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A Suydam-unstable circular cylinder of plasma with periodic boundary conditions in the axial direction is
studied within the approximation of linearized ideal magnetohydrodynamics(MHD). The normal mode equa-
tions are completely separable, so both the toroidal Fourier harmonic indexn and the poloidal indexm are
good quantum numbers. The full spectrum of eigenvalues in the range 1ømømmax is analyzed quantitatively,
using asymptotics for largem, numerics for allm, and graphics for qualitative understanding. The density of
eigenvalues scales likemmax

2 as mmax→`. Because finite-m corrections scale as 1/mmax
2 , their inclusion is

essential in order to obtain the correct statistics for the distribution of eigenvalues. Near the largest growth rate,
only a single radial eigenmode contributes to the spectrum, so the eigenvalues there depend only onm andn
as in a two-dimensional system. However, unlike the generic separable two-dimensional system, the statistics
of the ideal-MHD spectrum departs somewhat from the Poisson distribution, even for arbitrarily largemmax.
This departure from Poissonian statistics may be understood qualitatively from the nature of the distribution of
rational numbers in the rotational transform profile.

DOI: 10.1103/PhysRevE.70.066409 PACS number(s): 52.35.Bj, 05.45.Mt

I. INTRODUCTION

The general aim of this paper is to compare and contrast
the spectrum of eigenvalues in typical integrable wave sys-
tems(e.g., waves in a rectangular cavity[1]) with the spec-
trum of instabilities in a cylindrical plasma within the ideal
magnetohydrodynamics(MHD) approximation. This is a
first step in understanding the spectral problem in the com-
plex three-dimensional geometry of the class of magnetic
confinement fusion experiments known as stellarators[2].

In ideal MHD the spectrum of the frequencies,v, of nor-
mal modes of displacements about a toroidal equilibrium is
difficult to characterize mathematically because the linear-
ized force operator is not compact[3]. In addition to a point
(discrete) spectrum of unstable modessv2,0d, there are the
Alfvén and slow-magnetosonic continuous spectra on the
stable side of the originsv2.0d and the possibility of dense
sets of accumulation points on the unstable side. In math-
ematical spectral theory, the stable continua and unstable ac-
cumulation “continua”[4] are characterized[5] as belonging
to theessential spectrum. (For a self-adjoint operatorL, the
essential spectrum is the set ofl values for which the range
of L−l is not a closed set and/or the dimensionality of the
null space ofL−l is infinite.)

There is experimental evidence that ideal MHD is rel-
evant in interpreting experimental results[6,7], but perhaps
the greatest virtue of ideal MHD in fusion plasma physics is
its mathematical tractability as a first-cut model for assessing
the stability of proposed fusion-relevant experiments with

complicated geometries in the predesign phase.
For this purpose, a substantial investment in effort has

been expended on developing numerical matrix eigenvalue
programs, such as the three-dimensionalTERPSICHORE[8]
andCAS3D [9] codes. These solve the MHD wave equations
for perturbations about static equilibria, so that the eigen-
valuev2 is real due to the Hermiticity(self-adjointness[10])
of the linearized force and kinetic energy operators. They use
finite-element or finite-difference methods to convert the
infinite-dimensional PDE eigenvalue problem to an approxi-
mating finite-dimensional matrix problem. An alternative ap-
proach is to use local analysis using the ballooning represen-
tation and to attempt semiclassical quantization to estimate
the global spectrum[11–13].

In order properly to verify the convergence of these codes
in three-dimensional geometry, it is essential to understand
the nature of the spectrum—if it is quantum-chaotic, then
convergence of individual eigenvalues cannot be expected
and a statistical description must be used[14–17].

This is perhaps of most importance in understanding the
spectrum in three-dimensional magnetic confinement geom-
etries, in particular the various stellarator experiments cur-
rently running or under construction. These devices are
called three-dimensional because they possess no continuous
geometrical symmetries, and thus there is no separation of
variables to reduce the dimensionality of the eigenvalue
problem. It has been shown[18] that the semiclassical limit
(a Hamiltonian ray tracing problem) for ballooning instabili-
ties in such geometries may be strongly chaotic because
there are no ignorable coordinates in the ray Hamiltonian.

However, the present paper discusses the opposite limit, a
system with a sufficient number of symmetries to make the*Electronic address: robert.dewar@anu.edu.au
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ray Hamiltonian integrable and the eigenvalue problem sepa-
rable. The geometry is the circular cylinder, periodic in thez
direction to make it topologically toroidal—we shall refer to
the z direction as the toroidal direction and the azimuthal,u
direction as the poloidal direction. The study of this sepa-
rable system will provide a baseline for comparison with the
three-dimensional toroidal case in future work. The overall
goal of the paper is to determine if the ideal-MHD spectrum
falls within the same universality class as that of typical
waves in separable geometries or, if not, what might cause it
to differ.

Berry and Tabor[19] show that the distribution function
Pssd for the spacing of adjacent energy levels(suitably
scaled) in a generic separable quantum system with more
than one degree of freedom is exps−sd, as for a Poisson
process with levels distributed at random. They also show
that the spectrum of uncoupled quantum oscillators is non-
generic even when the frequency ratios are not commensu-
rate, in which casePssd peaks about a nonzero value ofs (as
also occurs in nonintegrable, chaotic systems—the “level re-
pulsion” effect). A more surprising departure from the Pois-
son distribution was found by Casatiet al. [1] for waves in a
rectangular box with irrational aspect ratio, but the departure
was very small. Level spacing statistics are discussed also in
the standard monographs on quantum chaos[14–17].

In contrast with quantum mechanics, where the continu-
ous spectrum arises from the unboundedness of configuration
space, the ideal-MHD essential spectrum arises from the un-
boundedness of Fourier space—there is no minimum wave-
length. This is an unphysical artifact of the ideal MHD
model because, in reality, low-frequency instabilities with
uk'u much greater than the ion Larmor radius,ai, cannot exist
(wherek' is the projection of the local wave vector into the
plane perpendicular to the magnetic fieldB). Indeed, ideal
MHD breaks down in various ways at largeuk'u, with dissi-
pative and drift effects coming into play.

In this paper, we do not attempt to model finite-Larmor-
radius stabilization, but instead simply restrict the poloidal
mode spectrum tomømmax and study the scaling of the
spectrum at largemmax. The nature of the dispersion relation
is such that the toroidal mode numbersn relevant to the
spectrum are also restricted. In a matrix eigenvalue code
such asCAS3Dor TERPSICHORE, our procedure corresponds to
using an arbitrarily fine radial mesh but truncating the toroi-
dal and poloidal basis set.

The eigenvalue equation for a reduced MHD model of
a stellarator is presented in Sec. II. We study a plasma in
which the Suydam criterion[20] for the stability of inter-
change modes is violated, so the number of unstable modes
is infinite.

Section III is devoted to developing an understanding of
the dependence(the dispersion relation) of the eigenvalues
on the radial, poloidal, and toroidal mode numbers,l, m, and
n, respectively. Asm and n approach infinity, keepingm
;n/m fixed, the growth-rate eigenvalues asymptote to a
constant, the Suydam growth rate, depending only onm and
the radial mode numberl. We use a combination of pertur-
bation expansion in 1/m and numerical solution of the eigen-
value equation using a new transformation to Schrödinger
form that is applicable over the whole range ofm, from Os1d

to `. This generalizes the approach of Cheremhykh and
Revenchuk[21], which was limited to them=` Suydam
eigenvalue problem. We compare some of the asymptotic
results in[21] with our numerical solutions. Our perturbation
expansion shows that the correction to the Suydam limit goes
as 1/m2. Contrary to usual experience[22], our numerical
solutions show that the growth rates do not always approach
the Suydam values from below asm→`.

In Sec. IV, we examine the part of the spectrum invol-
ving the most unstable modes, which is essentially two-
dimensional because only the lowest-order radial mode,
l =0, contributes. We relate the considerable amount of struc-
ture observed in the spectrum to the Farey sequences of ra-
tional values of the rotational transform(winding number) of
the equilibrium magnetic field. Low-order rationals have as-
sociated eigenvalue sequences giving a regular distribution
of eigenvalues locally more like the spectrum of a one-
dimensional system than a two-dimensional one.

In Sec. V, we derive the analog of the Weyl formula for
the average density of states, including an asymptotic analy-
sis of the large-l limit. In Sec. VI, we show level spacing
distributionsPssd. Since we are interested in largem, we first
try approximating the eigenvalues by their corresponding
asymptotic Suydam limit. This gives a very singular distri-
bution with ad-function-like spike at the origin[23] due to
the extremely degenerate nature of the spectrum in this ap-
proximation. By contrast, the distribution for the exact spec-
trum has no spike at the origin, showing that the small 1 /m2

corrections break the degeneracy sufficiently to completely
change the statistics.

We examine the statistics for thel =0 and l =1 spectra,
both individually and combined(in the low-growth-rate re-
gion where they overlap). We have examined sufficiently
large data sets to show convincingly that the statistical dis-
tributions are not Poissonian, though that of the combined
l =0 andl =1 spectrum is closest. We also split thel =0 spec-
trum into two halves to remove overlap of spectra arising
from different parts of the plasma. These split spectra exhibit
a much more dramatic departure from Poisson statistics,
showing that the ideal-MHD interchange spectrum is indeed
nongeneric in the sense of Berry and Tabor[19].

II. CHOICE OF MODEL EIGENVALUE EQUATION

The grand context of this paper is the three-dimensional
linearized ideal MHD problem—to solve, under appropriate
boundary conditions, the equation of motion

r]t
2j = F · j s1d

for small displacementsjsr ,td of the MHD fluid about a
static equilibrium state, wherersr d is the equilibrium mass
density,r is position,t is time, andF is a Hermitian linear-
ized force operator[10] under the inner producted3xj* ·F ·j
and suitable boundary conditions.(Superscript * denotes
complex conjugation—we can takej to be complex because
all the coefficients inF are real, so the real and imaginary
parts ofj obey the same equation.)

Most modern magnetic confinement fusion experiments,
in particular tokamaks and stellarators, are toroidal. Though
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not guaranteed for arbitrary three-dimensional systems, the
equilibrium magnetic fieldBsr d is normally assumed to be
integrablein the sense that all field lines lie on invariant tori
(magnetic surfaces) nested about a single closed field line
(the magnetic axis). Within each toroidal magnetic surface, a
natural angular coordinate system is set up, with the poloidal
angleu increasing by 2p for each circuit around the short
way and the toroidal anglez increasing by 2p for each cir-
cuit the long way. Each surface is characterized by a mag-
netic winding number, therotational transformi–, being the
average poloidal rotation of a field line per toroidal circuit,
kdu /dzl, over an infinite number of circuits.(In tokamak
physics the inverse,q;1/i–, is normally used as the rotation
number.)

In this paper, we study an effectively circular-cylindrical
MHD equilibrium, using cylindrical coordinates such that
the magnetic axis coincides with thez axis, made topologi-
cally toroidal by periodic boundary conditions. Thusz and
the toroidal anglez are related throughz;z/R0, whereR0 is
the major radius of the toroidal plasma being modeled by
this cylinder. The poloidal angleu is the usual geometric
cylindrical angle and the distancer from the magnetic axis
labels the magnetic surfaces(the equilibrium field being
trivially integrable in this case). The plasma edge is atr =a.

In the cylinder there are two ignorable coordinates,u and
z, so the components ofj are completely factorizable into
products of functions of the independent variables separately.
In particular, we write ther component as

rjr = expsimudexps− inzdwsrd, s2d

where the periodic boundary conditions quantizem andn to
integers and we choose to work with the stream function
wsrd; rjrsrd.

Since the primary motivation of this paper is stellarator
physics, we use the reduced MHD ordering for large-aspect
stellarators[2,24], averaging over helical ripple to reduce to
an equivalent cylindrical problem[25,26]. The universality
class should be insensitive to the precise choice of model as
long as it exhibits the behavior typical of MHD instabilities
in a cylindrical plasma, specifically the existence of inter-
change instabilities and the occurrence of accumulation
points at finite growth rates.

We nondimensionalize by measuring the radiusr in units
of the minor radius of the plasma column,a, and the timet in
units of the poloidal Alfvén timetA =R0

Îm0r /B0, whereB0
is the toroidal magnetic field andm0 is the permeability of
free space. Thusv is in units of tA

−1. Defining l;v2, we
seek the spectrum ofl values satisfying the scalar equation

Lw = lMw s3d

under the boundary conditionsws0d=0 at the magnetic axis
andws1d=0, appropriate to a perfectly conducting wall at the
plasma edge. The operatorsL and M given below are Her-
mitian under the inner product defined, for arbitrary func-
tions f andg satisfying the boundary conditions, by

kf,gl ; E
0

1

f * srdgsrdrdr . s4d

The weight factorr in the inner product is a Jacobian factor
coming fromd3x=rdrdudz.

The operatorL is given by

L ; −
1

r

d

dr
sn − mi–d2r

d

dr
+

m2

r2 Fsn − mi–d2 − DS +
i–̈

m
sn − mi–dG ,

s5d

where the Suydam stability parameterDS is

DS ; −
b0

2e2p8srdV8srd, s6d

with e;a/R0!1 the inverse aspect ratio,psrd the plasma
pressure normalized to unity atr =0, b0;2m0p0/B0

2 the ratio
of plasma pressure to magnetic pressure at the magnetic axis,
andV8 the average field line curvature. Here

V ; e2NSr2i–+ 2E ri–drD , s7d

where the rotational transform is produced by helical current
windings makingN@1 turns asz goes from 0 to 2p, V8srd
giving the averaged field-line curvature.(Note thate cancels

out in DS.) We use the notationḟ ; rf 8srd for an arbitrary

function f, so i–̇; rdi–/dr is a measure of the magnetic shear

and i–̈ measures the variation of the shear with radius. The
term V is a measure of the “magnetic hill”[2] that allows
pressure energy to be released by interchanging field lines,
thus driving the interchange instability.

The operator arising from the inertial term in Eq.(1),

M ; − ¹'
2 = −

1

r

d

dr
r

d

dr
+

m2

r2 , s8d

is easily seen to be positive definite under the inner product
Eq. (4).

We observe some differences between Eq.(3) and the
standard quantum-mechanical eigenvalue problemHc=Ec.
One is of course the physical interpretation of the
eigenvalue—in quantum mechanics the eigenvalueE;"v is
linear in the frequency because the Schrödinger equation is
first order in time, whereas our eigenvaluel is quadratic in
the frequency because it derives from a classical equation of
motion.

Another difference is that Eq.(3) is a generalizedeigen-
value equation becauseM is not the identity operator. This is
one reason why it is necessary to treat the MHD spectrum
explicitly rather than simply assume it is in the same univer-
sality class as standard quantum-mechanical systems.

Just as in ordinary eigenvalue problems, the eigenvalue
spectrum for the generalized eigenvalue problem is real,
and the eigenfunctionswi have a generalized orthogonality
property
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kwi,Mw jl = di,j , s9d

where the normalization has been chosen to make the coef-
ficient of the Kroneckerd unity. Herei and j denote mem-
bers of the sethl ,m,nj, wherel is the radial node number and
the poloidal and toroidal mode numbersm and n, respec-
tively, are defined in Eq.(2). The negative part of the spec-
trum, l=−g2,0, corresponds to instabilities growing expo-
nentially with growth rateg.

Equation(3) is very similar to the normal mode equation
analyzed in the early work on the interchange growth rate in
stellarators by Kulsrud[25]. However, unlike this and most
other MHD studies, we are concerned not with finding the
highest growth rate, but in characterizing the complete set of
unstable eigenvalues.

III. INTERCHANGE SPECTRUM

In this section, we discuss the standard unregularized
ideal MHD spectrum. It is well known that forl.0, the
spectrum consists of the Alfvén continuum(the slow-
magnetosonic continuum being removed in reduced MHD
[27]). On the unstable side of the spectrum,l,0, it is also
known that there is an infinity of eigenvalues provided the
Suydam interchange instability criterion[20]

G ;
DS

i–2 .
1

4
s10d

is satisfied over some range ofr in the interval(0, 1), but the
details of the spectrum do not appear to have been published
before.

A. Profiles

Interchange instabilities occur only for values ofm andn
such thatn−mi– vanishes(or at least can be made very small
[26]) and therefore it is important to know something about
the functioni–srd. The typical profile ofi–srd in a stellarator is
monotonically increasing in the intervalf0,ag and we shall
assume this to be the case here(though it is not always true
in modern stellarators). For the numerical work in this paper,
we use a parabolic profile

i–= i–0 + i–2r
2 s11d

as illustrated in Fig. 1(a). In this and all subsequent plots,

i–0=0.45,i–0=0.2.
Given a rational fractionm=nm /mm in the interval

fi–s0d ,i–sadg (wherenm andmm are mutually prime), there is a
unique radiusrm such thati–srmd=m. Any pair of integers
sm,ndm,n;snmm ,nnmd, n=1,2,3, . . . satisfies the resonance
condition

nm,n − mm,ni–srmd = 0. s12d

For example, the set of rationals with 1,mø10 in
the interval of i– shown in Fig. 1(a) is hmj
=h1/2,5/9,4/7,3/5,5/8j, as shown in the figure.

To understand the global spectrum, we also need to know
something about the pressure profile. In this paper, we use a
broad pressure profile that is sufficiently flat near the mag-
netic axis that the Suydam instability parameterG defined in
Eq. (10) goes to zero at the magnetic axis, and for whichp8
vanishes at the plasma edge

psrd = 1 − 6r5 + 5r6. s13d

(Recall from Sec. II thatp is in units of the pressure at the
magnetic axis.) This profile is shown in Fig. 2(a) and the
resultingG profile in Fig. 2(b).

B. High m and n

In this subsection, we choose a particular rational surface
rm and restrict attention to pairssm,nd from the set
hsm,ndm,n un=1,2,3, . . .j satisfying the condition Eq.(12).

Defining a scaled radial variablex;msr −rmd / rm, we ex-
pand all quantities in inverse powers ofm,

L ;
m2

rm
2 sLs0d + m−1Ls1d + m−2Ls2d + ¯ d,

M ;
m2

rm
2 sMs0d + m−1Ms1d + m−2Ms2d + ¯ d. s14d

Also, l=ls0d+m−1ls1d+m−2ls2d, and similarly forw. The de-
tailed expressions are given in Appendix A.

We then solve Eq.(3) by equating the LHS to zero order
by order. AtOsm0d, as found by Kulsrud[25], we have the
generalized eigenvalue equation

Ls0dws0d = 0, s15d

where

FIG. 1. (a) The rotational transformi–;1/q, defined by Eq.(11),
as a function ofr in units of the minor radius;(b) the radial profile

of the magnetic shear parameteri–̇; ri–8srd. In (a), all distinct ratio-
nal magnetic surfacesi–=m;n/m are shown form up to 10.

FIG. 2. (a) The nondimensional pressure profilepsrd, Eq. (13),
used in this paper and(b) the Suydam criterion parameterGsrd,
defined in Eq.(10) (solid line), and the instability threshold 1/4
(dashed line), showing nearly all the plasma is interchange unstable.
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Ls0d ; Ls0d − ls0dMs0d = −
d

dx
si–2x2 − ls0dd

d

dx
+ i–2x2 − ls0d − DS

s16d

with i–̇ andDS evaluated atrm. For ls0d,0, Eq. (15) can be
solved to give a square-integrable eigenfunction under the
boundary conditionsws0d→0 asr → ±` whenls0d is one of
the eigenvalueslm,l, l =0,1,2, . . .,denoting the number of
radial nodes of the eigenfunctionws0d=wm,l. Note thatlm,l
depends only onm=n/m and is otherwise independent of the
magnitude ofm and n. We assume that thewm,lsrd, when
combined with the continuum generalized eigenfunctions for
ls0d.0, form a complete set.

1. Suydam approximation

The leading term in the expansion of the eigenvalue in
1/m gives the growth rate in the limitm→`, known as the
Suydam approximation. Restricting attention to unstable
modes, so thatg;s−ld1/2 is real, we transform Eq.(15) to
the Schrödinger form[21]

d2c

dh2 + Qshdc = 0, s17d

where

Q = Q0shug,md ; G − 1
4 − 1

4 sech2 h − G2 cosh2 h, s18d

with G;Gsrmd defined as in Eq.(10), G;g / i–̇srmd, h defined

throughx;g sinhh / i–̇srmd, andc;scoshhd1/2wsxd. [In Ref.
[21], Eq. (18) is derived from the Fourier transform of Eq.
(15), but we can also use the real-space version as the equa-
tion shares with the quantum oscillator the remarkable prop-
erty of having the same general form in both Fourier space
and real space.]

Cheremhykh and Revenchuk[21] (CR) have made an ex-
tensive study of the eigenvalues of Eq.(17) using the semi-
classical quantization condition

R Q0shd1/2dh = s2l + 1dp, s19d

which follows from the WKB ansatz c
=Ashdexp±i eQ0

1/2dh. CR derive several approximations,
useful in appropriate limits, improving on the earlier result of
Kulsrud [25]. In this paper, we use two of their results to
compare with numerical solutions of Eq.(17). The first is Eq.
(4.5) of [21],

G <
4s

e
exp3−

Sl +
1

2
Dp

2s
−

1

4s24 , s20d

which [combining the criteria given in CR’s Eqs.(4.4) and
(4.12)] is applicable whens;sG−1/4d1/2@1/2. The sec-
ond CR result we use is their Eq.(4.7),

G2 <
G − s2l + 1dG1/2

1 + s4Gd−1 , s21d

applicable whenG*G2@1.

As is seen from Fig. 3, Eq.(21) gives a remarkably good
approximation to the growth rate of the most unstable radial
eigenmode,l =0, and Eq.(20) gives a good approximation
for the higher-l modes(the semiclassical quantization being
strictly justifiable only for largel). The growth-rate maxima
for eachl occur close to the maximum ofG (and henceG),

but not exactly owing to thei–̇ factor in the definitionG

;g / i–̇srmd.
From Eq.(21) we see that, provided the Suydam criterion

G.1/4 is satisfied, there is an infinity of growth rate eigen-
values accumulating exponentially toward the origin from
above(so thel values accumulate from below) in the limit
l →`.

Perhaps less widely appreciated(becausem and n are
normally taken to be fixed) is the fact that there is also a
point of accumulation of the eigenvalues of Eq.(3) at each
lm,l as mmax→` with l fixed. To break the degeneracy of
ls0d, we must proceed further with the expansion in 1/m.

2. 1/m2 corrections

Proceeding with the expansion Eq.(14), the calculation
goes through much as in standard time-independent quantum
perturbation theory[28], e.g..

The lowest-order eigenvalues and eigenfunctions are, as
found in Sec. III B,ls0d=lm,l andws0d=wm,lsxd, respectively.
TheOs1/md correction,ls1d, vanishes identically from parity
considerations—wm,lsxd is either an even or odd function so
its contribution to the matrix elements ofLs1d and Ms1d be-
tweenws0d andws0d is even. On the other hand,Ls1d andMs1d

are odd, sols1d;0. (This contrasts with the finite-aspect-
ratio toroidal case where toroidal coupling of Fourier har-
monics of differentm to form ballooning modes leads to a
nonvanishing 1/n correction[29,30].)

The first nonvanishing correction term is thus

ls2d = km,l uLs2dum,ll − o
l8Þl

km,l uLs1dum,l8lkm,l8uLs1dum,ll
lm,l8 − lm,l

,

s22d

where the sum overl8 is taken to include an integration over
the continuum. The operatorsLsid;Lsid−lm,lM

sid are the
higher-order generalizations ofLs0d, defined by Eq.(16). The
m=` matrix elements of any operatorF are defined by

FIG. 3. (a) m=` eigenfunctions for thel =0 (solid line), l =1
(short dashes), and l =2 (short and long dashes) modes atm=1/2,
arbitrary normalization.(b) Growth ratesg (in units of the inverse
poloidal Alfvén time) vs resonanti–;m. Dashed lines show ap-
proximations Eq.(21) (for l =0) and Eq.(20) (for l =1 and 2).
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km,l8uFum,l9l ; E
−`

`

wm,l8
* sxdFwm,l9sxddx, s23d

with the eigenfunctionswm,lsxd being normalized so that
km , l uMs0dum , ll=1. Note that, with the operatorsL and M
defined as in Eqs.(5) and (8), Lsid is Hermitian under the
inner product used in Eq.(23) only for i =0. However, it can
be made Hermitian at arbitrary order by the redefinitions
L° rL andM ° rM , which puts the eigenvalue equation into
Sturm-Liouville form.

As in quantum mechanics[28] e.g., if Ls1d is Hermitian
the contribution of the second term on the right-hand side of
Eq. (22) is always negative for the lowest eigenvalue,l0

s0d,
becausel

l8
s0d−ll

s0d.0. However, in ideal MHD a positive
contribution from the first term usually dominates and the
infinite-m mode is most unstable[22]. As seen in Fig. 4, this
is not always the case:ll=0

s2d is negative form=1/2 butposi-
tive for m=11/19=0.578 947. . . .

The latter value ofm is very close to the value giving the
global maximum Suydam growth rate(see Fig. 3). Thus, in
the special case studied here and in accordance with conven-
tional wisdom, theglobal maximum interchange growth
rate occurs atm=`. Both these results are intuitively
reasonable—the eigenfunctions become increasingly local-
ized asm→`, so the highest growth rate is obtained by
localizing in the “most unstable” region of the plasma, where
i–<11/19. On the other hand, modes which localize in “less
unstable” regions asm→` can achieve a higher growth rate
at finite values ofm because their more extended finite-m
eigenfunctions overlap the more unstable region and tap into
the free energy from the pressure gradient in this region.

Since the eigenvalues approachlm,l as 1/m2, there is an
infinity of modes in the neighborhood of eachlm,l in the
limit mmax→`. That is, they are finite-growth-rate accumu-
lation points of the complete spectrum. Because the rationals
m are dense on the interval(i–sr1d ,i–sr2d), wheresr1,r2d is the
region in which the Suydam instability criterion is satisfied,
and becauselm,l in general depends continuously onm, the
accumulation pointslm,l fill the interval s−gmax

2 ,0d densely.
This is the part of the unstable spectrum called the “accumu-
lation continuum” by Spies and Tataronis[4], though “accu-
mulation essential spectrum” might be better terminology
mathematically.

C. Finite m and n

In order to calculate arbitrarily high- or low-m eigenfunc-
tions, we generalize the transformation in Sec. III B 1 by the

change of variable fromr to a new independent variableh
such that

mi–srd − n ; g sinhh, s24d

and a new dependent variablecshd such that

w ; si–̇coshhd−1/2cshd, s25d

so that Eq.(3) becomes the Schrödinger equation(17), but
with Q0 replaced by

Q ; Gshd −
1

4
−

sech2 h

4
−

g2

i–̇2
cosh2 h

+
tanhh

2i–̇

di–̇

dh
−

1

2i–̇

d2i–̇

dh2 +
1

4i–̇2
S di–̇

dh
D2

, s26d

wherei–̇; rdi–/dr is as defined in previous sections, but ex-
pressed in terms ofh.

Differentiating Eq.(24), we find

dr

dh
=

g coshh

i–̇

r

m
. s27d

Thus, in the large-m limit, equilibrium parameters such asG

and i–̇ are slowly varying functions ofh, e.g., di–̇/dh

=Os1/md and d2i–̇/dh2=Os1/m2d. Comparing Eq.(26) with
Eq. (18), we see that, to leading order in 1/m, Q=Q0 but

with i–̇ now a slow variable rather than a strict constant.
With the simple form fori–, Eq. (11), assumed in this

paper, Eq.(24) is easily inverted to givershd, and also a

cancellation occurs between the termsi–̇8shdtanhh /2i–̇ and

i–̇9shd /2i–̇, so that the exactQ is not much more complicated
thanQ0. The eigenvalues in Figs. 4 and 5 were computed by
integrating Eq.(17) with Q0 replaced by the exactQ and
with the appropriate finite boundary conditions. Low-m re-
sults were checked against those from an untransformed
shooting code. The dashed lines represent the results of scans
through unquantized, noninteger values ofm to show the
smooth, but not necessarily monotone, functional depen-
dence ofg on m

FIG. 4. Nondimensional growth ratesgl,m,n;s−ll,m,nd1/2 vs m−2

for l =0 and 1, found by numerical solution of Eq.(3) (Sec. III C):
(a) n/m=1/2 sm=2,4,6, . . .d and (b) n/m=11/19 sm
=19,38,57, . . .d. At high m, the dependence becomes linear, in
qualitative agreement with Sec. III B 2.

FIG. 5. Nondimensional growth rates vs radial node numberl:
(a) found by numerical solution of Eq.(3) (Sec. III C) for sm,nd
=s2,1d (diamonds) and (8, 4) (triangles), normalized to them
=1/2, infinite-m results(filled boxes); (b) m=1/2, infinite-m results
(points) and asymptotic result Eq.(20) (dashed line).
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IV. l =0 SPECTRUM

The most unstable modes are those with radial node num-
ber l =0. Thus we first consider the setS0;hl0,m,nu1øm
ømmax,mmmin,n,mmmaxj, wherem andn are integers and
mmin andmmax are chosen to give the desired range ofg. As
we shall be rescaling the eigenvalues prior to statistical
analysis, it makes no difference whether we work with the
spectrum of growth ratesg or the eigenvaluesl;−g2. How-
ever, the latter choice makes it clearer that the analog of the
quantum-mechanical ground state is the most rapidly grow-
ing mode—denoting the maximum growth rate of thel =0
mode byg0, the minimuml is l0=−gmax

2 =−g0
2.

The spectrum is defined on the fanlike subset of the two-
dimensional quantum-number lattice depicted in Fig. 6(a).
Also shown are contours of constantg (or l), regarded as a
continuous function ofm andn, which are seen more clearly
in Fig. 6(b). Here we see a striking contrast with more ge-
neric systems[19], where the constant-eigenvalue contours
are segments of topological circles enclosing the origin. In
the ideal-MHD case, the contours are topologically hyper-
bolic, with asymptotes radiating from the origin toward in-
finity.

An interesting representation of thel =0 spectrum is
shown in Fig. 7. A great deal of structure can be discerned,
determined by the number-theoretic properties of the interval
of m depicted. For instance, focusing on the low-order ratio-
nal number 4/7, we define spectral subsetsS0sN/M u4/7d
;hl0,m,num=M +7k,n=N+4k,k=0,1,2, . . . ,fsmmax−Nd /7gj,
wherefxg denotes the largest integerøx.

These spectral sequences all accumulate toward the same
Suydam eigenvaluel4/7,0 as mmax→` independently of the
choice ofM andN. However, the rapidity of this approach is
sensitive to the choice ofM /N. For instance, we see in Fig.
7 the most rapidly converging sequence,S0s4/7u4/7d, as a
set of points accumulating vertically from below toward the
Suydam eigenvalue. Other sequences on either side of
S0s4/7u4/7d approach the accumulation point obliquely and
much more slowly—formmax=100 they visibly have some
distance to go. The sequence immediately to the left of
S0s4/7u4/7d is S0s1/2u4/7d, while that to the right is
S0s3/5u4/7d, 1 /2 and 3/5 being the immediate neighbors of
4/7 in the Farey sequence([31], p. 300) of order 7(the first
order at which 4/7 appears), with the m values correspond-
ing to S0s1/2u4/7d andS0s3/5u4/7d providing the immedi-
ate neighbors of 4/7 in each higher-order Farey sequence.

In discussing the structure of the spectrum, it is useful to
partition S0 into two subsets,S0

− andS0
+, as the points are to

the left or right, respectively, of the dashed vertical line
shown in Fig. 7 passing through the point of maximum
growth rate.

The sequencesS0s1/2u4/7d andS0s3/5u4/7d accumulate
towardl4/7,0, but slowerfOs1/mmaxdg than doesS0s4/7u4/7d
[Os1/mmax

2 d, from Sec. III B 2]. Thus there is a gap contain-
ing l4/7,0 within which S0s4/7u4/7d contributesOsmmaxd
points toS0

−, while other sequences contribute at most a set of
Os1d points.

Within the gap, the spectrumS0
− is essentially one-

dimensional, being indexed by the single quantum numberk.
In the full spectrum,S0=S0

−øS0
+, Osmmaxd unrelated eigen-

values fromS0
+ appear in the gap, making the spectrum lo-

cally more random and two-dimensional.

V. WEYL FORMULA

As discussed in Sec. III B 2, the overall maximum growth
rate for thel =0 and 1 modes(and, we assume, for alll)
occurs atm=`. Thus the threshold value when a given mode
l first starts contributing to the spectrum is atl=−gl

2, where
gl is the maximum overm of gsm , ld. We denote the corre-
sponding value ofm by ml.

For fixed l and largemmax, the number of eigenvalues
Nlsmd in an interval ofn/m betweenml andm is asymptoti-
cally equal to the area in them, n plane[see Fig. 6(a)] of the
triangle bounded by the linesn=mm, n=mlm, andm=mmax.
That is,Nlsmd, 1

2um−mlummax
2 .

Since contours of constantl (or g) asymptote to lines of
constantm asm→`, we can estimate the number of eigen-
values between two values ofl (or g) by inverting the func-
tion lm,l for m and substituting this into the above expression
for Nlsmd. The inverse is double-valued:m=ml

+sld.ml and
ml

−sld,ml. Then the number of eigenvalues between the
ground statelm0,l andl is approximately

N̄l
±sld ;

1

2
um±sld − m0ummax

2 . s28d

The asymptotic dependence of the total spectrumS
;S0

−øS0
+øS1

−øS1
+ø . . . is thus

FIG. 6. (a) Lattice of quantum numbers on which the part of the
spectrum between the “ground state” and the threshold for the entry
of the l =1 mode is defined, and the unbounded contours of constant
eigenvalue.(b) The same, inm;n/m, m space.

FIG. 7. Nondimensional growth-rate eigenvalues ofl =0 modes
near the maximum growth rate vsm;n/m. The ensemble shown is
for mmax=100.
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N̄sld ; o
l=0

`

o
±

N̄l
±sld. s29d

This is the analog of the Weyl formula[14, p. 258] for the
integral of the smoothed spectral density(“density of
states”).

Approximating lm,l =ll +
1
2s]2lml,l

/]ml
2dsm−mld2, we get

ml
±sld=ml ±Î2sl−lld1/2/ s]2lml,l

/]ml
2d1/2. Thus there is a

square-root singularity at each mode threshold.
A comparison between the Weyl formula forS0 and the

set of pointshsgN,Ndj, whereN is the sequence number ob-
tained by sorting the set ofl =0 andl =1 growth-rate eigen-
values from largest to smallest, is shown in Fig. 8(a), show-
ing excellent agreement above the threshold forS1. The
plotted points may also be regarded as the locations of the
steps in the “staircase plot” of the piecewise-constant inte-
grated density-of-states functionNsgd, but the scale in this
plot is too coarse to resolve the staircase structure.

A finer-scale plot is shown in Fig. 8(b), in which signifi-
cant deviations from the Weyl curve are seen in the micro-
structure. The range shown in Fig. 8(b) is unusual in that it
containstwo well-defined accumulation sequences in close
proximity. These are associated with low-order values ofm
occurring on either side of the growth-rate maximum near
m=11/19<0.579—the sequence associated withm=5/9
<0.556 is inS0

− and the one associated withm=3/5=0.6 is
in S0

+. There are very few eigenvalues associated with high-
order rational values ofm in the range shown and the two
low-order sequences present are practically unmixed, either
with each other or with eigenvalues associated with unre-
lated higher-order rational values ofm. [In fact there is only
one such high-order mode in the region of the accumulation
sequences,m=51/92, the closest approximant to 5/9 in the
set corresponding toS0s1/2u5/9d, which causes the slight
jump seen in them=3/5 sequence.] Also, the wide gap con-
taining no eigenvalues is because the intersection of the gaps
associated with the two low-order rationals is nonempty.

The spectrum near the marginal stability point,g=0, will
involve the superposition of many branches of radial eigen-
value l. To estimate the asymptotic behavior ofNsgd as g
→0, we use the approximate dispersion relation Eq.(20).
Taking l to be large, we see from Eq.(20) that the Suydam
growth ratesglsmd are sharply peaked about the location of
the maximum,m0, of Gsrmd, where ssmd;sG−1/4d1/2 is
also a maximum. Thus we can expandssmd aboutm0,

ssmd = smaxF1 −Sm − m0

Dm
D2G + Ofsm − m0d3g, s30d

wheresDmd2;−2smax/s9sm0d. To leading order all other pa-
rameters are evaluated at the maximum pointm=m0. The
quadratic correction tos need only be retained in the term
involving the expansion parameterl, so, to leading order,

gl < g0 expF−
pl

2ssmdG , s31d

whereg0;4i–̇srm0
dssmax/edexps−p /4smax−1/4smax

2 d.
Solving for m, we find

ml
±sgd = m0 ± DmF1 −

l

lmaxsgdG1/2

, s32d

wherelmaxsgd;s2/pdsmax lnsg0/gd. Substituting Eq.(32) in
Eq. (29) and approximating the sum overl by an integral, we
find the leading-order asymptotic behavior of the number of
eigenvalues to be

N̄sgd ,
4Dm

3p
smaxmmax

2 ln
g0

g
, s33d

which diverges logarithmically asg→0.

VI. NEAREST-NEIGHBOR STATISTICS

Preparatory to the statistical analysis of eigenvalue spac-
ing, it is standard practice to rescale, orunfold, the eigenval-
ues so as to make their average separation unity, thus making
possible the comparison of different systems on the same
footing.

We can unfold the spectra by using the Weyl formulas
above, e.g., forli PS0

± we can define rescaled eigenvaluesEi
±

by

Ei
± ; N̄0

±slid. s34d

For the setS0=S0
+øS0

−, we can unfold with the combined

Weyl function, o±N̄0
±. However, for practical purposes we

have in this section used empirical least-square fits ofNsgd
to a linear superposition of the basis functionssgmax−gd1/2,
sgmax−gd, sgmax−gd3/2, which captures the square-root sin-
gularity but avoids having to invertgm,l.

When mmax is large, the great majority of eigenvalues
ll,m,n are very close to the correspondingm=` eigenvalue
with the samem;n/m, lm,l. Thus one might suppose
that the statistics of the spectrum are asymptotically the same
as those of an ensembleS0

Suydam;hln/m,0u1ømømmax,
mmmin,n,mmmaxj.

In Fig. 9(a), we show the distribution of nearest-neighbor
unfolded eigenvalue spacings forS0

Suydam, and in Fig. 9(b)
that for the setS0 with the correct finite-m eigenvalues. It is
seen that the two distributions are radically different—even
though low-order rational values ofm are rare and the distri-
bution is coarse-grained, the high-m approximation induces
sufficient extra degeneracy that the Suydam spectrum is
dominated by a large, but spurious,d-function-like spike at

FIG. 8. (a) Eigenvalue sequence numberNsgd for the combined
spectral setS0øS1 in the casemmax=100. The Weyl formula forS0,

N̄0
−sgd+N̄0

+sgd, is shown as a dashed line.(b) Closeup of the region
containing eigenvalues associated withm=3/5 andm=5/9.
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s=0. (The range ofm used in Fig. 9 corresponds to the range
of l =0 growth rates above the maximuml =1 rate, in which
S0 is the only contributor to the spectrum.)

The reason why finite-m effects are so important, despite
the smallness of theOs1/m2d corrections found in Sec.
III B 2, is seen from the Weyl formula, Eq.(28), which
shows that theaverageeigenvalue spacing in a set contain-
ing all values ofn/m within the range of interest scales as
mmax

−2 , which is the same order as thesmallest Os1/m2d cor-
rection within a set containing onlyn/m=const. Thus in the
set of accurate eigenvaluesS0 there is a strong intermingling
of eigenvalues with differentn/m that does not occur in the
approximate setS0

Suydam.
This explains why the nearest-neighbor eigenvalue spac-

ing distribution in Fig. 9(b) is much closer to the Poisson
distribution exps−sd obtained for a random distribution of
numbers on the real line, and also predicted for generic sepa-
rable systems[19], than that in Fig. 9(a). Nevertheless, the
set of 625 eigenvalues used in Fig. 9(b) is too small to say
convincingly that the distribution is or is not Poissonian, so
we need to analyze larger data sets to determine how close to
generic the ideal-MHD spectrum is.

A cutoff at mmax=1000 gives a setS0 containing about
62 254 eigenvalues in the range between the maximuml =0
growth rate and the maximuml =1 growth rate.[Note the
approximatelymmax

2 scaling in the size ofS0, as predicted by
the Weyl formula, Eq.(28).] In Fig. 10(a), we show the
nearest-neighbor distribution for this set. Close examination
of the region near the origin reveals no trace of the spike
seen in Fig. 9(a), not even the tiny spike found by Casatiet
al. [1] for the spectrum of waves in an incommensurate rect-
angular box. However, it is clear that the statistics are not
exactly Poissonian.

In Fig. 10(b), we show the Dyson-Mehta rigidity param-
eter D3sLd [17, pp. 321-323], defined as the least-squares
deviation of the unfolded eigenvalue staircaseNsEd from the
best-fitting straight line in an interval of lengthL. Again, the
behavior is similar to that for the completely random spec-
trum (Poisson process) in that D3 increases linearly withL,
but the slope is slightly less than the 1/15 expected for the
Poisson processs.

In order to understand the departure from Poisson statis-
tics better, we show in Fig. 11 the spacing distribution for the
corresponding setsS0

− and S0
+. The departure from Poisson

statistics is now quite striking.
In Fig. 12(a), we show the spacing distribution for thel

=1 spectrum, which is seen to be very much like thel =0
spectrum of Fig. 10(a) in its departure from the Poisson dis-
tribution. However, we might expect that mixing thel =0
with the l =1 spectrum will make the levels appear more
“random” and Fig. 12(b) confirms that the level spacing dis-
tribution does indeed become more like the exponential ex-
pected for a Poisson process.

VII. CONCLUSION

We have demonstrated that the statistical nature of the
ideal-MHD interchange spectrum deviates significantly from
the random Poisson process of generic separable systems due
to the number-theoretic structure of the eigenvalue distribu-
tion. The similarity between the two level-spacing distribu-
tions in Fig. 11, which correspond to two different parts of
the rotational transform profile, suggests the possibility that
there may nevertheless be some universality in the statistics.
If so, we have found a new universality class.

FIG. 9. (a) Nearest-neighbor eigenvalue spacing distribution for
the approximate spectral setS0

Suydam using mmin=0.5044, mmax

=0.6288,mmax=100 (625 eigenvalues). (b) The same, for the cor-
responding set of accurate eigenvaluesS0.

FIG. 10. (a) Nearest-neighbor eigenvalue spacing distribution
for the spectral setS0 using mmin=0.5044, mmax=0.6288, mmax

=1000(62,254 eigenvalues). (b) The Dyson-Mehta spectral rigidity
for this set(solid line) compared with that for the Poisson process
(dashed line).

FIG. 11. (a) Nearest-neighbor eigenvalue spacing distribution
for the spectral setS0

− for mmax=1000 (37 932 eigenvalues). (b)
Nearest-neighbor eigenvalue spacing distribution for the spectral set
S0

+ (24 412 eigenvalues).

FIG. 12. (a) Nearest-neighbor eigenvalue spacing distribution
for the first 72 500 eigenvalues of thel =1 spectral setS1, mmax

=1000.(b) Nearest-neighbor eigenvalue spacing distribution for the
mixed spectral setS0øS1 over the same range of eigenvalues as in
(a) (total of 95 000 eigenvalues).
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The crude regularization used in this paper, simply re-
stricting the poloidal mode numbers tomømmax, is not very
physical but corresponds closely to what is done in the large
three-dimensional eigenvalue codesCAS3D [9] and TERPSI-

CHORE [8]. Thus, apart from fundamental mathematical in-
terest, the primary motivation of this paper has been the nu-
merical analysis of the three-dimensional ideal-MHD
spectrum as produced by these codes. Preliminary results
[23] on an interchange-unstable stellarator test case show
spectra with eigenvalue separation statistics similar to those
of strongly quantum chaotic systems. However, the results of
the present paper indicate that some caution should be taken
in interpreting ideal-MHD spectra in terms of conventional
quantum chaos theory because of the radically different na-
ture of the dispersion relation.

In subsequent work it will be important to examine the
effect of the finite Larmor radius on the spectrum. However,
this typically makes the problem non-Hermitian and less
easy to compare with standard quantum chaos theory.

A preliminary attempt[23] to regularize MHD via a
Hermiticity-preserving inverse-Larmor-radius cutoff inuk'u
found a much more Poissonian eigenvalue-spacing histo-
gram for thel =0 spectrum than that found in the present
paper. This suggests that finite-Larmor radius regularization
is not only more physical than simple truncation inm andn,
but also makes the spectrum more generic(provided the ei-
genvalues remain real).
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APPENDIX A: 1/ m2 CORRECTIONS

The coefficients of the expansion Eq.(14) are found by
Taylor expansion of the geometric and equilibrium quantities
in Eq. (5),

Ls0d = −
d

dx
i–̇2x2 d

dx
+ i–̇2x2 − DS,

Ls1d = x
d

dx
i–̇2x2 d

dx
−

d

dx
i–̇i–̈x3 d

dx
+ i–̇si–̈− 3i–̇dx3

+ s2DS − ḊS − i–̇i–̈dx,

Ls2d = − x2 d

dx
i–̇2x2 d

dx
+ x

d

dx
i–̇i–̈x3 d

dx
+

d

dx
x4

3S i–̇2

12
−

i–̈2

4
+

i–̇i–̈

2
−

i–̇i–̂

3
D d

dx
+

x2

2

3s5i–̇i–̈− 2i–̇i–̂− i–̈2 − 6DS + 5ḊS − D̈Sd + x4

3S71i–̇2

12
+

i–̈2

4
−

7i–̇i–̈

2
+

i–̇i–̂

3
D sA1d

and Eq.(8),

Ms0d = −
d2

dx2 + 1,

Ms1d = x
d2

dx2 −
d

dx
x

d

dx
− 2x,

Ms2d = − x2 d2

dx2 + x
d

dx
x

d

dx
+ 3x2, sA2d

where, as in the main text, dots denote dimensionless deriva-

tives, i–̇; rmdi /dr, etc., and all equilibrium quantities are
evaluated atr =rm.
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