B, as a function ofm for different values ofW. These results
correspond to the same parameters used in Fig. 8.

n 2
——lg| -

FIG. 10. Linear growth rate of them=6; n=3) mode as a function ofV
for different values of8. These results correspond to the same parameters
used in Fig. 8.
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V. ASYMPTOTIC BEHAVIOR AND BETA CRITICAL

Herem, is the lowestm value at the resonant surface con-

growth rate withm, we can see from Eq15) that the growth sidered. For an equilibrium with magnetic shear, the beta
' critical scales qualitatively in a similar way as the zero-shear

rate dependence witm is quite different from the depen- ] e )
dence of the local ideal interchange instability. For the latter¢@5€(Fig. 12. That is, increases witm. However, the scal-

the linear growth rate is very weakly dependentrarHow- N9 exponent is no longer 2, but sqmewhat smaller. )

ever, in the case of pressure profiles with local flattenings If we now take the smooth profil@o(r), corresponding

the highm modes are strongly suppressed. In Fig. 11 and foF0 the.pressure pr.oflle with flat spos(r), we can calculate

the same equilibrium parameters as the cases in Fig. 8, W€ critical beta given by the Suydam criterion,

show the linear growth as a functionwf These calculations . (béfo)z

have been done wittV=0.004. In Fig. 11, we can see the 05~ 16M e’

decrease in the growth rates with increasn@nd the total 0

stabilization of the highm modes. They are contrasted with Where we have taker{=d:/dr|,_, . The form is similar to

the behavior of the linear growth rate in case of a smooththe one given by Eq(19). We can compare the real beta

profile with W=0. Hence, the largen asymptotic stability critical, Eq.(19), with the Suydam beta critical3js. If we

criteria cannot have any information on the stability of thetake co~¢(rg) +rsts, we obtain

modes described by E@L5). Furthermore, those criteria be- ¢ 2 c

came undefined in the case of a zero pressure gradient in 'BON(ZZmol) Bos- @D

each rational surface. Therefore, for those pressure profiles \We see that the real beta critical can be an order of

the asymptotic local stability criteria cannot be applied.  magnitude higher than the critical beta from the Suydam

From Eq.(15) we can calculate the corresponding criti- criterion g5 calculated with a smooth pressure profile.

cal beta for these new instabilities. For fixéd the critical Therefore, local stability criteria like the Suydam crite-

beta value scales as” because; =m. Therefore, the beta rion calculated with a smooth pressure profile cannot be ap-

critical at a given surface is given by the beta critical for thEp“ed to Conﬁgurations with a pressure prof“e with zero gra-

lowestm value, dient at each rational surface. Such criteria may be used as a
measure of stability if a convenient normalization constant
can be found.

In looking for the asymptotic behavior of the linear

(20

0.07 ' P S T o=
=2
0.06 O/’v . —- B=00072 10,004
N S, R e Woooo: VI. CONCLUSIONS
005F " -a_ . -4- $=0.0096 W=0.004
o A, *\e. —0— P=0.0096 W=0 A . .
0.04 g For stellarator equilibrium with zero-pressure gradient at
= -t N Y, the rational surfaces local, asymptotic stability criteria can-
3 'Y \ . . . .
0.03 \-\ N not be applied. For stellarators, the Mercier criterion has the
0.02 f \ ‘\ * same problems as the Suydam criterion in cylindrical geom-
0.01 A % etry. It is a local stability criterion that cannot be applied to
0 ) R M such pressure profiles. Calculations using the averaged
5 10 15 20 25 method approach indicate that the stability properties for the

m

low-m modes?~*® are similar to the case of cylindrical ge-

ometry. The local interchange-like modes are stabilized, and
the more global type eigenfunction are the residual instabili-

FIG. 11. Linear growth rate as a function of for different values ofg.
These results correspond to the same parameters used in Fig. 8.
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