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Abstract. The eigenmode spectrum is a fundamental starting point for the analysis
of plasma stability and the onset of turbulence. Quantum chaos theory provides
tools for characterizing the spectrum statistically, from the regular spectrum of the
separable case (integrable semiclassical dynamics) to that where the semiclassical
ray dynamics is so chaotic that no simple classification of the individual eigen-
values is possible (quantum chaos). Using the CAS3D code, a data set of several
hundred growth-rate eigenvalues has been calculated for a Mercier-unstable three-
dimensional stellarator equilibrium with a rather flat, non-monotonic rotational
transform profile. Statistical analysis of eigenvalue spacings for individual mode
families shows evidence of quantum chaos, strongest for the N = 0 family, but to
test this we compare it with the distribution of eigenvalue spacings in a similar
separable case—ideal interchange modes in a Suydam-unstable plasma cylinder—
using a similar rotational transform profile to the stellarator case. The statistics in
the cylindrical model appear Poissonian, as expected for generic integrable systems
and in clear contrast to the three-dimensional stellarator results.

1. Introduction
Numerical matrix eigenvalue programs, such as the three-dimensional TERPSI-
CHORE [1] and CAS3D [2] codes, are routinely used to assess the ideal magneto-
hydrodynamic (MHD) stability of candidate configurations for proposed fusion-
relevant experiments with complicated geometries. An example is in the design
of the five-fold-symmetric Wendelstein 7-X (W7-X) stellarator, currently under
construction, where CAS3D was used [3] to study a number of different cases.
The three-dimensional nature of stellarator equilibria breaks all continuous sym-

metries, coupling both poloidal (m) and toroidal (n) Fourier harmonics. This pre-
cludes separation of variables and simple classification of the eigenvalues. As a
consequence, the nature of the spectrum is still imperfectly understood, making
both the physical interpretation of stability calculations and the rigorous numerical
analysis of convergence difficult.
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Figure 1. (a) The rotational transform ι-= ι-(s) profile versus normalized toroidal flux s (s ∝ r2

near the magnetic axis). (b) A measure of the Mercier stability versus normalized toroidal
flux for our unstable W7-X variant equilibrium. (A negative value indicates instability.)

The optimized configurations used in designing W7-X are MHD stable, but in
the present paper we are concerned with a variant, unstable equilibrium from
this study, a high-mirror-ratio, high-rotational transform case. Its less-pronounced
shaping makes it quite unstable, thus allowing us to perform a numerical experi-
ment designed to explore some fundamental properties of the MHD spectrum in
stellarators without the added complication of the stable Alfvén spectrum.
The eigenvalues, ω2 ≡ −γ2, are real due to the self-adjointness of the force and

kinetic energy operators in ideal MHD, linearized about a static equilibrium. This is
analogous to the Hermitian nature of quantum mechanics. Thus, we study the W7-
X Mercier (interchange)-unstable case mentioned above using statistical techniques
from the theory of quantum chaos (see, e.g., [4]).
As a non-chaotic reference case we also study, following [5], the interchange

unstable spectrum in an effectively cylindrical model of a stellarator. In the cyl-
indrical case the eigenvalue problem is separable into three one-dimensional ei-
genvalue problems, with radial, poloidal, and toroidal (axial) quantum numbers
l, m, and n, respectively. If the spectrum falls within the generic quantum chaos
theory universality class for integrable, non-chaotic systems, then the probability
distribution function for the separation of neighboring eigenvalues is a Poisson
distribution [4].
In [5] we found that the spectrum for the most unstable ideal MHD inter-

change modes in a cylinder, those with radial mode number l = 0, gave highly non-
Poissonian statistics (when we used a sharp truncation in m and n). However, it is
likely that the statistics of the full spectrum, including the many weakly unstable
modes with l > 0 near the interchange accumulation point at the origin, is closer to
Poisson statistics because of the occurrence of many accidental degeneracies.
In the present paper we compare the results of the quantum chaos analysis of

the W7-X N = 1 mode family [2] with eigenvalues from a cylindrical model with
similar rotational transform profile.

2. Numerical results
The magnetic field lines of the W7-X variant equilibrium studied are taken to
lie on nested toroidal flux surfaces labelled by s ∈ [0, 1], the enclosed toroidal
magnetic flux divided by the toroidal flux enclosed by the plasma boundary. The
magnetic field is characterized on each flux surface by its winding number ι-(s). As
seen in Fig. 1, the rotational transform profile is non-monotonic and has low shear
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Figure 2. (a) Unfolded eigenvalue spacing distributions for W7-X mode family N =1,
calculated using two different unfolding methods. (b) The same statistic from the cylindrical
comparison case.

(ι-axis = 1.1066, ι-min = 1.0491, ι-edge = 1.0754) so it is close to, but greater than, unity
over the whole plasma. As also seen from Fig. 1, the equilibrium is interchange
unstable because the Mercier stability criterion is violated over the whole plasma.
In the CAS3D code, the radial dependence of the perturbation functions is treated

by a hybrid finite-element approach, using a linear interpolation for the normal
displacement and piecewise constant interpolations for the scalar components that
describe the MHD displacement within the magnetic surfaces. Fixed boundary con-
ditions were used with incompressible perturbations and a non-physical kinetic en-
ergy normalization. (As the eigenvalues are renormalized—‘unfolded’ in quantum
chaos language—to give an average separation of unity, the precise normalization
used in the code is not important for the statistics.) In the calculations discussed
here, 301 radial grid points were used, but a run with 451 grid points gave the
same qualitative results. For the plot in Fig. 2, 99 Fourier harmonics were used,
distributed with half-bandwidth 5 about n/m = 1, where n and m are the toroidal
and poloidal Fourier indices, respectively, with nmax = 21. There were 214 unstable
eigenvalues found in this case, and all were used in the statistical analysis.
Owing to the five-fold symmetry of the equilibrium, any toroidal Fourier har-

monic n in an eigenfunction is coupled to toroidal harmonics n ± 5. With the
poloidal harmonics chosen to be positive, m ≥ 0, there are just three uncoupled
mode families N = 0, 1, 2 (cf. [2]).
After unfolding the eigenvalues so that their average separation is unity, we

characterize the statistics of the ensembles of eigenvalues within the N = 1 mode
family using a standard statistic from quantum chaos theory [4, 6], the probability
distribution function, P (x), for the eigenvalue separation x, shown in Fig. 2.
As seen from Fig. 2(a), the eigenvalue spacing distribution function for the W7-X

case is closer to the form found in generic chaotic systems [4] than to the Poisson
distribution for separable systems, giving support for the quantum chaos prediction
of [7]. The same is true for the other two mode families. (Although the N = 2 case
appeared to deviate significantly from the Wigner-conjecture distribution using
301 grid points, when the number was increased to 451 grid points, giving 402
eigenvalues, the distribution became much closer to quantum chaotic.)
To test the sensitivity to the precise method of unfolding chosen, we calculated

the statistics using two different methods. They are the Gaussian unfolding method
[6] and a fit with exponentials. The results, shown in Fig. 2(b) are seen to be
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consistent to within statistical error, indicating little sensitivity to the unfolding
method.
The calculations for the cylindrical reference case were done with a shooting

code, so the radial resolution was essentially infinite. To keep the set of eigenvalues
finite, and to model the finite radial resolution of CAS3D, only at most 101 radial
eigenmodes were kept for each unstable (m,n), giving a dataset of 907 eigenvalues,
200 of which are non-resonant. Figure 2(b) shows the statistics to be close to
Poissonian.

3. Conclusion
Although space has precluded us from showing the results for theN = 0 and 1 mode
families, in all three families the spacing distributions in the W7-X case are close to
that expected from quantum chaos theory, while those for the cylindrical reference
case are close to the Poisson distribution. We therefore conclude that interchange
instabilities in the W7-X helias are strongly three-dimensional.
This contrasts with earlier work on the 10-field-period Large Helical Device

heliotron/torsatron [8, 9] where the interchange spectrum was found to be rather
regular, which was interpreted as being due to the averaging effect of the inter-
change eigenfunctions being extended over a large number of field periods.
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