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Resonance between continuous spectra: Secular behavior of Alfvén waves
in a flowing plasma
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Conventional normal mode analysis often falls short in predicting a variety of transient phenomena
in a non-self-adjointnon-Hermitian system. Laplace transform is capable of capturing all possible
behavior in general systems. However, degenerate essential spectra require careful analysis. The
Alfvén wave in a flowing plasma is an example in which the coalescence of the Alfvén singularities
yields nonexponential growth of fluctuations. Invoking hyperfunction theory, rigorous expression of
the Laplace transform leads to an accurate estimate of the asymptotic behavior of resonant singular
modes. ©2005 American Institute of PhysidDOI: 10.1063/1.1834591

. INTRODUCTION evolution equation for the fluctuation paitsb, and?p,

Waves and instabilities in plasmas are far richer than idf = Kf, f:t(T/BTJ), (@D)]
those observed in fluids, solids, or various continuous media. h h — i diff tial tor. W
Dynamical representations of perturbations are beyond thg1€re he genera IS a linear difierential operator. Ve

: . . Wwill solve the initial value problem ofl) by assuming in-
scope of conventional normal mode analysis—a perturbation -
u(x,t) may not assume the form ofx,t)=e “!(x); hence compressibility.

' . o ' S ! Note that the non-self-adjointness discussed here is not

we cannot replaceé, with —iw in the determining evolution

. . . , ._peculiar to flowing plasmas, since the well-known self-
equations. In analyzing a variety of transient phenomena in® . . : )
2 . adjoint property of static plasmas is attributed to the
plasmas, we encounter two difficult problems that require ~

careful mathematical considerations. One is the general norlr-agrange reprgse~ntation. Int.roducing the Lagrange vargble
self-adjoint(non-Hermitian property of plasmas. When plu- asV=dé+V-V£-£-VV, (1) is reduced to

ral branches of waves overlap in some ranges of frequencies, s ~ =~

these waves may interact through resonafilmecause the KE+2 - Vag=TE, 2
modes are nobrthogona), resulting in algebraigseculay  whereF is a self-adjoint operator under appropriate bound-
amplification of the wave. The other is the existence of vari-ary condition€”® If the equilibrium is not flowing(V =0),

ous continuous specti@ssential singularities in the disper- ipe evolution of~§ is generated by onlyF. Due to Von Neu-

sion relation. Resonance between continuous spectra is NGhann's theorem of the spectral resolution of the self-adjoint

as simple as those in point spectedgenvaluep because we  gperator® we can invoke the normal modepectral analy-

must analyze singular eigenfunctiosee Ref. 2 and Appen-  sis of 7 to generate the solution @®). The MHD stability

dix A). analysis is, therefore, conventionally based on the dispersion
As is well known, Laplace transform is capable of cap-relation where time derivativé4,) is replaced by eigenvalue

turing all possible behavior in general systems. However, the,,).

inverse Laplace transforrfequivalent to the Dunford inte- However, in deriving(2), we have assumetomoge-

gral of the spectral theoyyis not easy when multiple con- neousinitial conditions which satisfy

tinuous spectra are degenerated. In the present paper, we

invoke the hyperfunction theoty to provide a rigorous basis [B+& VP+yPV -E=0, (3)
for dealing with singular eigenfunctionsee Appendix B 5 B
The theory reveals a natural relation between the Fourier [b+ V X (B X §)]o=0, (4)

transform (characterizing the eigenfunctionsand the h h ific h , h uti
Laplace transfornidefining the solution of an initial value Wheréy denotes the specific heat ratio. Hence, the solution
of (1) is wider than that of(2), and K is no longer self-

problem). We can derive an accurate estimate of the dioint tor static ol in thi il sh
asymptotic behavior of resonant singular modes, which waf 00Nt even for static plasmas. in this paper, we witt Show

left out in earlier theorie&=” complicated algebraic growth of fluctuation by solvi(ig.
The subject of our analysis is the Alfvén waves governed I_n sec. I, we will formulate the evoIL_mon equation in-
by the ideal magnetohydrodynami@dHD) equations. Lin- cluding the effect of shear flow. We consider an equilibrium

- . e . with slab geometry, which is inhomogeneous only in the
earizing the MHD equations around an equilibrium with ve- .~ = S - .

: . . direction. Assuming incompressibility, the fluctuations can
locity V, magnetic fieldB, and pressurd®, we obtain an

be represented by four variablés'(W, ], 7y b,). Writing

_ty~ T _t nd . .
3Present address: Institute for Research in Electronics and Applied Physicg;L— (Wx Jx and f,='(y by), the evolution equation can be
University of Maryland, College Park, MD 20742-3511. cast in a block form,
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A Ky N [fy a resonance among the four Alfvén continuous spectra. The
10, f = 0 K £ ) (5) physical explanation will be discussed in the summary.
2 2 2

Il. GENERAL MODEL OF ALFVEN WAVES

We formulate a system of equations that describes the
Alfvén waves in inhomogeneous ambient magnetic field and
flow. The incompressible ideal MHD equations read as

| 2

where K4, K,, and N are linear operators in>22 matrix
forms. As we will see later, the operatéi, has only real
continuous spectrag.={w,:(x);xe D} and o ={w,-(X);X

e D}, representing the(Doppler-shifted Alfvén waves,
wherew,,(X) andw,_(x) denote the local Alfvén frequencies

associated with the two propagation directions along mag- 4V * (V- V)v=-Vp+ ;[_ Voot (b- V)b]' ()
netic field, and there is no unstable point spectrum under

certain conditions proposed by Barstaand Sterri! If the ab+(v-V)b=(b-V)v, (8)
domainD is bounded, i.e., the thickness of the slab is finite,
KC; is a bounded operator. It will be shown that the operator vy.y=0, V .b=0, 9)

K4 is a multiplication operator and has the same spectrum as ) o

KC,. Since these four continuous spectra are degenerating atd'€rev. b, andp denote velocity, magnetic fields, and pres-
the generator has an off-diagonal elemafitwe can expect SUe: respectlvely. The mass density is assumed to be con-
algebraic growth off, by analogy with the Jordan block in stant. Variables are in the sta}ndard Alfvén units. The scaling
linear algebra. However, the nilpotent among continuoud@ramete denotes the Alfven Mach number. In what fol-
spectra is not mathematically resolved, and we therefor®Ws, We choose the representative magnetic field soahat

must solve the initial value problem. - i _ .
In Sec. lll, the initial value problem will be solved by We consider an equilibrium with slab geometry,

using the Laplace transform. The major part of this section  V/(x) = (0,V,(x),V,(x)), B(x)=(0,B,(x),B,(x)),

will be devoted to solving andP(x) + [B()|%/2 = const. (10)
iatfzszfz. (6) . - .

Since the equilibrium may have strong magnetic shear, we
Barston? Sedlgek® and Tataronis considered the math- do not invoke the reduced MHD approximation, but consider
ematically equivalent problem without ambient flow, whereall components of the vector field in the fluctuation part
the continuous spectra do not receive the Doppler shift; which depend on all coordinates. The essential independent
={xw,(x);x e D} with wy(X): =wa(X)=—w,(X). They as- variable is, however, onlx due to the homogeneity of the
sumed that?(x) >0 for all x e D, which implies thaw; and  equilibrium in they andz directions. We may introduce wave
o, are disjoint. In this case, as Seth& pointed out, the numbersk, andk, and substitute the following expressions
Laplace transform can be translated into the normal modeiaito (7)~9):
analysis.

- < i (kyy+k
The normal modes analysis does not give a correct solu- V=V + Ve, 1D

tion if there is a poini, that satisfiesv,(x;)=0. In the pres- _ ~ ey

ence of thisx, (so-called rational surfagethe forward and b=B(x) + b(x,)e"", (12)

backward Alfvén continuous spectta, and o) overlap. _ iy

Then we encounter a complicated singularity on the rational P = P() +Px, e, (13

surface, which implies a resonance between the two continy=gy these fluctuations, the use of so-calteatmal velocity
ous spectra at zero frequency in the subsyst@mThe hy-  andnormal vorticityis more convenientsee Appendix ¢

perfunction theory enables analysis of this singularity. As @By introducing thex component of vorticity and current as,
result, we will find that the solutionf, asymptotically  respectively,

evolves into a standing wave that yields a magnetic island. _ _ _

This phenomenon was omitted in the earlier wérsvhere We=ikyr, ik, and jx=ikyb, —ikzby, (14

the Alfvén waves(except for zero frequengyreceive the ) .~ ~

phase mixing damping. The standard analysis based owe four varlable~s;x, Wy, by, and]y can reproduce all com-

Lagrange representations excludes this solution because Benents ov andb.

the assumptioii4). Now we linearize(7)—(9). By taking the divergence of
The effect of flow becomes essential if the gradient of(7), we obtain the linearized Poisson equation

the flow shear exceeds that of the magnetic shear. Our analy- ,~ o y~ . o

sis will prove that the magnetic island cannot survive in such Ap+A(B -b) == 2k - VT + 2k - B'b, (15)

a strong shear flow. wherek=(0,k,,k,) and a prime() denotes the derivative.
In the end of Sec. Ill, the equation fdy will be solved  Using(15), we can eliminaté® from the systengi.e.,p is not

by using the giverf,. We will observe an algebraic growth an independent variableAfter some manipulations, the lin-

localized on the rational surface, which can be understood asarized equations are written in the matrix form of
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Wy k-V -k-B —(V'xk)-eA™ (B xk)-e Wy

| —k-B k-V -(B'xk)-eA™ (V xk)-g T

"oz || 0 o kev-k.val —k.Ba+k-s” || a3, (16)
by 0 0 -k-BA™ k-V b,

WhereAz&f—k2 with k=|k|, ande,=(1,0,0 is the unit vector. By considering a domdhC R with a Dirichlet boundary
condition, the operatoA™ is uniquely given as a convolution integral.

In terms of M, =%, ¥ b, and S, =%, ¥ j,, (16) reads as

Ss wae O 0 - ATt S,
. S- 0 w, -, A7 0 S 17
I = 1
1AM, 0 0 e t 0L AATT =0 AT =W AT | AM,
AM_ 0 0 -wudA -0y At w+0 dA™ AM_
|
where  w,.(X)=k-V(X)£k-B(X) and  ,(X)=[V'(X) The slave equations have the same continuous spettra

xXk]-e,x[B’(x) Xk]-e,. If the ambient fields are uniform and o, due to the multiplication operatob,.(x) in (17).
[V (x) =const and3(x) = consl, the generator is reduced to a Therefore, the evolution equation has four degenerate con-
diagonal form, and therefore each variable oscillates indetinuous spectra in total. Given that the mathematical struc-
pendently with the frequency,, or w,_. The variablesM,  ture of (17) is similar to that of Orr—Sommerfeld and Squire
and S, correspond to the Alfvén waves polarized in the twoequation$® in fluid dynamics, we can expect the algebraic
directions perpendicular t8, and the subscripts + and - instability to be caused by the resonant energy transfer from
identify the propagation directions. the master equations to the slave one. For example, if we
Inhomogeneity of the ambient fields causes interactionsubstitute the special configuration
between two polarized waves. The behavior/ef, is not
affected bysS,, while S, is forced byM.. In this paper, the vV=(0,0,0, B=(0,00, k+#0, k=0. (20
lower two equations and the upper two equationglif) [or  he generator of16) is reduced to a number matrix that is
(16)] will be referred to agnasterequations andlaveequa-  gjied nilpotent in the linear algebtaee Appendix A Our

tions, respectively, and we cal1, (or 7y and by) master linear system is, therefore, non-self-adjoint even for static

variables andS, (or Wy ande) slavevariables. plasmas and the slave variables increase algebraically in pro-
If we consider normal modes such@agx,t)=7,(x)e"®,  portion tot. This example is too simple because the Alfvén
the master equations are combined, by eliminaliggnto wave does not propagate and the continuous spectra com-
pletely degenerate into a poifit.= o ={0}). We will discuss
d (0= w2e(X) (0 — wa_(x))@ ~ K — wae (X)) (@ a less trivial problem in the next section, where the four
dx d Alfvén continuous spectra yield spatially and temporally
— w0, (X)T=0, (18) complicated behavior. Compared with our problem, the Orr—

Sommerfeld and Squire equations have only point spectra
whereli=,/(w—k -V). This Sturmian equation becomes sin- due to the viscosity, and then the eigenvalue problem is ap-
gular if w e o.=0¢U o, whereo, and o, are defined by plicable based on some general theories like Ref. 14. In our
o ={w,:(x);x e D} and correspond to théDoppler-shifteg  system, however, we must solve the initial value problem
Alfvén continuous spectra. For a static equilibriJivi(x) directly because there is no theory for the non-self-adjoint
=0] and any functionB(x), Barstori considered a math- system with degenerate continuous spectra.
ematically equivalent problem td.8) and proved that there Before ending this section, we make a comment on the
is no spectrum in addition te.. Even in the presence of effect of the compressibility. If we consider a compressible
flow, we can prove by applying Stern’s restfitthat expo- plasma, we must include two other variables into the system,
nentially growing or damping mode» & R) does not exist if  viz., the pressure perturbatidp) and the other component

Ik -V < |k - BX)| (19) of velocity perturbation(say ik,zy+ik,u,). The six variaples

are generally coupled and no longer decomposed into the
is satisfied everywhere in a certain inertial frame. Even ifmaster and slave variables agi¥). The continuous spectra
(19) is violated, the system might be still free from the ex- that we found in the master and slave equations, then, appear
ponential growth mode. For example, if bokhV(x) and as the slow and Alfvén continuous spectra, respectively.
k-B(x) are linear functions ok, there is no drive for the Since the frequency of the slow wave coincides with that of
Kelvin—Helmholtz instability. We are interested in the con-the Alfvén wave on the rational surface, the degeneracy of
tinuous spectrum, and therefore consider only stable equilibthe four continuous spectra still exists, and hence, the special
ria in the sense of the dispersion relation. configuration given by20) will cause the algebraic growth

Downloaded 13 Jan 2005 to 128.97.46.121. Redistribution subject to AIP license or copyright, see http:/pop.aip.org/pop/copyright.jsp



012107-4 Hirota, Tatsuno, and Yoshida Phys. Plasmas 12, 012107 (2005)

of 7, even if we take into account the compressibility. Al- v
though the similar transient behavior is expected, the analy- [(Q — ax)? - 8>?]A e [2a(Q - ax)
sis of the compressible case is generally involved. ax

+ 2,82x](9x( Q v

4

Q- ax

Josmly)

I1l. ANALYSIS OF ALGEBRAIC BEHAVIOR
This equation becomes singular {#x,Q); Q- (a+ 8)x=0},

In the following analysis, we will solve the initial value which is related to the two continuous specig but it is
problem of(17) by assuming linear profiles of the ambient important to note thaf(x,); Q) —ax=0} is not a singularity
magnetic field and flow. Let one rational surface exist in theof (27) (see Appendix ) In general, we often encounter this
domain and thex coordinate be chosen so that the surface isapparent singularity concurrent with the elimination of
located onx=0. In an appropriate inertial frame, we may variables'®
assumek -V (0)=0 without loss of generality. Thus, we have Let us suppose that we have a solution(®7). By the

k-VX)=ax, k-B(X)=px (aB=cons. (21) Cauchy—Kovalevsky theorem, the SO|Utiﬁ(’X,Q) must be a

holomorphic function in
In this coordinate system, we consider a finite domain

e[-L4,L5] (L1>0,L,>0) with the Dirichlet boundary con- (*x,Q) € ([~ Lo, Lo X OV{(x2);Q = (a2 H)x=0}.
dition (28)
T(= L) = (L) =0, by(-Ly,t)=by(L,t) =0 (22) Given that[-L,,L,] X (C\o,) is a subset 0f28), this

for all t. Finally, we assume that the initial conditions areV(X’Q) is holomorphic for allxe[~Ly,L] as far asQ)

holomorphic functions ofi-L;,L,]. The Alfvén continuous e CAay (resolvent set

spectra discussed in the preceding section are represented b The relation between the Laplace transform and the Fou-
P P g P riér transform is made clear in the hyperfunction the@ge

o, ={w e R;o=(a+p)xx € [-Ly,L,]}, (23)  Appendix B. Since the spectruna, is bounded, the inverse
Laplace transform is equivalent to the Dunford integia
o.={w e R;o=(a- p)xX e [~ Ly Lo} (24)  the double Bromwich integral according to Sedi):
We denote the spectrum of the evolution equationdyy ~ __ 1 v it
=0, U a,, for there is no other spectrum. This linear system bxB = 27 C((r)V(X’Q)e “ 29
is stable with regard to the dispersion relati@il w are real ¢
numbers. where the integral patfi(o,) encircles the spectru, coun-
Because the spectrum is a bounded set, we can apply terclockwise. By deforming(o.) into the vicinity of o, we
the Laplace transform defined by may write
LIBxD]: = f T, dt, (25) Ty01) = J D(x e do, (30)
0 ¢

where() e C must satisfy IngQ2) >0 and o, lies on the real where
axis of the compleX) plane. . 1 ~ -
By making use of the master-slave structurgB#) [or (X, ) = Z—[V(X,w +i0) - V(X,0 —i0)]. (31
(16)], we can solve the master equations independent of the 7
slave equations. In Secs. Il A-lll E, we will evaluate the Thjs 73X(X.w) on [-L;,L,] X o, corresponds to the Fourier

asymptotic behavior ob, and b, instead of M., since the  tansform oft(x,t) in a generalized sense, i.éX(x,w) is a

master equations fL6) are simpler than that dfl7). Using  gingular eigenfunction defined by the hyperfunction theory.
this result, the slave equations will be solved in Sec. Il E.

B. Solutions near singular points

A. Fourier—Laplace analysis of master equations ) ] ~ ) )
The singularity ofV(x,{) can be investigated by the

In terms of T/(X,Q):ﬁl_"z")x(x,t)] and B(x,Q) Frobenius methof However, since(27) has complicated

:L‘[BX(X,I)], the master equations are transformed to inhomogeneous terms, we need more careful treatment to
~ ~ obtain the particular solution and understand its dependence
(Q = ax)AV=-BxAB+ A¢, on Q.
We perform the series expansion of the equation in the
Q- aX)E= _lng/+ v, (26) neighborhood of two singular pointsx=X*(Q)) and x

- =X7(Q), which are defined a¥*(Q)=Q/(ax ). In the fol-
where ¢(x)=iv,(x,0) and y(x)=ib,(x,0) are holomorphic |owing calculation, we solve both cases simultaneously, us-
functions on[-L,,L,]. ing the double signg=X*. Let £&=(x-X*)/r be a local vari-

By eliminating B, we obtain able that is scaled by
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280
r=X"-X-= 2’8 5.
B«

In terms of this variable(27) is transformed into

2641

§2A§U+§§ 3,0 = d(x,Q),
whereA ;=4 —r2k2and

~ Vx,Q)  V(x,Q

uxQ)=r x0) _ VD

Q-ax ay,- &’

3
(a®=BA(Ex Dr

X{Ag‘f’*ﬁ(”" 5>Af( a(yf— s))]

_1fe_ 1B
')’1—2<18+1)’ ’}’2—2<a+1>.

d(x,0) =

(32

(33

(34)

(35)

(36)

In contrast to the normal modes analysis such(1a,
we have the complicated inhomogeneous tedn(s, ().

First, we solve the homogeneous equation(33) by
setting d(x, ) =0. According to the Frobenius methdd,

expansiorEJ(g; Q)

the substitution of the series
=37 Un(Q)E™ [whereUy(Q) # 0] yields

5)‘2 2 Dn(Q)fm—n(n+)\)§lﬂz 0,

m=0 n=0
where
foM) =A% fi(M) = £, fo(\) =122
and
f,(\) == (1) forj=3.

We can determinéﬁn(ﬂ) n=1,2,

lar solution

_ 122 r2Kk2
U (&) =1+ X 52 —k§3

and a singular solution

~ ~ B 1 r2k2
U(&Q) =U(£Q)Log §+ +§—5 7—1

e

2 (Srzk2
"3\ 36

(37)

(38)

(39)

..} recursively by equat-
ing the coefficients o™ in (37) with zero. Since the indicial
equationfg(N\) =0 has a repeated ront0, we obtain a regu-

(40)

(41)

Phys. Plasmas 12, 012107 (2005)

Im(X)

FIG. 1. Singular pointsX=X" and X=X" in the complexX plane. The
Frobenius method develops the solutions in series near these points. The
circles of convergence are indicated by dotted lines, and the inner regions
are, respectively, denoted By andI'". Wavy lines represent the branch
cuts of the logarithmic singularities.

r<Q)={XecC

(42)

The logarithmic function of complex variable, Log is de-
fined on a Riemann surfad&X e C; -7 <argX <}, which
has a discontinuity on a real axis; we will use the formula

Log(x+i0)=log|x| = miY(=Xx) (x e R), (43

whereY(x) denotes the Heaviside functidn.

Next, we take into account the inhomogeneous term
d(x,Q), which includes the arbitrary initial conditiorsand
. The particular solutiotidenoted byNJp) will be solved for
all Q e C\{0}, based on the fact thak(x,) diverges at(}
=0 (or r=0). Substituting arbitrary holomorphic functions
P(X) =20 "E" and Yy(x) == o1 "E", we can also expand
the inhomogeneous term ds=>"_,®,(Q)&", where, for in-
stance,

1
P ()=t —5—— 2 {(Zrd)z‘rkzd)o)

2y 2%)] "
e il (44)

Let us substitute a holomorphic functioﬁlp(g;ﬂ)
=2_Un(Q)¢&" into (33). By comparing the coefficients of

<2r¢2 = rk2yo +

&(n=0,1,..), we obtain
0 EJo 0
f100) fo(1) U | [
(00 f2(1) fo(2) o, =]

f3(0) (1) f1(2) fo(3) 0 ®g

(45)

where we seUq(Q) = 1. The radius of convergence is found N these relations, we may fido(€2)=0 to remove the in-
to be |r|=|X*-X"|, which corresponds to the distance be-definiteness of the homogeneous solutigyi¢; ) from the
tween the two singular points. Supposing that there is a conparticular solution. Then we can determ|r{d=Jn(Q) n

plex planeX with Re(X)=x as shown in Fig. 1, we denote the =1,2,.

interior of the circle of convergence simply by

.} uniquely for any{®,(Q);n=1,2,..}, due to the
fact that the diagonal componenfg(1),fy(2),... are not
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zero and are different from each other. In other words, theionsI'*(Q2) andI""(Q)). For this purpose, we start our analy-
particular solutionU,(&;Q) is found to be holomorphic at sis with the solution neaX” and, from this point of view,

¢=0 for any initial conditions. Although th|$J might be observe the other singularity Af. Noting the formula

singular até=y,, we already know thag=1, is the apparent X2 X3

ingular att= 2 o A=, PP Log(l+X)=X-—+2 . (XelO), (51)
singularity, and therefor¥,=a(y,—£U, must be holomor- 2 3
phic in T*(Q).

we can rewrite the homogeneous solutiond™1if()) as

. . 2 2
C. Singularity at € o, \{0} U(e0)=1 +r2{szz— |1<_8§3 N ] (52)
Using T/r,s,p(g;Q)za(yz—g)ﬁrvsyp(g;ﬂ), the general so-
lution is represented by =1+0(Q), (53
V(x,Q) = CHOV,(£Q) + CHQ)V(£Q) - -
~ N Us(&:Q) =U,(§Q)Log £~ Log (1 +§)
+Vp(£,Q) inT*Q). (46) 2 52
The coefficientsC(Q)) and C%(Q)) are determined by the + fz{‘ Z§2— mf— } (54)
following consideration. For() e C\o., the domain of
V(x,Q) can be extended t@8) by the analytic continuation. x— X+
By imposing the boundary condition =|-09X_ v o), (55

V(-L,0)=0, V(L,,Q)=0, (47)

the coefficientsCr(Q) and C;({2) are uniquely determined,
for Q) belongs to the resolvent séto.

Let us investigate the limits o¥(x,w+i0) and V(x,w
-i0) for w € o.\{0} (the casew=0 will be discussed latgr
In this case, the two singular poin¥" and X~ approach,

respectively,x": =w/(a+B) and X : =w/(a—-p). Sincef/s

whereé=(x-X*)/r, andO(Q) represents the terms that con-
verge to zero uniformly if*(Q) for the limit of Q—0 (or
r —0). The function(55) describes how two logarithmic sin-
gularities collide in this limit.

At the same time, foK)— 0, the inhomogeneous term
d(x,Q) diverges in proportion to X} unlessi,=0. By mul-
tiplying both sides 0{33) by (), we obtain

has a branch cut in the compléxplane as shown in Fig. 1, 2 28+
there is discontinuity due to the logarithmic tefsee(43)], eaqol)ve, £t ag(QU)
V& w+i0) # V& o ¢ n-¢
V& o +i0) # V(£ 0 =i0), (48) =% 1ﬁ¢o+ o(r). (56)
which causes, in general, @
CHw+i0) # C:(w=10), Ci(w+i0) # CX(w—i0). After some considerations, we find that
~ _ Y
(49) QU Q)= 5" +Oln) (57)
~ Y2
Then the Fourier transforim,(x, w) given by(31) has singu- . .
larities of logx—x%| and Y(x-x*). This result is qualitatively IS @ particular solution. It follows that
the same as the conventional Alfvén singularity without flow - a -
which was studied by Barstdrtiasegawa and Uberdi.The QVy(£Q) = /—glﬂo +0(r) in I'(Q). (58

inverse Laplace transform leads to phase-mixing damping

«1/t (see also Ref.)7
Using this resultB(x,(}) is easily obtained by
- BXV(X,Q) + (X)

BxQ)=—— ———. (50)

From these results, we successfully extract the singular-
ity of V(x,Q)) in the neighborhood of)=0. The general
solution nearx=X" is represented by

+

QOV(x,0) = CHO)(Q - ax) + CHQ)(Q - ax)Logi —
For the limit of Q — w € ¢, \{0}, the singularity of~B(x,Q) is

- a .
essentially the same a&x,(). + El//o +0(Q) in I'"(Q). (59
D. Singularity at =0 Substituting this intq26), we get

Within the continuous spectra, the casea_nfo requir_es QE(X,Q) = - C/(Q) Bx— C(Q) Bx Logx_ Xi iy
more careful analysis. Whefd — 0, the two singular points X=X
x=X"andx=X" collide with each other on the rational sur- +0(Q) in THA). (60)

facex=0, and the radius of convergencebecomes zero. In
this case, we must deal with the two singularities at once tThese Laplace-transformed variablgéx, Q) and B(x,Q)
obtain the SO|utIOI’V (x,Q) which is consistent in both re- have the same singularity and include(Livhich must be
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FIG. 2. In the case ofs>|a|>0, X" and X~ approach thex axis from,
respectively, the upper and lower half-planes wkkn: +i0.

distinguished from an isolated pole in that it has the logarith-
mic singularities in the numerator. This complicated singu-
larity at =0 is closely related to the magnitude relation of

a andpg.

If the magnetic shear is stronger than the flow shear

(Je|<18]), the two singular point<* and X~ approach the
origin from opposite sides of the=ReX) axis for the limit
of ) — #i0 (see Fig. 2 Let us assumg>0 (the case of
B<0 can be discussed in the same mannEne definition
X5(Q)=Q/(axp) implies that the limit ofQ— +i0 corre-
sponds taX*— +i0 andX™— Fi0. Then we get

[QV( D)o i
=-C(+i0)ax - C;(iiO)axLog))(( i iig + %qfo (61)
=— C'(i0)ax+ C!(2i0)ax2miY(- X) + %%. (62)

It is important to note that this equality is valid only in the
infinitely small region I'*(+i0). The whole solution in
[-L4,L,] will be attained by the analytic continuation which
is always possible in the domai28). By multiplying the
equations in(26) by Q and taking the limit of(0— 0, we
note that

ALOV(X,Q)]a +i0=0 in [~ Ly, L]\ {0} (63
must be satisfied except in the casexef0. The solutions of
(63), a linear combination o€ ande™* can be connected
with the local solution(62) at x=0, which determines
C/(£i0) and C(+i0). Taking the boundary condition into
account, we obtain

[OV(x,D)]g_si0= %,z/fog(x), (64)

where

Phys. Plasmas 12, 012107 (2005)

Im(X)

Re (X) =x

L2

FIG. 3. In the case ofr> >0, X* and X~ approach the axis from the
same direction whef) — +i0.

sinh(— kL; — kx) e
o sinh(— kL) (CLi=x<0), o5
g(x): = sinhkL_, - k) 0exely (65)
sinh(kL,) -
Similarly, we obtain
[OBOCQ)]o-si0 = #6909 (66)

By the inverse Laplace transform, the asymptotic behavior
(t— ) is represented by

T(x,1) — %Bx<o,0)g(x), (67)

by(x,t) — b,(0,0/g(x), (68)
where we usede:iEX(O,O). The convergence speed is char-
acterized by=1/t according to the result in the preceding

section. We conclude that(x,t) and Bx(x,t) converge to
functions that have a derivative jumpat 0. Especially, the

value ofb,(x,t) at x=0 remains constant, which can be con-
firmed by viewing(26) only atx=0. Even if we consider the
case ofa=0 (no flow sheay, the above result is applicable
and we obtairv,(x,t)— 0 instead of(67).

When the flow shear exceeds the magnetic sligdr
>|g8|), the singularities 0f59) and (60) change drastically.
Since the signs of iX*) and In(X") are the same, the two
singular points approach the origin from the same side of the
x axis. For example, in the case @f> >0, bothX* andX™
approach from the upper half-plane far—i0, and from the
lower half-plane for{)—-i0 (see Fig. 3. Then one of the
two linearly independent solutions {®9) disappears due to

+

L X+
— LO
- gx_

X=X

i0
i0

Log =0 (Q— #i0). (69)

This situation must be avoided by the divergence of the co-
efficientCZ(Q) =« 1/, which recovers a linearly independent
solution. It follows that
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[OV(X, )] _+i0= - C} (£i0)ax — Cy(+i0)al x(x) - 1]

+ %% in T*(+i0), (70)

where we seC,(Q)=rC(Q) and
)1 (x=0), 71
X): = 0 (x#0). (72)

The continuation between the solution @3) and (70) re-
sults in

mwx,m]ﬂﬁﬂozg%nx). (72)

Therefore, the inverse Laplace transform gives,tfercwo,

T(x,0) — %BX(O.O)W), (73)

by(x,t) — b,(0,0) x(x). (74)

We conclude thad,(x,t) ande(x,t) converge to zero almost
everywhere.

E. Algebraic growths of slave variables

Phys. Plasmas 12, 012107 (2005)

For ¢+(0)#0 and zﬂo:iBX(O,O)a&O, the singularity of
1/Q(X*-x) brings about a localized algebraic growth»at
=0. The most dominant asymptotic behavior is, therefore,
estimated by

_ ai(axpB)xt -

Si(x,t) ~ 1=(0)b,(0,0). (79
By going back tof,=(S,+S.)/2 andj,=(S.-S,)/2, we
can conclude thaiv, andTX increase remarkably near0.
Given that we supposédd-B(0)=0, the parallel components,

7, andBH, with respect toB increase in proportion to, as
follows:

0(0,t) =W (0,1)/ik o« t, (80)

by(0,t) =(0,t)/ik o< t. (81)

If there is no shear flowya=0), the growths of R@w,) and
Im(TX) vanish and only the parallel motids), increases in
proportion tot.

By viewing the generator ofl7), we note that, among
the four Alfvén waves M, (or M_) acts onS_ (or S,) that
propagates in the opposite direction. That is why the resonant
interaction occurs only at the zero frequeney 0, while the
four continuous spectra degenerate in the regip o.

Finally, the slave equations are solved by using the result

of V(x,Q). The Laplace transform oM.=v,+ b, is given

by

~ (@ F HX=XWV(XQ) F ¢fX)
Q- ax '

LIM.](x,Q) = (75)
We note that either of the two logarithmic singularities,
Log(x—X*) or Log(x—X"), of V(x,Q) is smoothed by the
multiplication of (x—X¥). Plugging this into the Laplace-
transformed slave equations, we obtain

£[8,]=- ;_(’2)( V) £ ot ‘(”ixi T
+ |—S*(X’ 0 (76)
Q- (axp)x

The inverse Laplace transform of the last term on theb

right-hand side yields the solution
Si(x,0)g7 (e*Ax (77)

IV. SUMMARY

The system of linearized equations governing the fluc-
tuations in ideal MHD has a non-self-adjoint generator with
essential singularities. The resonant interaction among the
four Alfvén continuous spectra causes an algebraic instability
localized on the rational surface=x, wherek -B(x;)=0. The
initial fluctuation of magnetic field on the rational surface,

i.e., b(x,0), plays an essential role, which has been as-
sumed to be zero in the stability analysis of the Lagrange
displacemenisee(4)].

The physical mechanism of this instability can be under-
stood as follows. If we have an ambient magnetic shear and
no flow, the fluctuation on the rational surface does not in-
flect the magnetic field line and remains temporally constant
ecause no force acts on it. In the equation of motion, the
electromagnetic force produced by this fluctuattyfx, , 0)
and the ambient current constantly accelerates the parallel
motion(x; ,t) with respect tdB, or, equivalently, the ambi-

which shows the phase mixing due to the Alfvén continuum€nt pressure gradient along the magnetic field accelerates it,

and always exists even if the master variables are initiallyVhich yields the algebraic growtf, (x;,t)=t. In order to
zero. avoid this algebraic instability, it is required that the condi-

The first term in(76) represents the response to the masion [B’(x) xk]-&=0 must be satisfied for arbitrary wave
ter variables. The singularity of this term 8t=w € 0, \{0} ~ Numberk, which is equivalent to the condition

does not yield algebraic growth of,. However, there is a 1B\’
strong singularity af}=0, for the substitution 0f59) leads Ty (%) ==P'(x)=0. (82
to
+ Therefore, the pressure gradient on the rational surface must
L;(X) + + X=X ‘/fo
L[S, ]=- C/(Q) +C{(Q)Log — + ~ be zero.
X=X BX* =% In the presence of flow, this algebraic behavior under-
S.(x,0) goes a Doppler shiftp(x,,t) cte™r, where w,=k -V (x,).
+0(Q) [ + im in T*(Q). (78)  The advection of fluctuations by mean shear flow yields the
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W77 ooy Laplace transform, complicated singularities far from simple
of e ; ; ;
ok poles appear in the Dunford integral path. The translation
7k from the initial value problem into the normal modes analy-
st sis is generally difficult because it requires the spectral reso-
Y st lution of a non-self-adjoint operator, and we must generalize
ar the notion ofnilpotentfor degenerate continuous spectra. In
2 our model, the algebraic behavior of the solution arose from
.k the coalescence of Alfvén singularities. The rigorous spectral
ob— . 4 PR theory for this non-self-adjoint system will be discussed else-
-1 -08 -06 -04 -02 79: 02 04 06 08 1 where.

FIG. 4. Contour plot ob,(x,t)é% at t=40 with the parametera=0.5, 8 ACKNOWLEDGMENTS
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algebraic growth oby(x;,t) o<t in addition tov(x;,t) «t. The 14102033,

algebraic instability we have shown can be more importan
than that of Lau and Lid/"8 for the growth of the latter
instability is transient and saturated in a finite time.
Asymptotic behavior of the master variableg(x,t) and
by(x,t), changes discontinuously when the flow shéay In general, let us write a linear system in the form of an
exceeds the magnetic sheg. It is interesting to note that evolution equationidf=/Kf wheref denotes a variable and
for large B,(=cons} and smallk,, the master variables are, K a linear operator.
respectively, similar to the stream function and the flux func- ~ When the space of variables has a finite dimension
tion in the reduced MHD theorgsee Appendix & For weak ~and K is a matrix, the solution is definitely given by the
flow shear(|a|<|3]), the asymptotic behavior given ig7)  linear algebra as follows. A matrix is calle®misimplef it
and (68) represents the generation of a magnetic island a§an be transformed into a diagonal matrix,
shown in Fig. 4. On the other hand, for strong flow shear w;
(Ja|>18]), the asymptotic behavior makes the transition to
(73) and (74), where the stretching effect of shear flow de- pPixp=
stroys the magnetic island as shown in Fig. 5. The ratio
B?la? is called the magnetic Richardson number, which is o,
known as an important parameter also in the normal modeg using a set of eigenvector®=(vyv,-v,), where
analysisl.l In real plasmas, such a time evolution into a sin- y 9 incl g ted 172 ’l‘ ' A self
gular structure is avoided by the dissipation effect. Ourworkwé.’ “.’Z't"' ';"!‘ ’.“ayl Inciude rgpeale Felgenva ues. | s€ -
is, however, useful for understanding the universal behavio? joint matrix s aways Semisimpie. -or a semisimple gen

erator/C, the solution is represented by a linear combination

of fluctuation; the generation of a magnetic island and theOf the exponential behavioqe‘iwit.

stretching effect of shear flow. We clarified that the structure . . .
A general matrix does not assume the diagonalized form

of the magnetic island is closely related to the Alfvén con- S . .
. o o Al), while it can be always cast into a Jordan canonical
tinuous spectrum and is identified as the coalescence of tWorm 19

Alfvén singularities. '

APPENDIX A: NON-SELF-ADJOINTNESS
OF EVOLUTION EQUATION

“2 . (A1)

From a mathematical point of view, if the initial value w +N
problem of a non-self-adjoint system is solved by the w,l +N
PKP= , , (A2)
10— 7 oyl +N
S ! . .
st where generallyn<n. The w;l +N appearing on the diagonal
7} 1 line denotes an; X n;, block,
6: ,,L
Y st w 1
a} AR .
sk i ol +N= , (A3)
o wi 1
2f j
1 [/ [ (J)J
PN A AdlSHASREPLI
-1 08 -06 04 02 0 02 04 06 08 1 where | denotes unit matrix andN is called thenilpotent

oAs

matrix. In other words, a general matrix can be decomposed
FIG. 5. Contour plot ofb,(x,1)eY at t=40 with the parametera=1, 3 !nto_a sen_1|5|mple part and a nilpotent part, and the diagonal-
=0.5,k,=1, and[-L,,L,]=[-1,1]. ization fails due to the latter. In the presence of then;
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block, corresponding eigenvectors show algebraic behavior (2) Im(Q)
such ast‘e™®i (k=0,1,2,...n;—1). Physically, the alge-
braic growth of amplitudes implies thresonanceof oscilla- C
tors with a common frequency. A nilpotent matrix is, thus, /\7\ Re(Q)
the mathematical representation of the resonant interactions o oe
in degeneratécommon eigenvalyemodes. \\J
In the case of infinite dimensionélinctiona) space, the

Von Neumann's theoreffi enables spectral resolution of any
self-adjoint operatoiC, where we may observe a continuous
spectrum in addition to point spectra. However, we do not (b) Im(Q)
have a general spectral theory for non-self-adjoint operators
in functional space. The resonant interaction among degen-
erate continuous spectra yields much more spatially and tem- Re(Q)
porally complicated behavior than degenerate point spéctra. _‘Eji_’
In plasma physics, inhomogeneity of equilibrium causes
a continuous spectrurfe.g., shear flok? magnetic shed,
gradient of plasma densi?g?, and so ol Then, in the normal
modes analysis, the eigenvalue problem becomes a differen-
tial equation and the continuous spectrum is related to a si -IG. _6. Translation fr_on(a) the Laplace transfornithe _initial value prob-
. . . . . em) into (b) the Fourier transfornithe spectral resolution
gular point. We can formally obtain singular eigenfunctions
corresponding to the continuous spectr(for example, Van
Kampen mod#&). Although Cas# and Sedl&el® discussed
the equivalence of two approaches, the normal modes analy- f f(x)dx: = —3& F(z)dz, (B4)
sis and the initial value problem, the continuous spectrum D ¢
they considered seems to bemisimpleIn this paper, we \here the integral pathi(D) encirclesD counterclockwise.
solve an initial value problem by using the Laplace trans-  now we consider a general evolution equatioff=Kf
form; the normal modes analysis is not well defined for de-¢ i, Appendix A. For simplicity, lef has a bounded con-
generate continuous spectra that might conceall@tent i ous spectrunar,, on the real axis. The solution is repre-
part. sented by the Dunford integrédr the inverse Laplace trans-
form) which encircleso, [see Fig. 6a)],

APPENDIX B: HYPERFUNCTION THEORY

_ _ _ f(t)=- 1 iR(Q)F0)e™dQ, QeC, (B5)
Generalized functiongsuch as delta functionsare de- 27 J (o)
fined by two approaches; Schwartz’s distribution theory and
Sato’s hyperfunction theory. We invoke the latter in this pa- 1 - ot
per because it clarifies the relation between the Laplace = o C(U)F(Q)e dQ, (B6)

transform and the Fourier transforimyhich enables us to
analyze the continuous spectrum rigorously. where R(Q)=(Q-K)! denotes the resolvent operator and
Let B(D) be the set of all hyperfunctions on the domain g(())=iR(0)f(0) the Laplace transform ofit). By regard-

D CR. We introduce a regiot CC in the complex plane . =~ L . ,
; ng F(Q)/27 as a defining function, we obtain a hyperfunc-
such thatD C U and denote the set of all holomorphic func- I_ g (/2w ning function, w ' yperiu

tion onU by O(U). Each hyperfunction iB(D) is uniquely 10N f(®) € Blae) which satisfies

defined by a element ofO(U\D)/O(U), i.e., B(D) - gy
=O(U\D)/O(U). Formally, we may define a hyperfunction f(t) :f fw)e™ do. (B7)
f(x) e B(D) by taking the difference of the boundary values e
of F(z) e O(U\D) like In other words, we deformef(o,) into the vicinity of o,
o . : [Fig. 6b)]. The integrandf(w) is the Fourier transform of
f69: = EILnJO[F(X-'- le) ~Fx~ie)] (B1) f(t) and is expected to represent singular eigenfunction cor-
responding to the continuous spectrum. Since the spectral
=F(x+i0) - F(x - i0), (B2) theory is not established i is non-self-adjoint, we must

derive f(w) rigorously as stated above and the eigenvalue
whereF(z) is holomorphic everywhere id except orD and problem(w—lC)f(w):O is not valid.
calleddefining functionFor example, the delta functiaf{x)
and the Heaviside functionY(x) are defined byF(Z) APPENDIX C: NORMAL VELOCITY AND NORMAL
=-1/(2miz) and F(z2)=-Log(-2)/(2mi), respectively. The vORTICITY

derivative and integral of(x) are calculated in terms of the

defining function The normal velocityv, and the normal vorticityw, are
' commonly used in fluid mechanics to represent three dimen-
f'(x):=F'(x+i0)—F'(x-1i0), (B3) sional incompressible fluctuations with only one independent
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variablex."® The definition off,=i(k,,~k,) and the con-  obtain V, which must also be holomorphic dtx,Q);Q
dition V-V=0 allow us to calculate the other velocity com- — 4x=0}. It follows that the conditiorf2—ax=0 in (27) does

ponents, not yield singularity, which is so called the apparent
: 16 ; ; ;
 KOT AR KdD, — K singularity.” We can confirm this fact by applying the Frobe-
Uy = |—yx’|((2—zx, v, =i );(2 = (C)  nijus method tq27) nearx=Q/a.

In the same manner, we can find that the poirD is
These variables, andW, recover the Clebsch representation also an apparent singularity @b1).
in the following special cases. K,=0, we obtain
M. Hirota, T. Tatsuno, S. Kondoh, and Z. Yoshida, Phys. Plasgdd77
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