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Secular behavior of electrostatic Kelvin–Helmholtz „diocotron … modes
coupled with plasma oscillations

M. Hirota, T. Tatsuno, S. Kondoh, and Z. Yoshida
Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0033, Japan
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Electrostatic instabilities in electron plasmas have been studied by analyzing initial value problems.
The self-electric field of a non-neutral plasma produces a flow that brings about non-Hermitian
property into the generating operator. Because of the nonorthogonality of eigenmodes, the evolution
of the system is rather complex. Secular behavior is a typical appearance of unresolvable mode
couplings that may be cast in a representation of Jordan block. The coupling of the perpendicular
~with respect to the magnetic field! electrostatic modes~Kelvin–Helmholtz or diocotron modes! and
parallel plasma oscillations causes a more complex phenomena. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1454123#
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I. INTRODUCTION

Because of the increasing interest in many effects
sheared plasma flows, the Kelvin–Helmholtz instabilit
and related phenomena are receiving careful reconsidera
A non-neutral plasma, supporting an unbalanced inte
electric field, self-generates an intense flow that may h
strong shear.1–3 It provides paradigms of general vortical d
namics, which encompass various plasma phenomena, g
tic dynamics, atmospheric fluid mechanics, and so on.

References 4 and 5 have considered the most gen
relativistic electromagnetic perturbations propagating p
pendicular to the magnetic field, including both the polariz
tion drift (}]E/]t) and theE3B drift in the dielectric re-
sponse function. The polarization susceptibility, which
proportional to vp

2/vc
2 ~with vp5plasma frequency and

vc5cyclotron frequency! leads to an essential singularity
the eigenmode equation, causing the existence of a con
ous spectrum. Another mode continuum, which however w
neglected in Refs. 4 and 5, is now introduced in the pres
work. This continuum, originating from the flow shear, pe
sists in the low space charge limitvp

2/vc
2→0 ~i.e., neglecting

the polarization drift!, and plays an important role in produc
ing non-Hermiticity. The present work considers obliq
propagation, coupling the transverse mode with electrost
modes parallel to the magnetic field. The presence of
continuum significantly changes the time evolution of t
diocotron modes.

In the low density limit (vp /vc!1), the flow in a non-
neutral plasma equilibrium is approximated by theE3B
drift velocity. WhenB is homogeneous, the electrostatic p
tential f obeys the standard vortex equation in the pla
perpendicular with respect toB. Comparing f with the
stream function of a two-dimensional incompressible flo
the electrostatic modes~so-called diocotron modes! parallels
the Kelvin–Helmholtz modes in a shear flow.6–9

The aim of this paper is to analyze rather complex p
nomena induced by a coupling of the Kelvin–Helmho
modes with parallel~with respect toB) plasma oscillations,
which becomes important when we consider a sheared m
1171070-664X/2002/9(4)/1177/8/$19.00
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netic field.10 This complexity is primarily due to the non
Hermitian property of the Kelvin–Helmholtz modes. The i
teraction of fluctuations and the ambient shear flow can
be cast in a Hamiltonian form, and hence, the generato
the dynamics must be a non-Hermitian operator.11–13A gen-
eral non-Hermitian operator does not have a complete se
orthogonal eigenfunctions. When eigenfunctions are
complete to span the whole function space, one has to c
sider the nilpotent which brings about secular behavior
type tneivt. The amplitude of perturbation can increase alg
braically even if every eigenvaluev is real. In a finite di-
mensional linear space, a non-Hermitian map can be wri
as a Jordan matrix. However, we do not have a spectral
resentation theory for a general non-Hermitian operator in
infinite dimensional Hilbert space.

In this paper, we demonstrate secular behavior
Kelvin–Helmholtz modes by solving initial value problem
numerically. We formulate a one dimensional model in
integral equation form, and use the trapezoidal rule for
merical integration. Analyzing the structure of the genera
we show that the secular behavior is caused by internal r
nances of the perpendicular~with respect to the magneti
field! electrostatic modes and parallel plasma oscillations

II. FORMULATION

We consider an electron plasma in a slab geometry
finite thickness. An external magnetic field (B) is applied to
confine the plasma. TheE3B drift is induced by the self-
electric field (E), which may create a flow shear. When th
electron density is sufficiently small, we may ignore t
magnetic perturbations induced by the internal current.

The system is governed by

]n

]t
1“•~nv!50, ~1!

]v

]t
1~v•“ !v52

e

m
~2“f1v3B!, ~2!
7 © 2002 American Institute of Physics
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“

2f5
e

e0
n, ~3!

wheren is the electron number density,v is the plasma ve-
locity, e is the elementary charge,m is the electron mass, an
f is the electrostatic potential (E52“f). We have ne-
glected the thermal pressure of electrons. The ambient m
netic field is, in Cartesian coordinates,

B~x!5~0, By~x!,Bz!, ~4!

whereBz is a constant~this B is not curl-free, but it does no
cause essential difficulty in the present theory!. We consider
a simple equilibrium with a flat top density,

n5N~x!5H N̄ ~ uxu<L !,

0 ~ uxu.L !,
~5!

where 2L corresponds to the thickness of slab plasma. T
equilibrium flow velocity is given by~2!;

v5V~x!5
2“F~x!3B~x!

B~x!2
, ~6!

whereB(x)5ABy
2(x)1Bz

2, and“F(x)5(eN̄x/e0,0,0) for
uxu<L.

We normalize the variables as

n̂5
n

N̄
, t̂52vDt, r̂5

r

L
@r5~x,y,z!#,

~7!

v̂5
v

V̄
, B̂5

B

Bz
, Ê5

E

Ē
,

where

vD[
eN̄

2e0Bz
, ~8!

V̄[2LvD , ~9!

Ē[V̄Bz . ~10!

ThevD(5vp
2/2vc) is called ‘‘diocotron frequency.’’ In what

follows, we omit theˆ to simplify notation.
We decompose unknown variables (n,f,v) into equilib-

rium quantities~capital letters! and perturbations~tildes!.
Linearizing ~1!–~3! for perturbations, we obtain

]ñ

]t
1V•“ñ1“•~Nṽ'!1“•~Nṽi!50, ~11!

] ṽi

]t
1~V•“ !ṽi5

1

s2
“if̃, ~12!

“

2f̃5ñ, ~13!

wheres[vp /vc is a dimensionless scaling parameter. He
we assumes!1 ~low density!. In the above equations,ṽi

and ṽ' , respectively, denote the parallel and perpendicu
Downloaded 28 Mar 2002 to 130.69.86.66. Redistribution subject to AI
g-

e

e

r

components ofṽ with respect to the ambient magnetic fiel
Assuming low density, we may appeal to the guiding-cen
approximation4

ṽ'5
2“f̃3B

B2
. ~14!

We Fourier transform the perturbations with respect ty
andz, and denote the corresponding wave numbers byky and
kz . We introduce sheared coordinates defined by

h~x!5
Bz

B~x!
y2

By~x!

B~x!
z, ~15!

z~x!5
By~x!

B~x!
y1

Bz

B~x!
z. ~16!

The corresponding wave numbers are given by

k'~x!5
Bz

B~x!
ky2

By~x!

B~x!
kz , ~17!

ki~x!5
By~x!

B~x!
ky1

Bz

B~x!
kz . ~18!

If there is no magnetic shear@By(x)50#, we may take
k'(x)5ky , ki(x)5kz , andB(x)5Bz .

The governing equations now read as

i
]ñ

]t
1k'V'ñ2S k'N

B D 8
f̃1Nkiṽ i50, ~19!

i
] ṽ i

]t
1k'V'ṽ i5

ki

s2
f̃, ~20!

]2f̃

]x2
2k2f̃5ñ, ~21!

where 8 denotes the derivative with respect tox and k
5Aky

21kz
2. The ambient shear flow is

V'~x!5
x

B~x!
, Vi~x!50 ~ uxu<1!. ~22!

Because the derivative ofN(x) yields delta functions,
the perturbed densityñ must include delta functions, repre
senting the surface wave perturbations; we write

ñ~x,t !5a~ t !d~x11!1b~ t !d~x21!1 f ~x,t !, ~23!

wherea(t) andb(t) represent the amplitudes of the surfa
waves andf (x,t) is the continuous part of the density fluc
tuation. We substitute~21! into ~19! to eliminateñ and obtain

i
]

]t S ]2f̃

]x2
2k2f̃ D 1k'V'S ]2f̃

]x2
2k2f̃ D

2S k'N

B D 8
f̃1Nkiṽ i50. ~24!

The assumption~23! implies the continuity off̃ at x561.
Integrating ~24! in infinitesimal neighborhoods ofx561
yields
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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i
]

]t
F]f̃

]x
G
x561

1 k'V'F]f̃

]x
G
x561

2 Sk'

B
f̃D~x5 61!50, ~25!

where the square brackets denote the jump acrossx561.
Using ~21! and ~23!, we obtain

F ]f̃

]x
G

x521

5a~ t !, F ]f̃

]x
G

x51

5b~ t !, ~26!

which correspond to the surface charges. The same rela
have been derived in previous publications,6,8 where the dis-
persion relation of the surface waves~diocotron modes! has
been analyzed with Fourier transformingi ] t to 2v. This
treatment, however, fails to capture nonexponential~alge-
braic! behavior of the system that stems from the no
Hermitian property of the problem. In this paper, we so
the initial value problem directly.

Finally, we obtain from~19!–~21!,

i
] f

]t
1

k'~x!x

B~x!
f ~x,t !2S k'~x!

B~x! D 8
f̃~x,t !

1ki~x!ṽ i~x,t !50, ~27!

i
da

dt
2

k'~21!

B~21!
a~ t !2

k'~21!

B~21!
f̃~21,t !50, ~28!

i
db

dt
1

k'~1!

B~1!
b~ t !1

k'~1!

B~1!
f̃~1,t !50, ~29!

i
] ṽ i

]t
1

k'~x!x

B~x!
ṽ i~x,t !5

ki~x!

s2
f̃~x,t !, ~30!

f̃~x,t !52
1

2k S a~ t !e2kux11u1b~ t !e2kux21u

1E
2`

`

e2kux2ju f ~j,t !dj D . ~31!

III. KELVIN–HELMHOLTZ „DIOCOTRON… MODE AND
PLASMA OSCILLATION

A. Perpendicular modes

In this section, we consider a constant magnetic field
perpendicular modes with assuming

kyÞ0, kz50, By~x!50. ~32!

In this case,~19! and ~20! are decoupled, and~19! reduces
into a simple Rayleigh equation.9 Also, in ~27!–~31!, we can
decouple the parallel motion of electrons represented
~30!. Density evolution equations are cast in the matrix fo
Downloaded 28 Mar 2002 to 130.69.86.66. Redistribution subject to AI
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2 i
]

]t S f ~x!

a

b
D

5S ky

B
x 0 0

ky

B
G21 2

1

2B
~2ky21!

1

2B
e22ky

2
ky

B
G1 2

1

2B
e22ky

1

2B
~2ky21!

D
3S f ~x!

a

b
D , ~33!

where

Gxf 5
1

2kE2`

`

e2kux2ju f ~j!dj. ~34!

When we takef (x)50, the coupling of two surface
wavesa(t) andb(t) determines the eigenvalue

l65 iv656
i

2B
A~2ky21!22e24ky. ~35!

These frequenciesv6 are consistent to the well-known dio
cotron mode dispersion relation in the surface wave mod8

The surface waves produce perturbed electrostatic pote
f̃ through which both waves interact. The dispersion relat
is determined by connectingf̃ at x561 @see~28! and~29!#,
which is expressed by the lower two components of the m
trix equation~33!. For ky,kc.0.639, the frequencyv6 are
pure imaginary numbers representing the diocotron insta
ity. The physical mechanism of the diocotron instability
illustrated in Fig. 1. Perturbations on the two surfaces of
plasma, where the density has jumps, couple with each o
through the induced electric fieldẼ.14

The coefficientkyx/B in the matrix operator of~33!
yields an essential singularity resulting in a continuous sp
trum. This spectrum represents the mixing effect of the fl
shear~see Fig. 2!. To see the mathematical structure, let
simplify the equation with takinga5b50 and f (61,t)50
to obtain

FIG. 1. Diocotron instability in slab electron plasmas.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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S v2
kyx

B D f 50. ~36!

The multiplication ofx reads as the ‘‘coordinate operator
Any function of the formf (x)5eivtd(x2xs) is a solution to
~36! whenv5kyxs /B with xs inside the plasma layer, mean
ing thatv in the range of2ky /B,v,ky /B is a continuous
spectrum. Similarly,~24! has singular eigenfunctions corre
sponding to the flow shear continuum spanning the rang
$k'(x)V'(x),21,x,1%. If we takeg[(v2kyx/B) f as a
variable, we overlook the continuous spectrum. Howev
such treatment is physically irrelevant and mathematic
wrong, as already pointed out by Case.15

Because of the non-Hermitian property of the Rayle
equation, the frequency spectrumv does not simply predic
the temporal evolution of the system. For the stable c
(ky.kc), we find that the frequencies of the coupled surfa
waves lie in the range of the continuous spectrum. It is
markable that resonance~frequency overlapping! of the
surface-wave spectrum and the continuous spectrum re
in degenerate eigenvalue~nilpotent! reflecting the non-
Hermitian property of the system. A delta function placed
the ‘‘resonant surface’’

x5m6[6
1

2ky
A~2ky21!22e24ky ~37!

is included in the singular eigenfunction belonging to t
continuous spectrum, which has the same frequency with
of the surface waves.

When two regular modes satisfy the resonance co
tion, the degeneracy of the eigenfunction brings about a n
mode~generalized eigenfunction! that grows in proportion to
t. However, singular eigenfunctions belonging to the conti
ous spectrum receive the mixing effect, resulting in satu
tion of the algebraic growth. Figure 3 demonstrates the tr
sient algebraic growth followed by saturation, which
caused by the presence of off-diagonal terms includingG;
the integral operatorG brings about the phase-mixing dam
ing. Here, we have assumed an initial condition

f ~x,0!5expH 2S x2m1

0.05 D 2J , ~38!

andky51.0, a(0)5b(0)50.0.

FIG. 2. Mixing of the inner density fluctuationf (x,t).
Downloaded 28 Mar 2002 to 130.69.86.66. Redistribution subject to AI
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B. Oblique modes „diocotron-plasma oscillation
coupling …

Before considering a sheared magnetic field configu
tion, we study the coupling of the perpendicular and para
motions in a homogeneous magnetic field with assuming
oblique wave vectork5(ky ,kz). In order to incorporate the
parallel motion, we set

kyÞ0, kzÞ0, By~x!50. ~39!

The parallel wave numberkz yields coupling between
~27! and ~30!, and hence, we must solve the whole set
~27!–~31! simultaneously. Spectral analysis10 show that ex-
ponential instabilities (v with an imaginary part! are re-
moved for smalls2. This stabilizing effect is explained by
the short circuit of the perturbation charges through the p
allel motion of electrons. The electron motion in the dire
tion parallel to the magnetic field is much faster than t
diocotron oscillation, ifs2!1. A finite kz couples the fast
electron motion and diocotron oscillation. In addition to t
modification of the diocotron and continuous spectra, a n
set of discrete spectra appears. They are always discrete
eigenvalues ranged outside of the continuous spectrum.10

We also observe complex~nonexponential! phenomena
reflecting the non-Hermitian property of the system. Intere
ing secular behavior is well visible in the range ofky@kz

;O(s). For an arbitrary initial condition, the local oscilla
tion amplitude increase remarkably near the ‘‘resonant s
faces.’’ Figure 4 shows the result of simulation withs
51022, ky51.0, andkz51023 ~the arrows indicate the reso

FIG. 3. Time evolution of the surface wave amplitudea(t) for the Gaussian
initial profile.

FIG. 4. The densityf (x,t) at t565. The initial condition is f (x,0)
5A2 cos(px/2). The amplitude increases near the resonant surfacex
5m6(560.495).
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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nant surfaces and the dashed line shows the initial condition!. The divergence of the resonant-oscillation amplitude is prop
tional to t.

The mathematical structure of this secular behavior is illustrated as follows. We rewrite~27!–~31! in a matrix form

2 i
]

]t S f ~x!

ṽ i~x!

a

b

D 51
ky

B
x kz 0 0

kz

s2
Gx

ky

B
x

kz

2ks2
e2kux11u kz

2ks2
e2kux21u

ky

B
G21 0 2

ky

2kB
~2k21!

ky

2kB
e22k

2
ky

B
G1 0 2

ky

2kB
e22k

ky

2kB
~2k21!

2 S f ~x!

ṽ i~x!

a

b

D , ~40!

where the operatorGx is defined by~34!. If kz is small, the mixing effect is dominant andf (x,t) becomes highly oscillatory
with respect tox for larget ~see Fig. 2!. Then, the integral of~34! becomes small~the phase mixing damping!. Neglecting the
integral term (G) in ~40!, we obtain ‘‘local’’ oscillation equations.~In a more exact analysis with retaining the integral ter
spatial correlations remain, however, we will leave this problem for future studies.! We rewritel6 , m6 more generally as

l65 iv656
iky

2Bk
A~2k21!22e24k, ~41!

m656
1

2k
A~2k21!22e24k. ~42!

Observingf (x) at x5m1 ~or x5m2), ~40! reads

2 i
d

dt S f ~m1!

ṽ i~m1!

a

b

D 51
ky

B
m1 kz 0 0

0
ky

B
m1

kz

2ks2
e2kum111u kz

2ks2
e2kum121u

0 0 2
ky

2kB
~2k21!

ky

2kB
e22k

0 0 2
ky

2kB
e22k

ky

2kB
~2k21!

2 S f ~m1!

ṽ i~m1!

a

b

D . ~43!
al

re-
ion

e

f

The generator of~43! can be written in a Jordan canonic
form

TS l1 1 0 0

0 l1 1 0

0 0 l1 0

0 0 0 l 2

D T21, ~44!

and a nonorthogonal transform

T5~c1 c2 c3 c4! ~45!

5S 2kzq1 0 0 q2kz/4v 2
2

0 iq1 0 q2/2v 2

0 0 e22k e22k

0 0 p1 p2

D , ~46!

where

p65~2k21!6A~2k21!22e24k, ~47!
Downloaded 28 Mar 2002 to 130.69.86.66. Redistribution subject to AI
q65
kz

2ks2
~e2kum111ue22k1e2kum121up6!. ~48!

Since c2 and c3 are the generalized eigenfunctions rep
senting the nilpotent, the general solution to the evolut
equation~43! takes the form

c5~C11C2t1C3t2!el1tc11~C21C3t !el1tc2

1C3el1tc31C4el2tc4 , ~49!

whereCi( i 51, . . . ,4) areconstants to be determined by th
initial condition. For example, if we take

C351.0, C15C25C450.0, ~50!

the surface waves ofa and b show harmonic oscilla-
tions with frequencyv1 , which generate the oscillation o
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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electrostatic potentialf̃. This f̃ resonates with the paralle
electron motion atx5m1 , and the amplitude ofṽ i(m1)
increases in proportion tot. The ṽ i(m1) also resonates with
f (m1), resulting in amplification off (m1) in proportion to
t2. Indeed, in~27!–~31!, f̃ and ṽ i act as forcing terms for
each oscillation. Formally, the solution is written as

a~ t !5e22keiv1t, ~51!

ṽ i~m1 ,t !5 iq1teiv1t, ~52!

f ~m1 ,t !52kzq1t2eiv1t. ~53!

In the above discussion, we have assumed a much
plified model where the system is represented by a local
system of four dimensional coupled oscillators. In care
comparison of this estimate with numerical results, howe
we find a significant difference at larget. Figures 5–9 show
the result of simulation withs51022, ky51.0, and kz

51023. This discrepancy is caused by the integral opera
G in ~40!, which yield the continuum damping of the surfa
wave oscillationsa andb. The damping due to the operato
G61 is seen to be exponential in time by the numerical sim
lation ~with damping raten50.005 65; see Fig. 7!. If we
include the damping of the surface waves in the express

a~ t !5e22ke( iv12n)t, ~54!

FIG. 5. Profile of parallel electron velocityṽ i(x,t) at t5100. The initial
condition is given by~50!. Near the resonant surface (x5m150.495), large
oscillation appears.

FIG. 6. Profile of density fluctuationf (x,t) at t5100. The initial condition
is given by~50!. Near the resonant surface (x5m150.495), large oscilla-
tion appears.
Downloaded 28 Mar 2002 to 130.69.86.66. Redistribution subject to AI
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then ṽ i and f are evaluated as

ṽ i~m1 ,t !5 iq1eiv1t
12e2nt

n
, ~55!

f ~m1 ,t !52kzq1eiv1tS t2
12e2nt

n D 1

n
. ~56!

In Figs. 8 and 9, we compare these solutions with the sim
lation. The damping coefficientn50.005 65, evaluated by

FIG. 7. Time evolution of the surface density fluctuationa(t). The initial
condition is given by~50!. Dashed line denotes the functione22ke2nt. Con-
tinuum damping is found to be exponential withn50.005 65.

FIG. 8. Time evolution of the parallel electron velocityṽ i(x,t) at x5m1 .
The initial condition is given by~50!. Dashed lines denote the functio
q1(12e2nt)/n.

FIG. 9. Time evolution of the inner density fluctuationf (x,t) at x5m1 .
The initial condition is given by~50!. The amplitude starts to grow in pro
portion to t2 and converges to asymptotic growth}t. Dashed lines denote
the function (kzq1 /n)$(12e2nt)/n2t%.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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the damping ofa, is still insufficient, because we have a
other integral operator,Gx , in ~40!. We observe thatn
50.006 40 fits the simulation result.

In summary, the density fluctuation starts to grow at
resonant surface in proportion tot2 ~mode interaction due to
non-Hermitian property!, while the mixing effect decelerate
the growth down tot.

IV. EFFECT OF MAGNETIC SHEAR

In this section, we consider a sheared magnetic field
suming

kyÞ0, kz50, By~x!5ax, ~57!

wherea is a given constant representing the strength of m
netic shear.

First, we solve the eigenvalue problem numerically.
Fig. 10, we show the stable~real v) and unstable region in
the ky–a space. In the unstable region~gray!, v is a pure
imaginary number and the growth rate is a strong function
the magnetic shear parametera ~Fig. 11!. The instability is
related to a ‘‘rational surface’’ wherek is perpendicular to
the ambient magnetic field. Electric charges at the ratio
surface (ki50) are not short-circuited, and produce unsta
modes~Fig. 12!.

In order to explain band structure of unstable modes,
replace2 i ]/]t by v in ~27!–~31!, and eliminatea,b, f , and

ṽ i to obtain

f̃9~x!1H 2k21
1

v2k'~x!V'~x! S k'~x!

B~x! D 8

1
ki

2~x!

s2~v2k'~x!V'~x!!2J f̃~x!50 ~21,x,1!. ~58!

The boundary conditions are

f̃8~21!1S k'~21!

~v2k'~21!V'~21!!B~21!
2kD

3f̃~21!50 ~x521!, ~59!

f̃8~1!1S k'~1!

~v2k'~1!V'~1!!B~1!
1kD f̃~1!50 ~x51!.

~60!

FIG. 10. Unstable region~gray! in ky–a space.
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The marginal stability is found by settingv50. For Bz51,
By(x)5ax, kz50, andv50, ~58!–~60! reduce into

d2f̃

dx2
1H 2ky

21
2a2

11a2x2
1

a2

s2
~11a2x2!J f̃50, ~61!

f̃8~21!1~12k!f̃~21!50, ~62!

f̃8~1!2~12k!f̃~1!50. ~63!

We solve these equations as an eigenvalue problem with
spect toa, and obtain discrete eigenvalues$a i%. Changing
the parameterky , we can draw the marginal stability curv
in the ky–a space~Fig. 10!. The potential of~61!,

G~x,a![2ky
21

2a2

11a2x2
1

a2

s2
~11a2x2!, ~64!

satisfies

lim
a→1`

G~x,a!51` ~;x!. ~65!

Applying Sturm’s oscillation theorems,16 we find that the
accumulation point of$a i% is infinity, implying that, in any
large a regime, the unstable region appears. If there is
rational surface,G would be a singular function, and Sturm
theorem does not apply.

Next, we study how the secular behavior is modified
the effect of magnetic shear. Equations~27!–~31! are now
written as

FIG. 11. Growth rate as a function of the magnetic shear parametera (ky

50.5).

FIG. 12. Unstable eigenfunction in a magnetic shear configuration w
By(x)5ax. Rational surface isx50.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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2 i
]

]t S f ~x!

ṽ i~x!

a

b

D 51
k'~x!

B~x!
x1F~x!Gx ki~x!

F~x!

2k
e2kux11u F~x!

2k
e2kux21u

ki~x!

s2
Gx

k'~x!

B~x!
x

ki~x!

2ks2
e2kux11u ki~x!

2ks2
e2kux21u

k'~21!

B~21!
G21 0 2

k'~21!

2kB~21!
~2k21!

k'~21!

2kB~21!
e22k

2
k'~1!

B~1!
G1 0 2

k'~1!

2kB~1!
e22k

k'~1!

2kB~1!
~2k21!

2 S f ~x!

ṽ i~x!

a

b

D , ~66!
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where

F~x!5
d

dx S k'~x!

B~x! D . ~67!

Equation~66! is more complicated than~40!, sincek' , ki ,
and B depend onx, and, moreover, new terms includingF
are added. Forky@a;O(s), neglecting the terms including
the integral operatorG, we can derive a Jordan canonic
form similar to ~44!. Numerical solution of the initial value
problem shows the same secular behavior as Figs. 7–9 in
region of real v. Since the oscillations ofa and b are
damped, the effect ofF disappears rapidly, and th
asymptotic behavior is unchanged.

V. SUMMARY

We have studied the electrostatic Kelvin–Helmho
~diocotron! instabilities in a sheared magnetic field. Becau
of the non-Hermitian property of the system, the coupling
the Kelvin–Helmholtz modes and the parallel plasma os
lation produces rather complex phenomena.

Interesting transient behavior has been found in obliq
modes. The generator of the system contains two degen
continuous spectra (v2kV50), one originates from the
density evolution equation and the other from parallel eq
tion of motion. The nonorthogonality of the correspondi
eigenfunctions~reflecting the non-Hermitian property of th
system! yields a coupling of the two branches of spect
This ‘‘resonance’’ brings about a spatially localized and te
porally algebraic (}t) density fluctuation. In the exponent o
this secularity, we observe a signature of the essential sin
larity of the continuous spectra.

The growth of the parallel velocity at the resonant s
face saturates after a short time. This is due to the ph
mixing induced by the integral operatorG appearing in the
off-diagonal part of the generator@see~40!#. If one assumed
a prompt damping of the continuous density perturbat
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f (x) and neglected the integral terms~includingG), the sur-
face waves will approach constant amplitude oscillations
the localized mode will grow in proportion tot2. However,
the damping off (x) is rather slow and its persistence yield
a long term coupling with the surface waves, resulting in
damping of the surface waves. Including appropria
asymptotic forms for the integral terms, we can reconstr
the exact exponent of the secularity.

In a magnetic shear configuration, rational surfacesk'

50) exist inside the plasmas, where the parallel short-circ
effect does not work, resulting in unstable~complex v)
modes. Further calculations for smooth equilibrium densit
will be reported elsewhere.
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