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Abstract. Fluctuations in ambient shear flow exhibit interesting transient phe-
nomena. Shear flow produces not only Kelvin–Helmholtz modes (global exponen-
tial instabilities represented by point spectra) but also local algebraic instabilities
associated with multiple continuous spectra. Since the generating operator is non-
Hermitian, the orthogonality of eigenmodes is broken, and unresolvable mode cou-
plings (resonances) bring about secular behavior (algebraic instability). We analyze
electrostatic fluctuations in a magnetized non-neutral (single species) plasma where
the electrostatic potential parallels the stream function. This secular behavior is
reproduced by solving the initial value problem with a renormalization method.

1. Introduction
Transient phenomena in a non-Hermitian system are far richer than those in a
Hermitian system. The notion of a ‘mode’ is no longer essential when we cannot
reduce the dynamical system to a complete set of independent (orthogonal) in-
tegrable dynamics of modes. The aim of this paper is to explore, with invoking
an appropriate renormalization technique, the time-asymptotic behavior of secular
(algebraic) modes associated with degenerate (frequency overlapping) continuous
spectra. A shear flow brings about non-Hermitian properties, and also produces an
essential singularity generating a continuous spectrum [1]. We consider a simple
model of a magnetized non-neutral plasma, where the self-electric field drives a
flow in the direction perpendicular to the magnetic field. A spatially localized
electrostatic instability [2] is the subject of our analysis.
Generating an ‘exponential function’ of an operator is the central problem of

linear theories. The behavior of such an exponential function, however, can be very
different from the elementary exponential function of numbers. The phase mixing
damping (well-known as the Landau damping of Langmuir waves [3, 4]) is one
of the most striking observations of complex behavior of exponential functions
in infinite-dimensional function spaces. We must include continuous spectra, in
addition to point spectra (eigenvalues), to complete the spectral resolution of a
general Hermitian operator, which describes damping (not necessarily exponential)
even though all spectra of a Hermitian operator are, by definition, real. The general
spectral resolution theory in function spaces (the Von Neumann theorem), however,
applies only for Hermitian operators. The exponential function of a non-Hermitian



398 M. Hirota, T. Tatsuno and Z. Yoshida

operator may exhibit much more complicated evolution, because couplings of non-
orthogonal modes occur [5–7].
A simple example of finite-dimensional dynamics reveals the essential nature of

such mode couplings. A linear map H (which may be non-Hermitian) on a finite-
dimensional vector space can be cast into a Jordan canonical form; by a regular
map P , we can transform

P −1HP = J1 +̇ J2 +̇ · · · +̇ Jν , (1)

where +̇ denotes the direct sum of linear maps, and each Jj is a Jordan block
corresponding to an eigenvalue λj ((λjI − Jj) is a nilpotent map of class Nj , i.e.
(λjI − Jj)Nj = 0), which is represented by the Jordan matrix of dimension Nj ,

Jj =




λj 1 0 0

0
. . .

. . . 0
. . .

. . . 1
0 0 λj


 . (2)

When H is a normal map, all Nj are unity. Then, H can be diagonalized, and all
modes (eigenvectors) are decoupled. A Jordan block of dimension � 2 represents
‘unresolvable’ interactions among modes. Writing

e−itH = e−itλj eit(λj I−H) = e−itλj

[
I + it(λjI − H) − t2(λjI − H)2

2
+ · · ·

]
, (3)

we find that e−itH acting on the generalized eigenspace (root vectors) belonging to
λj includes factors

e−itλj , te−itλj , . . . , tNj −1e−itλj . (4)

Therefore, even if every eigenvalue λj is real, e−itH can describe ‘instabilities’
(growth of oscillations). The algebraic growth of amplitudes (the factors tp) is called
‘secularity’, which represents ‘resonant’ interactions of oscillators with a common
frequency (degenerate eigenvalue). This ‘resonance’ must be distinguished from
the so-called ‘wave–particle resonance’ (Cherenkov resonance) which results in the
Landau (phase mixing) damping. The latter is also related to continuous spectra,
while it is different from the process discussed here – wave–wave resonance among
overlapping continuous spectra.
The analysis is much more complicated when frequency overlapping occurs in

continuous spectra. As mentioned above, phase mixing due to continuous spectra
brings about complex transient phenomena that are strongly dependent upon initial
conditions. The present study focuses on the degeneracy of spectra between point
and continuum, or continuum and continuum which has never been treated so far.
Our analysis will show an interesting relation between the order of secularity and
the number of degenerate (frequency-overlapping) spectra.
In Sec. 2, we begin by reviewing the general mathematical structure of con-

tinuous spectra associated with an ambient shear flow in a system of various waves.
The convective derivatives produce essential singularity in the resolvent operator.
Inhomogeneity of the flow also enables energy exchanges between fluctuations and
the flow. This interaction does not allow a Hamiltonian representation – the energy
is not conserved in the fluctuation parts of the fields. In Sec. 3, we introduce a simple
model of a shear-flow system. A single species (non-neutral) plasma produces a shear
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flow to be confined in a magnetic field. The so-called diocotron instability is an
electrostatic analogue of the Kelvin–Helmholtz instability. When this exponential
instability is stable, the corresponding eigenvalue (point spectrum) occurs in the
region of the continuous spectrum (representing the shear flow) on the real axis.
This ‘frequency overlapping’ causes degenerate spectra, and secular behavior stems
from there. However, this secular growth saturates because of the mixing effect. In
Sec. 4, we introduce another continuous spectrum caused by parallel (with respect
to the magnetic field) motion of the plasma. The amplitude of the resonant ‘local’
mode increases algebraically. We will solve the initial value problem and show that
an appropriate renormalization technique can predict the secular behavior of the
local mode. We will compare the analytical result with our previous numerical
simulation [2]. In Appendix A, we will confirm the validity of the renormalization
method by comparing it with the conventional Laplace transform approach.

2. Non-Hermitian property of shear flow
In this section, we review the effects of shear flow and their mathematical rep-
resentations. The simplest model of shear flow is the vortex dynamics in inviscid
incompressible fluids,

∂tw− ∇ × (v× w) = 0, (5)

where v is the velocity and w = ∇ × v is the vorticity. In a two-dimensional space,
we may write v = ∇ψ(x, y)×∇z, and rewrite (5) in the form of a Liouville equation,

∂tw + {ψ,w} = 0, (6)

where w = −∆ψ is the z-component of w, and {ψ,w} = (∂yψ)(∂xw) − (∂xψ)(∂yw).
By decomposing the equilibrium (capital letters) and fluctuation (tildes) parts, the
linearized equation becomes

∂tw̃ + {Ψ, w̃} + {ψ̃,W } = 0. (7)

In a stratified shear flow V = (0, Vy(x), 0), we assume w̃(x, y, t) = w̃(x, t)e−iky y

(ky is a good quantum number). Then, (7) reduces into the Rayleigh equation [8]

−i∂tw̃ − kyVy(x)w̃ − kyV ′′
y (x)Gxw̃ = 0, (8)

where, considering the whole space (without boundary),

Gxw̃ := −∆−1w̃ =
1

2ky

∫ ∞

−∞
e−ky |x−ξ|w̃(ξ) dξ. (9)

The third term on the left-hand side of (8) is the origin of the non-Hermitian
property of the problem. If V ′′

y (x) changes the sign (i.e. the flow Vy(x) has inflection
points), the generator of (8) cannot be a Hermitian operator in any definition of
Hilbert space. Complex eigenvalues may occur, representing the Kelvin–Helmholtz
(KH) instabilities. The second term on the left-hand side of (8), the convective
derivative, produces a continuous spectrum [1] (replacing ∂t by iω, the term ω −
kVy(x) yields an essential singularity in the formal dispersion relation). The phase-
mixing effect due to the continuous spectrum, in addition to the non-Hermitian
property, causes a rather complex evolution of the fluctuations. Possible instabilities
associated with the continuous spectrum (Sec. 1) are in marked contrast with the
KH instabilities – they are spatially localized, continuously changing the shape,
and temporally algebraic.
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A close cousin of the two-dimensional incompressible flow are the electrostatic
perturbations in single-species plasma confined by a homogeneous magnetic field
B. The E × B drift velocity in the plane perpendicular to B can be written in the
form −∇φ × B/B2. The Poisson equation implies that the vorticity −∆φ parallels
the density of the non-neutral plasma.
In a more general system, other physical variables may couple with the vorticity.

Let ξ be a state vector that is, in a plasma, a combination of the vorticityw, pressure
p, density ρ, magnetic field B and so on. We decompose ξ into the equilibrium Ξ and
fluctuation ξ̃ parts. The transport equations (conservation laws) contain convective
derivatives [(v ·∇)ξ]. The linearized evolution equations, in two-dimensional spaces,
can be cast in the form of

∂tξ̃ + {Ψ, ξ̃} + {ψ̃,Ξ} = A ξ̃, (10)

where A is a linear operator (including Ξ). The non-diagonal components of A
describe the couplings among different variables. If y is an ignorable coordinate of
Ξ, (10) translates (using a good quantum number ky) into

−i∂tξ̃ − kyVy(x)ξ̃ − kyΞ′(x)Gxw̃ = −i A ξ̃. (11)

The operator [−i∂t − kyVy(x)] acting on all variables yields multiple (overlapped)
continuous spectra. The aim of this paper is to analyze the secular behavior of
perturbations stemming from this overlapped continuous spectra.

3. Rayleigh equation and phase-mixing effect
As the simplest example of the two-dimensional, shear-flow problem, we consider
the Rayleigh equation (8) describing electrostatic fluctuations in a non-neutral
(single species) plasma. In this model, we can observe the resonance between the
point spectrum and the continuous spectrum.
Let B = (0, 0, Bz) be a homogeneous magnetic field, which confines an electron

plasma within slab geometry. We normalize the variables by choosing the represen-
tative density, magnetic field and length. We consider a simple flat top density

N(x) =
{

1 |x| � 1
0 |x| > 1, (12)

which produces ambient shear flow

Vy(x) =

{ −1 x < −1
x −1 < x < 1
1 1 < x.

(13)

Let us Fourier-transform fluctuations with respect to y and z. If kz � 0, the par-
allel (with respect to B) plasma oscillation couples with the perpendicular vortex
dynamics [2]. The determining equations are

i∂tñ + kyVyñ − kyV ′′
y φ̃ + Nkz ṽz = 0, (14)

i∂tṽz + kyVy ṽz =
kz

s2
φ̃, (15)

φ̃ = −Gxñ := − 1
2k

∫ ∞

−∞
e−k|x−ξ|ñ(ξ) dξ, (16)
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where k :=
√

k2
y + k2

z and s := ωp/ωc (with ωp = plasma frequency and ωc =
cyclotron frequency). We assume s � 1 (implying low density).
If kz = 0, (14) and (15) are decoupled. The KH instability predicted by the

standard Rayleigh equation (14) is the so-called diocotron instability [9, 10]. In
this section, we revisit the Rayleigh equation (assuming kz = 0) to highlight the
non-Hermitian property. Oblique modes (kz � 0) will be discussed in Sec. 4.
By (13), we observe that

V ′′
y (x) = δ(x + 1) − δ(x − 1). (17)

Therefore, the perturbed density (vorticity) must include delta functions,

ñ(x, t) = a(t)δ(x + 1) + b(t)δ(x − 1) + f(x, t), (18)

where f(x, t) is the smooth part of the fluctuation, while the delta functions rep-
resent the ‘surface waves’. Substituting (18) into the Rayleigh equation (14) (with
kz = 0), we obtain

−i∂t


f(x)

a
b


 =




kyx 0 0
kyG−1 − 1

2 (2ky − 1) 1
2e−2ky

−kyG1 − 1
2e−2ky 1

2 (2ky − 1)





f(x)

a
b


. (19)

The coupling of a and b determines the two-point spectrum [8–11],

ω± = ± 1
2

√
(2ky − 1)2 − e−4ky . (20)

By equating the right-hand side of (20) to zero, we obtain a critical wave number
kc � 0.639. For ky < kc, the frequencies ω± assume pure imaginary numbers,
representing the KH instability. The corresponding eigenfunctions are

fω±(x)
aω±

bω±


 =


 0

e−2ky

(2ky − 1) + 2ω±


. (21)

On the other hand, the continuous part f(x, t) receives phase mixing that is repre-
sented by the continuous spectrum σc = {ω ∈ R; −ky < ω < ky}. The corresponding
singular eigenfunction is formally written as

fω(x) = δ(ω − kyx),

(
aω

bω

)
=

1
(ω − ω+)(ω − ω−)

(
ω − 1

2 (2ky − 1) 1
2e−2ky

− 1
2e−2ky ω + 1

2 (2ky − 1)

)

×




1
2ky

e−(ky +ω)

− 1
2ky

e−(ky −ω)


. (22)

A flat top density ∂N/∂x = 0, as assumed in this paper, yields the real point
spectra (20) for ky � kc. Then, we fail to derive the singular eigenfunction with
the frequency ω = ω+ or ω = ω− in the expression of (22), and have to find
a generalized singular eigenfunction (nilpotent), which constructs a Jordan block.
This Jordan block represents the ‘resonance’ in the overlapping spectra. Using (21),
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the generalized eigenfunctions are calculated as

f̂ω± = ĉω±δ(ω± − kyx),

(
ĉω±

âω±

)
=




− 1
2ky

e−(ky +ω±) ω± + 1
2 (2ky − 1)

1
2ky

e−(ky −ω±) 1
2e−2ky




−1 (
aω±

bω±

)
, (23)

b̂ω± = 0,

where we have chosen b̂ω± = 0 for simplicity. Note that one may add (21) with the
multiplication of an arbitrary constant to the expression (23).
In the analogy of linear algebra, one may expect a secular behavior of the KH

mode (21), such as teiω±t (see (4)). However, we do not observe secular behavior –
an essential difference of infinite dimensional Hilbert space from linear algebra.
This is due to the phase mixing in the continuous spectrum. Let us demonstrate
this fact by solving the initial value problem.
Since the evolution of f is independent of a and b, we readily obtain the general

solution of f ,

f(x, t) = f(x, 0)eiky xt. (24)

The general solutions of a and b are given by the Duhamel formula,(
a(t)
b(t)

)
= T

(
eiω+t 0

0 eiω−t

)
T−1

(
a(0)
b(0)

)

+T

(
eiω+t 0

0 eiω−t

)

×
∫ t

0

(
e−iω+t′

0
0 e−iω−t′

)
T−1

(
iky(G−1f)(t′)
−iky(G1f)(t′)

)
dt′, (25)

where

T =
(

aω+ aω−

bω+ bω−

)
. (26)

If ω± ∈ R (stable KH modes), the first term of the right-hand side of (25) describes
harmonic oscillation. The second term needs careful treatment.
We observe that

(Gxf)(t) =
1

2ky

∫ ∞

−∞
e−ky |x−ξ|f(ξ, 0)eiky ξt dξ, (27)

=
∫ ∞

−∞
g(x, ξ̌)eiξ̌t dξ̌, (28)

where ξ̌ := kyξ and

g(x, ξ̌) :=
1

2k2
y

e−|ky x−ξ̌|f(ξ̌/ky, 0). (29)

Equation (28) is the Fourier transform (ξ̌ → t) of g(x, ξ̌). If |g(x, ξ̌)| is integrable
with respect to ξ̌, the Riemann–Lebesgue theorem shows that limt→±∞ Gxf = 0,
implying the phase mixing damping.
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Because the integrantsG±1f(t′) are decreasing functions of t′, they do not include
stationary oscillations eiω±t′

. Therefore, the second term of (25) does not diverge
at the limit of t → ∞. We, thus, find that the resonance between the continuous
spectrum and the point spectrum does not result in an algebraic instability – the
phase mixing overcomes the resonant amplification.
In the present work, we assume a flat top density. If the equilibrium density has

a gradient, the real point spectra convert either to real continuous spectra or to
unstable (Im(ω) > 0) complex point spectra, depending on the sign of the density
gradient [9, 12]. Briggs et al. [12] have pointed out that a positive density gradient
gives rise to the exponential growth of the diocotron wave, i.e. a complex point
spectrum is created. This exponential instability is distinguished from the present
secular behavior caused by frequency overlapping among the real point spectrum
and continuous spectrum. On the other hand, the point spectrum disappears in
the presence of a negative density gradient. Potential fluctuations undergo phase
mixing and damping.

4. Coupled continuous spectra and algebraic instabilities
In Sec. 3, we have considered the Rayleigh equation (14) governing the pertur-
bations in the plane perpendicular to the ambient magnetic field. In this section,
we consider the parallel motion (15) and the coupling between the parallel and
perpendicular modes. If kz = 0 (decoupled), (15) becomes

i∂tṽz + kyVy ṽz = 0, (30)

which has a continuous spectrum σc = {ω ∈ R; −ky < ω < ky} due to the shear
flow Vy(x) = x (−1 < x < 1). The corresponding singular eigenfunction is

ṽzω(x) = δ(ω − kyx). (31)

This continuous spectrum overlaps with that of perpendicular motion.
Since a finite kz yields a coupling of (14) and (15), the resonance of two continuous

spectra occurs. We rewrite (14)–(16) in matrix form,

−i
∂

∂t




f(x)
ṽz(x)

a
b


 = A




f(x)
ṽz(x)

a
b


 , (32)

where the generator is

A :=




kyx kz 0 0
kz

s2
Gx kyx

kz

2ks2
e−k|x+1| kz

2ks2
e−k|x−1|

kyG−1 0 − ky

2k
(2k − 1)

ky

2k
e−2k

−kyG1 0 − ky

2k
e−2k ky

2k
(2k − 1)




. (33)

Spectral analysis [13] shows that exponential instabilities (ω with an imaginary
part) are removed if kz � 0 and s2 is sufficiently small. However, numerical solutions
of the initial value problem show that oscillations grow in proportion to t near the
‘resonant surfaces’ (x = µ± := ω±/ky) when ky � kz ∼ O(s) [2] (see Sec. 4.3).
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Since the phase mixing diminishes the magnitude of the convolution integral
Gxf , the first approximation one may consider is to neglect the Gxf terms in the
generator A [2]. Then, (32) gives a (3×3) Jordan block. This approximation yields
parabolical growth (∝t2) in the amplitude of f(µ+), which does not agree with the
numerical result (∝t).
This discrepancy is due to the neglect of Gxf . Because limt→∞ f(x, t) is singular,

we need a careful treatment of the integral terms Gxf . In the following subsections,
we shall solve the initial value problem and study the asymptotic behavior invoking
a renormalization method.

4.1. Renormalized perturbation theory (multiple-scale analysis)

We assume ε = kz = O(s2) is a small parameter, and consider two time scales,

τ = t, T = εt. (34)

The independent variables are expanded as

f(x, t) =
∞∑

n=0

εnfn(x, τ, T ), (35)

ṽz(x, t) =
∞∑

n=0

εnṽzn(x, τ, T ), (36)

a(t) =
∞∑

n=0

εnan(τ, T ), (37)

b(t) =
∞∑

n=0

εnbn(τ, T ). (38)

Using the relation
∂

∂t
=

∂

∂τ
+ ε

∂

∂T
, (39)

(32) reads

−i
∂

∂τ




f(x)
ṽz(x)

a
b


 = A




f(x)
ṽz(x)

a
b


 + iε

∂

∂T




f(x)
ṽz(x)

a
b


. (40)

Substituting (35)–(38) into (40), we can solve these equations successively in the
order of ε0, ε1, ε2, . . . .
To simplify the analysis, we consider a specific initial condition

f(x, 0) = 0, ṽz(x, 0) = 0, a(0) = e−2k, b(0) = κ+, (41)

where κ+ is a constant to be determined later in (46).
f0 obeys

−i
∂f0

∂τ
= kyxf0, (42)

which yields f0(x, τ, T ) ≡ 0. Then, a0 and b0 satisfy

−i
∂

∂τ

(
a0

b0

)
=

ky

2k

(
−2k + 1 e−2k

−e−2k 2k − 1

)(
a0

b0

)
. (43)
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The solution is

a0(τ, T ) = A(T )e−2keiω+τ , b0(τ, T ) = A(T )κ+eiω+τ , (44)

where

ω± := ± ky

2k

√
(2k − 1)2 − e−4k, (45)

κ± := (2k − 1) ±
√

(2k − 1)2 − e−4k. (46)

The amplitude A(T ) is a certain function satisfying A(0) = 1. The slow evolution
of A(T ) will be determined later.
The short-term equation of ṽz0 is

−i
∂ṽz0

∂τ
= kyxṽz0 + A(T )q(x)eiω+τ , (47)

which gives

ṽz0(x, τ, T ) = A(T )q(x)eiω+τ 1 − e−iU(x)τ

U(x)
, (48)

where

q(x) :=
kz

2ks2

(
e−k(x+1)e−2k + e−k(1−x)κ+

)
, (49)

U(x) := ω+ − kyx. (50)

At the resonant surface (x = µ+ := ω+/ky), ṽz0 is secular (∝τ ). Using ṽz0, we may
determine the short-term behavior of f1 by

−i
∂f1

∂τ
= kyxf1 + ṽz0, (51)

which yields

f1(x, τ, T ) = A(T )q(x)eiω+τ

[(
1 − e−iU(x)τ

)/
U(x)

]
− iτe−iU(x)τ

U(x)
. (52)

This f1 is also secular (∝τ2) at the resonant surface (x = µ+). As mentioned above,
the estimate of the power of the secularity disagrees with the numerical observation.
The slow variable A(T ) will amend the long-term behavior.
We proceed to the equations of a1 and b1:

−i
∂

∂τ

(
a1

b1

)
=

ky

2k

(
−2k + 1 e−2k

−e−2k 2k − 1

)(
a1

b1

)

+ ky

(
G−1f1

−G1f1

)
+ i

∂

∂T

(
a0

b0

)
. (53)

By the transformation, (
â1

b̂1

)
:=

(
e−2k e−2k

κ+ κ−

)−1 (
a1

b1

)
. (54)

Equation (53) is diagonalized as

∂

∂τ

(
â1

b̂1

)
=

(
iω+ 0
0 iω−

)(
â1

b̂1

)
+ A(T )

(
ha(τ)
hb(τ)

)
− ∂

∂T

(
A(T )eiω+τ

0

)
, (55)
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where (
ha(τ)
hb(τ)

)
:=

iky

A(T )

(
e−2k e−2k

κ+ κ−

)−1 (
G−1f1

−G1f1

)
. (56)

Since f1 ∝ A(T ), ha and hb are independent of T . The equation of â1 reads

∂â1

∂τ
= iω+â1 + A(T )ha(τ) − dA

dT
eiω+τ . (57)

If ha(τ) includes an oscillation with frequency ω+, i.e.

ha(τ) = σeiω+τ + · · · (σ = const), (58)

â1 becomes a secular solution. We may remove this divergence by imposing a
renormalization group equation

σA(T ) − dA

dT
= 0, (59)

which gives
A(T ) = eσT . (60)

We have derived the renormalized solution

â0 = eσT eiω+τ , (61)

= eσεteiω+t, (62)

= eσkz teiω+t. (63)

If the real part of σkz is negative, this solution represents the damping of â.

4.2. Fourier expansion

Let us proceed to estimate the ‘Fourier coefficient’ σ defined by

σ := lim
t′→∞

1
t′

∫ t′

0

ha(t)e−iω+t dt. (64)

By (52) and (56), we obtain

ha(t) = −iCeiω+t

∫ 1

−1

(2e−2k + κ−e−2kξ + κ+e2kξ)

×
[(

1 − e−iU(ξ)t
)/

U(ξ)
]

− ite−iU(ξ)t

U(ξ)
dξ, (65)

C :=
kzkye−2k

4k2s2(κ+ − κ−)
. (66)

We may write

ha(t)e−iω+t = iC

∫ 1

−1

(2e−2k + κ−e−2kξ + κ+e2kξ)
∫ t

0

ζe−iU(ξ)ζ dζ dξ,

= C
2e−2k

ky

∫ t

0

[
ei(−ω++ky )ζ − ei(−ω+−ky )ζ

]
dζ

+ iCκ−

∫ t

0

ζ
e−2k+i(−ω++ky )ζ − e2k+i(−ω+−ky )ζ

−2k + ikyζ
dζ

+ iCκ+

∫ t

0

ζ
e2k+i(−ω++ky )ζ − e−2k+i(−ω+−ky )ζ

2k + ikyζ
dζ. (67)
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Using the relations∫ ∞

0

cos(βx)
α2 + x2

dx =
π

2|α|e
−|α||β|,

∫ ∞

0

x sin(βx)
α2 + x2

dx =
πβ

2|β|e
−|α||β| (∀α, β ∈ R)

(68)
we observe, for large t,

Im
(∫ t

0

x
eiβx

α + ix
dx

)
� − sin(βt)

β
+ α

(
α

|α| +
β

|β|

)
π

2
e−|α||β|. (69)

Using (69) in (67) yields, for large t,

Re(ha(t)e−iω+t) � C
1
ky

(2e−2k + κ−e−2k + κ+e2k)
sin(−ω+ + ky)t

(−ω+ + ky)

− C
1
ky

(2e−2k + κ−e2k + κ+e−2k)
sin(−ω+ − ky)t

(−ω+ − ky)

+C
2kπ

ky|ky|
(
κ−e−(2k/ky )ω+ − κ+e(2k/ky )ω+

)
. (70)

Substituting (70) into (64), we find that the third term on the right-hand side of
(70) yields the real part of σ:

Re(σ) =
kzπe−2k

2ks2|ky|(κ+ − κ−)
(
κ−e−(2k/ky )ω+ − κ+e(2k/ky )ω+

)
. (71)

In the stable regime of the KH modes (ky > kc), (71) is simplified as

Re(σ) � − kzπ

2k2
ys2e

(<0). (72)

We have derived the damping rate of â (see (63)):

ν = −Re(σ)kz, (73)

� k2
zπ

2k2
ys2e

. (74)

The asymptotic form of â is

â(t) = e(iω+−ν)t. (75)

4.3. Comparison with numerical solution

In this subsection, we compare the analytical result with numerical simulation. We
use the trapezoidal rule for spatial integration. Because of the continuous spectrum,
a solution receives the mixing effect (see (24)). f(x, t) becomes strongly oscillatory
as t increases. The wave number with respect to x is of order kyt. For the range of
t < T , we choose the mesh number per unit length (Nmesh) to satisfy Nmesh � kyT .
For numerical example, let us take ky = 1, kz = 10−3 and s = 10−2. Then, (74)

yields ν � 0.005 78. This analytical estimate is compared with numerical simulation.
By substituting the initial condition (41), we observe the secularity at x = µ+ (see
Fig. 1). The time evolution of a(t) shows damping which seems to be exponential
(Fig. 2(a)). In Fig. 3, we compare the analytical ν (given by (74)) and the numerically
estimated damping rate (ky is the parameter).
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Figure 1. Profiles of ṽz(x, t) and f(x, t) at t=100. The parameters are ky =1,
kz =10−3, s=10−2, and the initial condition is given by (41). Near the resonant surface
(x=µ+ =0.495), large oscillations appear.

By substituting A(T ) = e−νt into (47) and (51), we obtain

ṽz(x, t) � ṽz0 = iq(x)eiky xt e
(iU(x)−ν)t − 1
iU(x) − ν

, (76)

f(x, t) � εf1 = kzq(x)eiky xt

[(
1 − e(iU(x)−ν)t

)/
(iU(x) − ν)

]
+ t

iU(x) − ν
. (77)

We thus predict the saturation of ṽz(µ+, t) and the growth of f(µ+, t) in proportion
to t (see the dashed lines in Figs 2(b) and 2(c)). The remaining small error may be
eliminated if we analyze the slow variations of ṽz0 and f1.

5. Summary
In a non-Hermitian system, degenerate spectra (frequency overlapping) may cause
nilpotent, resulting in secular amplification of even real frequency waves. If ω is a
degenerate point spectrum (eigenvalue) of nullity n, the corresponding Jordan block
of dimension (n + 1) produces oscillations in the form of eiωt, teiωt, . . . , tneiωt. This
elementary result does not apply when we consider degenerate ‘continuous’ spectra.
We chose a single-species (non-neutral) plasma as a physical model for investigation.
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Figure 2. Time evolution of (a) the surface density fluctuation a(t), (b) the parallel electron
velocity ṽz(x, t) at x = µ+ (resonant surface) and (c) the inner density fluctuation f(x, t)
at x = µ+. The parameters are ky = 1, kz = 10−3, s = 10−2, and the initial condition
is given by (41). Dashed lines denote the amplitudes of the analytical solutions (75)–(77),
respectively.

The self-electric field yields an ambient shear flow that brings about continu-
ous spectra (representing the convection of fluctuations) as well as non-Hermitian
properties (interaction of fluctuations and the ambient flow). If a point spectrum
ω overlaps with other m continuous spectra (i.e. formal nullity is n= m + 1), we
obtain secularity of the form of eiωt, teiωt, . . . , tmeiωt. The diminution of the power
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Figure 3. Damping rate of the surface wave for kz = 0.001, s = 0.01. The dotted line
denotes the plot of (74), and points are estimated by the fitting of numerical results
(Fig. 2(a)).

of t is due to the phase mixing in the continuous spectra. The resonance (frequency
overlapping) of a point spectrum and multiple continuous spectra is the cause of
secular behavior. This process may occur in many other shear-flow systems.
The present analysis predicts an algebraic instability in a KH (diocotron) stable

non-neutral plasma. The instability stems from the coupling of perpendicular (with
respect to the magnetic field) vortical motion and parallel plasma oscillation. The
fluctuation is localized at the surface where the frequency (real) of the stable
diocotron waves resonates with the flow continuum.
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Appendix A. Comparison with the Laplace transform approach
An alternative method to analyze the initial value problem is the use of the Laplace
transform. For the model of Sec. 4, we can construct a Green function to solve the
transformed equation. Let us write

φ̃p(x) =
∫ ∞

0

φ̃(x, t)e−pt dt. (A 1)

Equation (32) translates as

φ̃′′
p − k2φ̃p +

k2
z

s2(ip + kyx)2
φ̃p = − if(x, 0)

ip + kyx
+

ikz ṽz(x, 0)
(ip + kyx)2

. (A 2)

The boundary conditions read

−(ip − ky)φ̃′
p(−1) + [ky + k(ip − ky)]φ̃p(−1) = ia(0), (A 3)

−(ip + ky)φ̃′
p(1) + [ky − k(ip + ky)]φ̃p(1) = −ib(0), (A 4)

where f(x, 0), ṽz(x, 0), a(0) and b(0) denote the initial values of the corresponding
variables. We assume the same initial values as (41). Then, the general solution of
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(A 2) is

φ̃p(x) = C1χ
1
2 I−η(χ) + C2χ

1
2 Iη(χ), (A 5)

where χ := k(ip+kyx)/ky, η :=
√

1/4 − (kz/sky)2 and I±η(χ) denotes the modified
Bessel function. Substituting (A 5) into the boundary conditions (A 3) and (A 4), we
can determine the coefficients C1 and C2:(

C1

C2

)
=

1
kyD(p, η)

(
ϕ11(p, η) ϕ12(p, η)
ϕ21(p, η) ϕ22(p, η)

)(
ia(0)

−ib(0)

)
, (A 6)

where

ϕ11(p, η) =
[

−χ
∂

∂χ

(
χ

1
2 Iη(χ)

)
+ (1 − χ)χ

1
2 Iη(χ)

]
x=1

, (A 7)

ϕ12(p, η) =
[
χ

∂

∂χ

(
χ

1
2 Iη(χ)

)
− (1 + χ)χ

1
2 Iη(χ)

]
x=−1

, (A 8)

ϕ21(p, η) = −ϕ11(p, −η), (A 9)

ϕ22(p, η) = −ϕ12(p, −η), (A 10)

D(p, η) = ϕ11(p, η)ϕ22(p, η) − ϕ12(p, η)ϕ21(p, η). (A 11)

If kz = 0 (i.e. η = 1/2), we find D(p±, 1/2) = 0, where p = p±(= iω±) are the
poles of φ̃p representing the KH modes. A small kz (we write η = 1/2 + δη) moves
the poles; p = p± + δp±. To calculate δp±, we need the analytical continuation
of D(p, η) into the left-half plane of complex p, because D(p, η) is a multivalued
function when η � 1/2. We approximate D(p, η) by

D(p, η) � D(p±, 1/2) + δp±
∂D

∂p
(p±, 1/2) + δη

∂D

∂η
(p±, 1/2). (A 12)

By setting D(p, η) = 0, we obtain

δp± = −δη

∂D
∂η (p±, 1/2)
∂D
∂p (p±, 1/2)

. (A 13)

After some manipulations, we find, for ky � kz,

Re(δp±) � − k2
zπ

2k2
ys2e

. (A 14)

Therefore, we find that both KH modes damp in the presence of a small kz. The
damping rate agrees with (74).
Since the modified Bessel function I±η(χ) is described by χ±η multiplied by

an analytic function, the term with the strongest singularity in φ̃p(x) is χ
1
2 −η =

(ip+kyx)−δη. By operating the Laplacian (∆ = ∂2/∂x2 − k2) on (A 5), the Laplace
transform of the density perturbation (ñp(x) = ∆φ̃p(x) may include a singularity
of the form of (ip+kyx)−2−δη, the x-dependence of which represents the continuous
spectrum. The inverse Laplace transform, then, yields secular behavior [14]:

ñ(x, t) ∼ t1+δηeiky xt (t → ∞). (A 15)
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All other contributions from lower-order singularities yield slower growth that can
be neglected at large t. In (77), the small correction δη for the power of t was also
ignored.
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