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The eigenmode spectrum is a fundamental starting point for the analysis of plasma stability and
the onset of turbulence, but the characterization of the spectrum even for the simplest plasma
model, ideal magnetohydrodynamics (MHD), is not fully understood. This is especially true in
configurations with no continuous geometric symmetry, such as in a real tokamak when the discrete
nature of the external magnetic field coils is taken into account, or the alternative fusion concept,
the stellarator, where axisymmetry is deliberately broken to provide a nonzero winding number
(rotational transform) on each invariant torus of the magnetic field line dynamics (assumed for
present purposes to be an integrable Hamiltonian system). Quantum (wave) chaos theory provides
tools for characterizing the spectrum statistically, from the regular spectrum of the separable case
(integrable semiclassical dynamics) to that where the semiclassical ray dynamics is so chaotic that
no simple classification of the individual eigenvalues is possible (quantum chaos). The MHD spec-
trum exhibits certain nongeneric properties, which we show, using a toy model, to be understable
from the number-theoretic properties of the asymptotic spectrum in the limit of large toroidal and
poloidal mode (quantum) numbers when only a single radial mode number is retained. Much more
realistically, using the ideal MHD code CAS3D, we have constructed a data set of several hundred
growth-rate eigenvalues for an interchange-unstable three-dimensional stellarator equilibrium with a
rather flat, nonmonotonic rotational transform profile. A statistical analysis of eigenvalue spacings
shows evidence of generic quantum chaos, which we attribute to the mixing effect of having a large
number of radial mode numbers.
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I. INTRODUCTION

The tokamak and the stellarator fusion concepts both
seek to contain a plasma in a toroidal magnetic field. To
a good approximation, the tokamak field is axisymmet-
ric, so the study of the spectrum of normal modes of
small oscillations about equilibrium is simplified by the
existence of an ignorable coordinate. A stellarator, on

∗E-mail: robert.dewar@anu.edu.au

the other hand, is inherently nonaxisymmetric, and the
lack of a continuous symmetry means there are no “good
quantum numbers” to characterize the spectrum.

This makes the numerical computation of the spec-
trum a challenging task, but numerical matrix eigen-
value programs, such as the three-dimensional TERP-
SICHORE [1] and CAS3D [2] codes, are routinely used
to assess the ideal magnetohydrodynamic (MHD) stabil-
ity of proposed fusion-relevant experiments. An example
is the design of the 5-fold-symmetric Wendelstein 7-X
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Fig. 1. Left: plasma boundary of a 5-periodic toroidal equilibrium geometrically related to W7-X configurations (at 〈β〉 =
0.05, VMEC calculation). Right three frames: vertical cross-sections of the configuration at three different toroidal angles within
a field period, with Z the vertical coordinate and R the distance from the Z axis. The plasma boundary has been scaled such
that the minor radius of the torus a ≈ 1 and the major radius equals the aspect ratio R/a = A.

(W7-X) stellarator, where CAS3D was used [3] to study
a number of different cases.

The configurations foreseen to be studied experimen-
tally in W7-X are MHD stable, but in the present paper
we are concerned with an unstable case from this study, a
high-mirror-ratio, high-rotational-transform equilibrium
(Fig. 1). Due to its less pronounced shaping, this case
is quite unstable, which contrasts with the properties of
genuine W7-X configurations. The three-dimensional na-
ture of the equilibrium breaks all continuous symmetries,
coupling both poloidal (m) and toroidal (n) Fourier har-
monics and thus precluding separation of variables and
simple classification of the eigenvalues.

These eigenvalues, ω2 ≡ −γ2, are real due to the
self-adjointness [4] of the force and kinetic energy op-
erators in ideal MHD, linearized about a static equi-
librium. This is analogous to the Hermitian nature of
quantum mechanics, so we might a priori expect to be
able to take over the mathematical techniques used in
quantum mechanics. Thus, we study the W7-X Mercier
(interchange)-unstable case mentioned above by using
statistical techniques from the theory of quantum chaos
[5, eg].

This is of practical importance for numerical analysis
of the convergence of eigenvalue codes because, if the sys-
tem is quantum-chaotic, convergence of individual eigen-
values cannot be expected, and a statistical description
must be used. However, there is a fundamental question
as to whether the ideal MHD spectrum lies in the same
universality classes as the spectra of typical quantum
mechanical systems.

This question has been addressed recently [6, 7] by
studying the interchange unstable spectrum in an effec-
tively cylindrical model of a stellarator. In the cylindrical
case the eigenvalue problem is separable into three one-
dimensional eigenvalue problems, with radial, poloidal,
and toroidal (axial) quantum numbers l, m, and n, re-
spectively. If the spectrum falls within the generic quan-
tum chaos theory universality class for integrable, non-
chaotic systems [8], then the probability distribution
function for the separation of neighboring eigenvalues is

a Poisson distribution. However, the work of Ref. 6 indi-
cates that the universality class depends on the method
of regularization (ie truncation of the countably infinite
set of ideal-MHD interchange growth rates): a smooth,
physically-motivated finite-Larmor-radius roll-off in the
spectrum appears to give the generic Poisson statistics
for separable systems, but a sharp truncation in m and
n gives highly non-generic statistics. The latter case is
less physical, but corresponds closely to the practice in
MHD eigenvalue studies of using a restricted m,n basis
set, but a relatively fine mesh in the radial direction.

A careful analysis of the spectrum of ideal-MHD
interchange modes in a separable cylindrical approxi-
mation [7] revealed non-generic behavior of the spec-
tral statistics-a bimodal probability distribution func-
tion (PDF), rather than the expected Poisson distribu-
tion. The non-genericity of this separable case indicates
that caution must be applied in applying conventional
quantum chaos theory in non-separable geometries. The
study [7] indicated that the non-generic behavior of ideal-
MHD interchange modes is due to the peculiar feature
of the dispersion relation for these modes that the eigen-
values in the short-wavelength limit depend only on the
direction of the wave vector, not on its magnitude. (This
is unusual behavior, but it is shared with internal gravity
waves in geophysical fluid dynamics.) It was suggested
in Ref. 7 that the detailed features of the spectrum could
be understood from the properties of Farey sequences.

In the present paper, we discuss fictitious eigenvalues
from a toy model, used to elucidate the importance of
number-theoretic effects, that illustrate how nongeneric
the MHD eigenvalue spectrum can be if only one radial
eigenmode is used. Then we present the results of a
quantum chaos analysis for the W7-X case.

II. TOY EIGENVALUE PROBLEM

To gain insight into the nongeneric behavior found in
the separable case [7] with only one radial eigenmode, we
study the energy spectrum {En,m} for a “toy” quantum



-114- Journal of the Korean Physical Society, Vol. 50, No. 1, January 2007

Fig. 2. Number N(E) of renormalized eigenvalues Em,n

below a given value E for mmax = 10: (a) for the Hamiltonian
H = pφ/pθ; (b) for the Farey sequence.

mechanical Hamiltonian H = pφ/pθ, where the configu-
ration space is the 2-torus θ ∈ [0, 2π), φ ∈ [0, 2π) with
periodic boundary conditions. In the semiclassical ap-
proximation, we see that H depends only on the direc-
tion of p, not its magnitude, as for MHD interchange
modes and internal gravity waves.

The eigenvalue problem is the time-independent
Schrödinger equation, Hψ = Eψ, the eigenfunctions be-
ing exp[i(mθ + nφ)]/4π2, where m and n are integers.
The eigenvalues are given by En,m = n/m (m 6= 0).

Note the singular nature of the spectrum-it is discrete,
yet infinitely dense, the rationals being dense on the real
line. Also, the spectrum is infinitely degenerate as eigen-
values are repeated whenever m and n have a common
factor. Mathematically, such a spectrum, neither point
nor continuous, belongs to the essential spectrum [9].

In order to analyze this spectrum by using stan-
dard quantum chaos techniques, we first regularize it
by bounding the region of the m,n lattice studied, and
then allowing the bound to increase indefinitely. For-
tunately, the PDF, P (s), is independent of the precise
shape of the bounding line when we follow standard prac-
tice [5] in renormalizing (unfolding) the energy levels to
make the average spacing unity. Thus, we adopt the
simplest choice, taking the bounded region to be the tri-
angle 0 ≤ n ≤ m ≤ mmax. As the points (n,m) form
a lattice in the plane with mean areal density of 1, we
can estimate the asymptotic, large-mmax behavior of the
number of levels, Nmax, from the area of the bounding
triangle: the m axis, the line n = m and the line m = 1,
which gives the “Weyl formula” [5] Nmax ∼ m2

max/2.
The Farey sequence F(Q) is the set of all rational num-

bers p/q between 0 and 1, 1 < q ≤ Q, arranged in order
of increasing arithmetic size and keeping only mutually
prime pairs of integers p and q. Farey sequences are im-
portant in number theory [10] and have application in
various dynamical systems problems, such as the the-
ory of mode locking in circle maps [11]. They even have
a connection with the famous Riemann hypothesis [12].
They are conveniently generated using the Mathematica
algorithm [13]

Farey[Q_] := Union[{0,1},
Flatten[Table[p/q,{q, Q},{p, q-1}]]].

The list G(mmax) ≡ {En,m}, sorted into a non-decreasing
sequence {Ei|i = 1, 2, . . . , Nmax}, is very similar to the

Fig. 3. Separation statistics: (a) for the model Hamilto-
nian; (b) for the Farey sequence. The solid curves are from
the Farey spacing measure, Eq. (2). In (b) the short-dashed
curve is for the Poisson Process of the generic integrable
problem and the long-dashed curve is that for the Gaussian
orthogonal ensemble of random matrices (quantum chaotic
case).

Farey sequence F(mmax) except for the high degeneracy
(multiplicity) of numerically identical levels, especially
when n/m is a low-order rational.

Define the renormalized (unfolded) energy as En,m ≡
NmaxEn,m. The normalization by Nmmax ensures that
ENmax = Nmax, so the mean slope of the Devil’s stair-
case shown in Fig. 2(a) is unity. The large vertical steps
visible in Fig. 2(a) are due to the high degeneracy at
low-order rational values of n/m. This high degeneracy
is also the cause of the delta function spike at the ori-
gin visible in the level-separation probability distribution
plot shown in Fig. 3(a), which is very similar to Fig. 9(a)
in [7].

The tail in Fig. 3(a) is due to the non-degenerate com-
ponent of the spectrum, obtained by reducing all frac-
tions p/q to lowest terms and deleting duplications. Thus
the eigenvalues in this set are NQ times the terms of the
Farey sequence F(Q).

To study the statistics of this non-degenerate compo-
nent, one naturally defines the Farey spectrum {EF

i } as
NF(Q) times the terms of the Farey sequence F(Q),
where NF(Q) is the number of terms in F(Q). The
asymptotic behavior of NF(Q) in the large-n limit is
given [14, p. 391] by NF(Q) ∼ 3Q2/π2+O(Q lnQ). The
staircase plot and the separation distribution PF(s) for
the Farey spectrum are given in Fig. 2(b) and Fig. 3(b),
respectively.

It is a standard result in the theory of Farey sequences
[10, p.301] that the smallest and the largest nearest-
neighbor spacings in F(Q) are given, respectively, by

1
Q(Q− 1)

and
1
Q
, (1)

so that the support of the tail component of P (s) in
Fig. 3(a) becomes [1/2,∞) in the limit Q → ∞, while
that of PF(s) in Fig. 3(b) is [3/π2,∞). Augustin et al.
[12], Eq. (1.9), derived the spacing density for the Farey
sequence as
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Fig. 4. Left: the rotational transform ι- = ι-(s) profile ver-
sus normalized toroidal flux s (s ∝ r2 near the magnetic axis).
Right: a measure of the Mercier stability versus normalized
toroidal flux for the 3-dimensional W7-X-like case of Fig. 1.
A negative value indicates instability.

The solid curve in Fig. 3(b) is obtained by setting
PF(s) = g1(s) and is seen to agree well with the numer-
ical results. The solid curve in Fig. 3(a) is obtained by
setting P (s) = [NF(Q)/N(Q)]2g1(NFs/N) and agrees
well with the tail of the histogram. The ratio of the
area of the tail in Fig. 3(a) to the strength of the delta
function in Fig. 3(a) is NF(Q)/[N(Q)−NF(Q)] ≈ 1.55.
We have verified that the probability distributions re-
main unchanged if subranges of the spectra are used, in
agreement with the result included in Theorem 1.1 of
Ref. 12 that the convergence to a probability measure is
independent of the interval chosen.

III. W7-X RESULTS

The W7-X variant equilibrium studied was generated
with the VMEC [15] code, which assumes the magnetic
field to be integrable, so that all magnetic field lines lie on
nested toroidal flux surfaces, which we label by s, the en-
closed toroidal magnetic flux divided by the toroidal flux
enclosed by the plasma boundary. The magnetic field is
characterized on each flux surface by its winding number
ι-(s). (In tokamaks its inverse, q ≡ 1/ι-, is more commonly
used.) As seen in Fig. 4, the rotational transform pro-
file is nonmonotonic and has low shear (ι-axis = 1.1066,
ι-min = 1.0491, ι-edge = 1.0754), so it is close to, but
greater than, unity over the whole plasma. Figure 4 also
shows the equilibrium to be interchange unstable, be-
cause the Mercier stability criterion is violated over the
whole plasma.

The CAS3D code expands the eigenfunctions in a finite
Fourier basis in the toroidal and the poloidal angles, se-
lected so as to include all |n| ≤ nmax and all m such that
n/m lies in a band including the range of ι-. The Fourier
tableau is depicted graphically in Fig. 5. In this code,

Fig. 5. Choice of basis set of toroidal and poloidal Fourier
harmonics.

Fig. 6. Unfolded eigenvalue spacing distributions from
mode-family datasets N = 0 (137 values), N = 1 (214 val-
ues) and N = 2 (178 values) calculated by CAS3D for our
W7-X-like equilibrium, and the distribution for the combined
spectrum, N = 0, 1 and 2.

the radial dependence of the perturbation functions is
treated by using a hybrid Finite-Element approach, with
a linear interpolation for the normal displacement and
piecewise constant interpolations for the scalar compo-
nents that describe the MHD displacement within the
magnetic surfaces. In the calculations discussed here,
301 radial grid points were used. The kinetic energy was
used as the normalization; therefore, the unstable eigen-
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Fig. 7. Dyson-Mehta spectral rigidity as a function of
subinterval length L. N = 0 family: black short-dashed;
N = 1: gray long-dashed; N = 2: gray solid; combined data
set: gray short-dashed; Poisson-process: black long-dashed.

Fig. 8. Unfolded eigenvalue spacing distributions for
mode-family N = 1, calculated using two different unfold-
ing methods. The results are seen to be consistent to within
statistical error.

values λ may be converted to a nondimensional growth
rate γ viz. γτA = R0(0)

√
|λ|/B0(0). Here, R0(0) is the

major radius, and B0(0) the equilibrium magnetic field
measured on the magnetic axis.

Because of the 5-fold symmetry of the equilibrium, any
toroidal Fourier harmonic n in an eigenfunction is cou-
pled to toroidal harmonics n± 5. With the poloidal har-
monics chosen to be positive, m ≥ 0, there are just three
uncoupled mode-families N = 0, 1, 2 (compare [2]).

We characterize the statistics of the ensembles of
eigenvalues within the three mode-families using two
standard measures from quantum chaos theory [5, 16,
17], first renormalizing (“unfolding”) the eigenvalues so
their average separation is unity. The first measure,
shown in Fig. 6, is the probability distribution function,
P (x), for the eigenvalue separation x (the s of Sec. II).
The other, shown in Fig. 7, is the Dyson-Mehta rigidity
∆3(L), where L is the subrange of unfolded eigenvalues
used.

As seen from Fig. 6, when the statistics are analyzed
within the three mode-families the eigenvalue spacing
distribution function is closer to the Wigner conjecture

form found for generic chaotic systems [5] than to the
Poisson distribution for separable systems, as might be
expected from Ref. 18. However, when the spectra from
the three uncoupled mode-families are combined, there
are enough accidental degeneracies for the spacing dis-
tribution to become close to Poissonian.

To test the sensitivity to the precise method of un-
folding chosen, we did the statistics using two different
methods: the Gaussian unfolding [17] and a fit with ex-
ponentials. The results, shown in Fig. 8, indicate little
sensitivity to the unfolding method.

IV. CONCLUSION

Although not presented here, when all unstable eigen-
modes (i.e., all l, m, and n) are included, the eigenvalue
spacing statistics for the ideal-MHD interchange eigen-
value spectrum in a separable cylindrical approximation
is close to that of generic separable wave equations [8],
despite our earlier finding [6,7] that the spectrum in the
subspace of the most unstable radial eigenmode l = 0
is nongeneric, as explained by the model presented in
Sec. II. . In this paper we have shown that, in a strongly
three-dimensional stellarator equilibrium related to W7-
X, the unstable interchange (Mercier) mode spectrum
has, to within statistical uncertainties, similar statistics
to that of generic quantum chaotic systems. That is,
the overwhelming majority of eigenvalues are not “good
quantum numbers” and can, thus, be expected to dis-
play sensitivity to small perturbations. This needs to
be borne in mind when doing convergence studies using
stability codes such as CAS3D.

An interesting question for further work is whether
other modes, such as drift waves, are quantum chaotic
in stellarators, or if this is a peculiarity of MHD modes.
There is already evidence that kinetic effects make the
semiclassical (WKB) dynamics closer to integrable [19].
Another question is whether quantum chaos of Mercier
modes occurs in machines with more field periods than
the 5 of W7-X. Earlier work [20] suggested that, in a 10-
field-period heliotron equilibrium related to the Large
Helical Device (LHD), the spectrum is close to that of
an equivalent axisymmetric torus, and thus not chaotic.
However, a relatively few modes were studied and the
spacing statistics were not calculated.
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