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Electrostatic instabilities in electron plasmas have been studied by analyzing initial value problems.
The self-electric field of a non-neutral plasma produces a flow that brings about non-Hermitian
property into the generating operator. Because of the nonorthogonality of eigenmodes, the evolution
of the system is rather complex. Secular behavior is a typical appearance of unresolvable mode
couplings that may be cast in a representation of Jordan block. The coupling of the perpendicular
(with respect to the magnetic figldlectrostatic modedelvin—Helmholtz or diocotron modgand

parallel plasma oscillations causes a more complex phenomen@002 American Institute of
Physics. [DOI: 10.1063/1.1454123

I. INTRODUCTION netic field’® This complexity is primarily due to the non-
_ . . Hermitian property of the Kelvin—Helmholtz modes. The in-
Because of the increasing m_terest In-many effe(_:t_s_ 01Cteraction of fluctuations and the ambient shear flow cannot
sheared plasma flows, the Kelvin—Helmholtz |nstab|I|t|esbe cast in a Hamiltonian form, and hence, the generator of
and related phenomena are recgiving careful reconsic.jeratioH1e dynamics must be a non-Hermitian oper&tof*A gen-
A non-neutral plasma, supporting an unbalanced internala non-Hermitian operator does not have a complete set of
electric field, self-generates an intense flow that may hav?)rthogonal eigenfunctions. When eigenfunctions are not
strong shea}lr.‘3 It provides paradigms of general vortical dy- oo mpjete to span the whole function space, one has to con-
namics, which encompass various plasma phenomena, galagger the nilpotent which brings about secular behavior of

tic dynamics, atmospheric fluid mechanics, and so on. typet"el“t. The amplitude of perturbation can increase alge-
References 4 and 5 have considered the most generB'J’aically even if every eigenvalue is real. In a finite di-

relativistic electromagnetic perturbations propagating per,ansional linear space, a non-Hermitian map can be written

pendic_ular to the magnetic field, inglu_ding bot_h the polariza-as a Jordan matrix. However, we do not have a spectral rep-
tion drift (ccdE/dt) and theEXB drift in the dielectric re-

; o N .~ . resentation theory for a general non-Hermitian operator in an
sponse function. The polarization susceptibility, which is

] 5 5 ; - infinite dimensional Hilbert space.
proportional to wi/w; (with wp=plasma frequency and In this paper, we demonstrate secular behavior of

wc=cyclotron frequencyleads to an essential singularity in | e|yin_Helmholtz modes by solving initial value problems
the eigenmode equation, causmg_the eX|ste_nce of a Cont'n't‘fumerically. We formulate a one dimensional model in an
ous spectrum. Another mode continuum, which howeverwa%tegrm equation form, and use the trapezoidal rule for nu-

neglecte(_:l in Re_fs. 4 and_5., IS now introduced in the presenfierical integration. Analyzing the structure of the generator,
work. This continuum, originating from the flow shear, per-\ e show that the secular behavior is caused by internal reso-

. . . . 2 . .
sists in the low space charge “”Mﬁ/_“’cﬁo (i.e., neglecting  ances of the perpendiculawith respect to the magnetic
the polarization drift, and plays an important role in produc- ie|q) electrostatic modes and parallel plasma oscillations.
ing non-Hermiticity. The present work considers oblique

propagation, coupling the transverse mode with electrostatic
modes parallel to the magnetic field. The presence of the
continuum significantly changes the time evolution of thell. FORMULATION

diocotron modes. . .
We consider an electron plasma in a slab geometry of

neu:?afhe|£vr¥1§egsg?figmﬁq@&/“;°<r10)>;irt:aet£\'¥,mtaEQOE;" finite thickness. An external magnetic fielB)(is applied to
P 9 P y confine the plasma. ThEXB drift is induced by the self-

dnft_velocny. WhenB is homogeneous, the _elect_rostanc PO” olectric field €E), which may create a flow shear. When the
tential ¢ obeys the standard vortex equation in the plane

perpendicular with respect t8. Comparing ¢ with the electron_ density is suff_|C|entIy small, we may ignore the
) . ) . . magnetic perturbations induced by the internal current.

stream function of a two-dimensional incompressible flow, The svstem is governed b

the electrostatic modgso-called diocotron modggparallels y 9 y

the Kelvin—Helmholtz modes in a shear fl6W, an B

The aim of this paper is to analyze rather complex phe- z; * ¥V (M) =0, @
nomena induced by a coupling of the Kelvin—Helmholtz
modes with paralle{with respect taB) plasma oscillations, ov €

. . j — + . = — —(— + VX
which becomes important when we consider a sheared mag- dt (v-V)v m( VétvxB), @
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,, € components of with respect to the ambient magnetic field.
Vep=—n, (3) . . -
€ Assuming low density, we may appeal to the guiding-center

, L approximatiof
wheren is the electron number density,is the plasma ve-

locity, e is the elementary chargmyis the electron mass, and ~

¢ is the electrostatic potentiaEE —V ¢). We have ne- VL=
glected the thermal pressure of electrons. The ambient mag-
netic field is, in Cartesian coordinates,

~VéxB
B;’Z. (14)

We Fourier transform the perturbations with respect to
andz, and denote the corresponding wave numbers, ynd

B(x)=(0, By(x),B,), (4)  k,. We introduce sheared coordinates defined by
whereB, is a constantthis B is not curl-free, but it does not B, (x)
cause essential difficulty in the present theoke consider n(X)= B(x) y— B(x) (15
a simple equilibrium with a flat top density,
N (=L (=X B, (16
n=NO={ ;L’ 5) Bx) ’ B~
(X>L), The corresponding wave numbers are given by
where 4. corresponds to the thickness of slab plasma. The B, B.(X)
equilibrium flow velocity is given by2); K (X)==— B0 XY Ky~ By(x) (17)
— V& (x)XB(X)
v=V(x)= —————, (6) B, . Bs
B(X)2 k”(X)— B(X) ky+ B(X) kz (18)

where B(x) = /B 2(x)+Bzz, and Vo (x)= (eNx/eo,O 0) for
IX|<L.
We normalize the variables as

N n N
n=ﬁ, t=2wpt, =T [r—(x y.2)],
(7)

-~ V B B e E
V: — :_1 ::1

Vv B, E

where

B eN o
wD_m! ( )
V=2Lwp, (9)
E=VB,. (10)

The wp(= ws/ZwC) is called “diocotron frequency.” In what
follows, we omit the™ to simplify notation.

We decompose unknown variablas, §,v) into equilib-
rium quantities (capital letters and perturbationgtildes).
Linearizing (1)—(3) for perturbations, we obtain

(;—:'+v-VF1+V.(NT/L)+V~(NT/”)=0, (1)
v ~_ 1o~

E+(V'V)VHZ? Hd)' (12
VZTb:ﬁ' (13)

If there is no magnetic shedB,(x)=0], we may take
k, (x)=ky, kj(x)=k,, andB(x)=B,.
The governing equations now read as

an - '
|E+kLVLn (? d)+Nk“UH—0, (19
2 v, =g (20
a TV = o4
Pd
—f —k?p=n, (21
IX

where ' denotes the derivative with respect xoand k

= \/ky2+ kZ. The ambient shear flow is

V,(x)= Vi(x)=0 (|x|<1). (22

B()

Because the derivative dfi(x) yields delta functions,

the perturbed density must include delta functions, repre-
senting the surface wave perturbations; we write

n(x,t)y=a(t) s(x+1)+b(t)8(x—1)+f(x,t), (23

wherea(t) andb(t) represent the amplitudes of the surface

waves and (x,t) is the continuous part of the density fluc-
tuation. We substituté21) into (19) to eliminaten and obtain

&(ff—W¢
J

o~
% _ kz:ﬁ)
oXx

$+Nkjy=0. (24)

wheres=w,/w. is a dimensionless scaling parameter;HereThe assumptiori23) implies the continuity of?ﬁ atx=-+1.

we assumes<1 (low density. In the above equations

Integrating (24) in infinitesimal neighborhoods ok==*1

andV, , respectively, denote the parallel and perpendiculayields

Downloaded 28 Mar 2002 to 130.69.86.66. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 9, No. 4, April 2002

K, ~
~|g®
x=*1 <B

where the square brackets denote the jump acxess 1.
Using (21) and (23), we obtain

Secular behavior of electrostatic Kelvin—Helmholtz . . . 1179

i
X

3| i
ax

x==*1

(x=+1)=0, (25)

ad ad

ax

=a(t),
x=-1

=b(t), (26)

x=1

which correspond to the surface charges. The same relations FIG. 1. Diocatron instabilty in slab electron plasmas.

have been derived in previous publicati§fayhere the dis-
persion relation of the surface wavafiocotron modeshas
been analyzed with Fourier transformimg; to — . This £(x)
treatment, however, fails to capture nonexponen(dde-

braig behavior of the system that stems from the non-—I—| @&
Hermitian property of the problem. In this paper, we solve b
the initial value problem directly.

Finally, we obtain from(19)—(21), %x 0 0
OF k(X)X K (X))~ ky 1 1 -2k
— =| =¢g_ —(2k,~1 —e
Tt By (VT B e0D 91 ~vD g

~ k 1
+kj(X)v(x,t)= 2 _ Y — a2k _
|(X)v(x,t) 27 = 01 558 N 5g(2k—1)
da k(-1 k(1) f(x)
9t B 2V o ¢ =0, (28 <| a |, 33
b
db k (1) k (1)~ where
| B(l) b(t)+ B(L) ¢(1,t)=0, (29 .
A (G (34
v K (X)X~ Kj(X)~ _
|7+Wv”(x,t)= (30 When we takef(x)=0, the coupling of two surface
wavesa(t) andb(t) determines the eigenvalue
i
1 —i —1\2_adk
¢(X t)—— a(t)eiklirl‘-f—b(t)eik‘x 1] ANi=lwe= ZB\/(Zky 1) e Y. (35)
These frequencies .. are consistent to the well-known dio-
n fw e K-df (g t)de (31) cotron mode dispersion relation in the surface wave mbdel.
—e ' ' The surface waves produce perturbed electrostatic potential

IIl. KELVIN-HELMHOLTZ (DIOCOTRON) MODE AND

PLASMA OSCILLATION

A. Perpendicular modes

In this section, we consider a constant magnetic field an

perpendicular modes with assuming

k,#0, k=0, By(x)=0.

In this case(19) and (20) are decoupled, andl9) reduces
into a simple Rayleigh equatichAlso, in (27)—(31), we can

(32

@ through which both waves interact. The dispersion relation
is determined by connecting atx= *+ 1 [see(28) and(29)],
which is expressed by the lower two components of the ma-
trix equation(33). Fork,<k.=0.639, the frequency.. are
pure imaginary numbers representing the diocotron instabil-
ity. The physical mechanism of the diocotron instability is
illustrated in Fig. 1. Perturbations on the two surfaces of the
plasma, where the density has jumps, couple with each other
through the induced electric field.**

The coefficientk,x/B in the matrix operator of(33)
yields an essential singularity resulting in a continuous spec-
trum. This spectrum represents the mixing effect of the flow
shear(see Fig. 2. To see the mathematical structure, let us

decouple the parallel motion of electrons represented bgimplify the equation with takingg=b=0 andf(*=1t)=0
(30). Density evolution equations are cast in the matrix formto obtain
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FIG. 3. Time evolution of the surface wave amplitual¢) for the Gaussian

FIG. 2. Mixing of the inner density fluctuatiof(x,t). initial profile

B. Obligue modes (diocotron-plasma oscillation

(w—%x f=0. (3¢)  coupling )

Before considering a sheared magnetic field configura-
The multiplication ofx reads as the “coordinate operator.” tion, we study the coupling of the perpendicular and parallel
Any function of the formf (x) =€'“'5(x—x,) is a solution to  motions in a homogeneous magnetic field with assuming an
(36) whenw =k Xs/B with xs inside the plasma layer, mean- oblique wave vectok=(ky ,k,). In order to incorporate the
ing thatw in the range of-k,/B<w<k, /B is a continuous  parallel motion, we set

spectr_um. Similarly(24) has singular eigenfunctions corre- k,#0, k;#0, By(x)=0. (39)
sponding to the flow shear continuum spanning the range of _ _
{k, (X)V,(x),—1<x<1}. If we takeg=(w—k/x/B)f as a The parallel wave numbek, yields coupling between

variable, we overlook the continuous spectrum. However(27) and (30), and hence, we must solve the whole set of
such treatment is physically irrelevant and mathematicallyf27)—(31) simultaneously. Spectral analySishow that ex-
wrong, as a|ready pointed out by Cdse. ponential instabilities (() with an imaginary pa)t are re-
Because of the non-Hermitian property of the Ray|eighmOVEd for smalls®. This stabilizing effect is explained by
equation, the frequency spectrumdoes not simply predict the short circuit of the perturbation charges through the par-
the temporal evolution of the system. For the stable cas@llel motion of electrons. The electron motion in the direc-
(k,>k.), we find that the frequencies of the coupled surfaceiion parallel to the magnetic field is much faster than the
waves lie in the range of the continuous spectrum. It is rediocotron oscillation, ifs?><1. A finite k, couples the fast
markable that resonancérequency overlappingof the  €lectron motion and diocotron oscillation. In addition to the
surface-wave spectrum and the continuous spectrum resulfodification of the diocotron and continuous spectra, a new
in degenerate eigenvalu@ilpotend reflecting the non- Set of discrete spectra appears. They are always discrete real
Hermitian property of the system. A delta function placed ateigenvalues ranged outside of the continuous spectfum.
the “resonant surface” We also observe complexionexponentialphenomena
reflecting the non-Hermitian property of the system. Interest-
ing secular behavior is well visible in the range gk,
~O(s). For an arbitrary initial condition, the local oscilla-
tion amplitude increase remarkably near the “resonant sur-

is included in the singular eigenfunction belonging to thefaces.” Figure 4 shows the result of simulation with
continuous spectrum, which has the same frequency with one 10-2, ky=1.0, anck,= 1073 (the arrows indicate the reso-

of the surface waves.
When two regular modes satisfy the resonance condi-

1 -
X:,U«iEiZ_ky\/(Zky_l)z_e Ky (37)

tion, the degeneracy of the eigenfunction brings about a new 2 =65
mode(generalized eigenfunctigmhat grows in proportion to 151 T T T -
t. However, singular eigenfunctions belonging to the continu- L .
ous spectrum receive the mixing effect, resulting in satura- 05
tion of the algebraic growth. Figure 3 demonstrates the tran- i 0 [
sient algebraic growth followed by saturation, which is 0.5 |
caused by the presence of off-diagonal terms including -1t
the integral operato§ brings about the phase-mixing damp- 1.5 ¢ l l
ing. Here, we have assumed an initial condition -2 : : :
-1 -0.5 0 0.5 1
X— My *
f(x,O)—exp{ ( 0.05 ) ]’ (38 FIG. 4. The densityf(x,t) at t=65. The initial condition isf(x,0)
=2 cos(mx/2). The amplitude increases near the resonant surfaces
andk,=1.0,a(0)=b(0)=0.0. =p.(=+0.495).
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nant surfaces and the dashed line shows the initial conglifidre divergence of the resonant-oscillation amplitude is propor-

The mathematical structure of this secular behavior is illustrated as follows. We ré2ufitg31) in a matrix form

tional tot.
k
ny k, 0
f
~(x) k; . &X K, R
—ii vx) | | s? B 2ks? 2ks?
at a ky
b B Y1 2kB(2k D
k
- 0 _ Y a2
B 2kB® KB

—€

0
f
—Kk|x—1| ~(X)
vy (X)
—2k a ,
2kB® b

L (2k—1)

(40)

where the operatag, is defined by(34). If k, is small, the mixing effect is dominant aridx,t) becomes highly oscillatory
with respect tox for larget (see Fig. 2 Then, the integral of34) becomes smaltthe phase mixing dampingNeglecting the
integral term () in (40), we obtain “local” oscillation equationgln a more exact analysis with retaining the integral term,
spatial correlations remain, however, we will leave this problem for future stidMessrewrite\ .., w- more generally as

) [
Ni=iw.= _ZBk (2k—1)°—e (41)
= +i\/(2k—1)2—e‘4'z (42)
K== =2k :
Observingf(x) atx=pu, (or x=pu_), (40) reads
k
Ey’“+ k, 0 0
f f
~(M+) 0 &MJF kZ e_k‘:"'++1‘ _kz e_k‘l’ur_l‘ ~(M+)
—ii U||(/L+) _ B 2ks? 2ks? U\|(/-L+) (43)
dt a O ky 2k 1 ky —2k a
b " Y %e® b
k ky
0 0 — Lg%k
2kB® 2k (2K 1)
|
The generator of43) can be written in a Jordan canonical
form . e K +llg=2ky g Kl —1| 48
0==0 S:2( Ps). (48)
Ay 10 0
Ay 1 0 Since i, and ys; are the generalized eigenfunctions repre-
T o 0 N, O L (44) senting the nilpotent, the general solution to the evolution
0 0 0 \_ equation(43) takes the form
and a nonorthogonal transform = (Cy+Cot+Cst?) &gy +(Co+ Cat) ¢y
T=(h % ¥ W) (45) +Cae eyt Cae oy, (49)
— 2
Ka. 0 0 q-kfdw™ whereC,;(i=1, .. .,4) areconstants to be determined by the
0 ig, O q_2w _ initial condition. For example, if we take
| o 0 e e 2 |’ (46)
0 0 . p_ C3;=1.0,C;=C,=C,=0.0, (50
where . .
the surface waves ofi and b show harmonic oscilla-
p-=(2k—1)* y(2k— 1)2—e % (47)  tions with frequencyw, , which generate the oscillation of
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200 1 1 0.05 | / ]
S Al L < T
= Fiff = o)
-200 } -0.05 1
0.1
-400 |
: : : 0.15 N ——
- 05 0 05 1 0 100 200 300 400 500 600

t

FIG. 5. Profile of parallel electron velocity)(x,t) att=100. The initial FIG. 7. Time evolution of the surface density ﬂUCtuat'“_”@z-kah? initial
condition is given by50). Near the resonant surface< u . =0.495), large ~ condition is given by50). Dashed line denotes the functien®e”". Con-
oscillation appears. tinuum damping is found to be exponential with=0.005 65.

1000 V=0.00565'\/;_._,,?_‘_T_:-»_’»_-—_-*j’_"_"_"i"_"‘f )
electrostatic potentiap. This ¢ resonates with the parallel v=0-00640 il

electron motion atx=u, , and the amplitude 05”(,u+) ~ 800 ¢
increases in proportion to TheZH(,u+) also resonates with Q 0
f(m,), resulting in amplification of (w ) in proportion to =

t%. Indeed, in(27)—(31), ¢ andv| act as forcing terms for -500 ¢
each oscillation. Formally, the solution is written as

-1000 | , , , ]
a(t)=e et (51) 0 100 200 300 400 500 600
t
UH(M+ b= iq+te'“’+t, (52 FIG. 8. Time evolution of the parallel electron velocﬁy(x,t) atx=pu, .
The initial condition is given by(50). Dashed lines denote the function
fuy ) =—k,q, t% ", (53 au(l-e ).
In the above discussion, we have assumed a much sim-
plified model where the system is represented by a localized 500 v=0.00565—_
H H H 400 ¢ = \
system of four dimensional coupled oscillators. In careful 300 | VEO00640—_ Ty
comparison of this estimate with numerical results, however, 200 ¢ it
we find a significant difference at largeFigures 5—9 show < 100 ]
the result of simulation withs=10"2, k,=1.0, andk, Ea. ’W“”WWVW\W
=10 3. This discrepancy is caused by the integral operators 200 |
G in (40), which yield the continuum damping of the surface -300 t
wave oscillationss andb. The damping due to the operators -400 ¢
G+ is seen to be exponential in time by the numerical simu- ~500 0 160 260 360 460 560 600
lation (with damping rater=0.00565; see Fig.)7 If we t

include the damping of the surface waves in the expression , _ , ) _
FIG. 9. Time evolution of the inner density fluctuatid(x,t) at x=pu, .

a(t)=e Kello+ =t (54) The initial condition is given by50). The amplitude starts to grow in pro-
portion tot? and converges to asymptotic growtt. Dashed lines denote
the function k,q, /v){(1—e ")/v—t}.

25 : :
oo | =100 ——

15
10

g Avﬂvl\vﬂ ﬁ nUf\VI\V/\vAVAV
ol I Z t=ig, et e !

-10 ¢ 1 I(ps t)=ig.e P (55)
15 L ]

20 +
-25

thenv| andf are evaluated as

fxt)

fus 0)=—kg.e+ t— — . (56)

1e_”t) 1

FIG. 6. Profile of density fluctuatiofi(x,t) att=100. The initial condition . . . .
is given by(50). Near the resonant surface= u, =0.495), large oscilla- In Figs. 8 and 9, we compare these solutions with the simu-

tion appears. lation. The damping coefficient=0.005 65, evaluated by
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the damping ofa, is still insufficient, because we have an- 0.2
other integral operatorg,, in (40). We observe thatv B
=0.006 40 fits the simulation result. 0.15 1t
In summary, the density fluctuation starts to grow at the =
resonant surface in proportion td (mode interaction due to E 0.4
non-Hermitian property while the mixing effect decelerates §
the growth down td. 0.05 4

0 s
0 005 01 015 02 025 03
o

In this section, we consider a sheared magnetic field a%fIG. 11. Growth rate as a function of the magnetic shear parameéy

IV. EFFECT OF MAGNETIC SHEAR

suming =0.5).

ky#0, k,=0, By(x)=aXx, (57
wherea is a given constant representing the strength of magdhe marginal stability is found by setting=0. ForB,=1,
netic shear. By(X)=ax, k,=0, andw=0, (58)—(60) reduce into

First, we solve the eigenvalue problem numerically. In o~ 5 5
Fig. 10, we show the stablgeal w) and unstable region in d_¢’+ 2 2a n “_(l+ 202 |5

) : a’x%) 1 ¢=0, (61)

the ky—a space. In the unstable regidgray), » is a pure dx? Y 14+ a2 &2
imaginary number and the growth rate is a strong function of
the magnetic shear parameter(Fig. 11). The instability is g'(_ 1)+(1—k)&(—1)=0, (62)
related to a “rational surface” wherk is perpendicular to
the ambient magnetic field. Electric charges at the rational  %’(1)—(1—k)¢(1)=0. (63)
surface k =0) are not short-circuited, and produce unstable
modes(Fig. 12. We solve these equations as an eigenvalue problem with re-

In order to explain band structure of unstable modes, w&pect toa, and obtain discrete eigenvalugs;}. Changing

replace—id/dt by w in (27)—(31), and eliminatea,b,f, and the parametek,, we can draw the marginal stability curve
in the k,—a space(Fig. 10. The potential 0f(61),

| to obtain
~ 1 ki (x))’ _ 2 2a° “_2 2,2
¢ (X)—l—[—kz-i— w—kl(X)Vl(X)( B(X)) G(X,a)= ky+ 1+a2X2+ Sz(l-i-a X9), (64)
kF(x) - satisfies
> 5 d(x)=0 (—1<x<1). (58 _
(=K (X)VL(X)) lim G(x,a)=+%» (Vx). (65)

The boundary conditions are
5 K, (—1) Applying Sturm’s oscillation theorem$, we find that the
¢’(—1)+((w_k (—DV.(—1))B(=1) —k) accumulation point of «;} is infinity, implying that, in any
L L large a regime, the unstable region appears. If there is no
XP(—1)=0 (x=—1), (59)  rational surfaceG would be a singular function, and Sturm’s
theorem does not apply.
H(1)=0 (x=1) Next, we study how the secular behavior is modified by
' the effect of magnetic shear. EquatiofZy)—(31) are now
(60)  written as

ki (1)

@' (1)+ +k

(0—k, (1)V,(1))B(1)

60
50 r
40 |
30
20 ¢
10 ¢

fx)
<)

10 +
20 +
30 +
40 +
-50

-1 -0.5 0 0.5 1

FIG. 12. Unstable eigenfunction in a magnetic shear configuration with
FIG. 10. Unstable regiofgray) in k,—a space. B,(x) = ax. Rational surface ix=0.
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ki (X) F(x) F(x)
k T e kIx+1] _ 7 A—k[x—1]
B(x) x+F(x)G,  K|(x) oK € T
Fe0 k(%) LS (C0 SRR (C0 JRISTIN W B
~ " ~
I TICoN s2 B(x) 2ks? 2ks? v)(x) 66)
toa || k(-1 ko(=1) ki(=1) a |’
= = 0 T ok AV -2k
b B(—1) I 2ke—1) 2KV e ® b
ki (1 ki (1 k (1
ELCM LG L TG I
B(1) 2kB(1) 2kB(1)
|
where f(x) and neglected the integral terrtincluding G), the sur-
d [k, (x) face waves will approach constant amplitude oscillations and
F(x)= d_x(m) (67)  the localized mode will grow in proportion t. However,

the damping off (x) is rather slow and its persistence yields
Equation(66) is more complicated tha0), sincek, , K|, along term coupling with the surface waves, resulting in the
and B depend orx, and, moreover, new terms includiy  damping of the surface waves. Including appropriate
are added. Fok,>a~O(s), neglecting the terms including asymptotic forms for the integral terms, we can reconstruct
the integral operatog, we can derive a Jordan canonical the exact exponent of the secularity.

form similar to (44). Numerical solution of the initial value In a magnetic shear configuration, rational surfades (
problem shows the same secular behavior as Figs. 7-9 in theQ) exist inside the plasmas, where the parallel short-circuit
region of realw. Since the oscillations ok and b are  effect does not work, resulting in unstableomplex )
damped, the effect ofF disappears rapidly, and the modes. Further calculations for smooth equilibrium densities
asymptotic behavior is unchanged. will be reported elsewhere.
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