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Conventional normal mode analysis often falls short in predicting a variety of transient phenomena
in a non-self-adjoint(non-Hermitian) system. Laplace transform is capable of capturing all possible
behavior in general systems. However, degenerate essential spectra require careful analysis. The
Alfvén wave in a flowing plasma is an example in which the coalescence of the Alfvén singularities
yields nonexponential growth of fluctuations. Invoking hyperfunction theory, rigorous expression of
the Laplace transform leads to an accurate estimate of the asymptotic behavior of resonant singular
modes. ©2005 American Institute of Physics. [DOI: 10.1063/1.1834591]

I. INTRODUCTION

Waves and instabilities in plasmas are far richer than
those observed in fluids, solids, or various continuous media.
Dynamical representations of perturbations are beyond the
scope of conventional normal mode analysis—a perturbation
usx,td may not assume the form ofusx,td=e−ivtcsxd; hence,
we cannot replace]t with −iv in the determining evolution
equations.1 In analyzing a variety of transient phenomena in
plasmas, we encounter two difficult problems that require
careful mathematical considerations. One is the general non-
self-adjoint(non-Hermitian) property of plasmas. When plu-
ral branches of waves overlap in some ranges of frequencies,
these waves may interact through resonance(because the
modes are notorthogonal), resulting in algebraic(secular)
amplification of the wave. The other is the existence of vari-
ous continuous spectra(essential singularities in the disper-
sion relation). Resonance between continuous spectra is not
as simple as those in point spectra(eigenvalues), because we
must analyze singular eigenfunctions(see Ref. 2 and Appen-
dix A).

As is well known, Laplace transform is capable of cap-
turing all possible behavior in general systems. However, the
inverse Laplace transform(equivalent to the Dunford inte-
gral of the spectral theory) is not easy when multiple con-
tinuous spectra are degenerated. In the present paper, we
invoke the hyperfunction theory3,4 to provide a rigorous basis
for dealing with singular eigenfunctions(see Appendix B).
The theory reveals a natural relation between the Fourier
transform (characterizing the eigenfunctions) and the
Laplace transform(defining the solution of an initial value
problem). We can derive an accurate estimate of the
asymptotic behavior of resonant singular modes, which was
left out in earlier theories.5–7

The subject of our analysis is the Alfvén waves governed
by the ideal magnetohydrodynamics(MHD) equations. Lin-
earizing the MHD equations around an equilibrium with ve-
locity V, magnetic fieldB, and pressureP, we obtain an

evolution equation for the fluctuation partsṽ, b̃, and p̃,

i]t f = Kf, f = tsṽb̃p̃d, s1d

where the generatorK is a linear differential operator. We
will solve the initial value problem of(1) by assuming in-
compressibility.

Note that the non-self-adjointness discussed here is not
peculiar to flowing plasmas, since the well-known self-
adjoint property of static plasmas is attributed to the

Lagrange representation. Introducing the Lagrange variablej̃

as ṽ=]tj̃+V ·¹ j̃− j̃ ·¹V, (1) is reduced to

]t
2j̃ + 2V · ¹ ]tj̃ = Fj̃, s2d

whereF is a self-adjoint operator under appropriate bound-
ary conditions.8,9 If the equilibrium is not flowingsV ;0d,
the evolution ofj̃ is generated by onlyF. Due to Von Neu-
mann’s theorem of the spectral resolution of the self-adjoint
operator,10 we can invoke the normal mode(spectral) analy-
sis of F to generate the solution of(2). The MHD stability
analysis is, therefore, conventionally based on the dispersion
relation where time derivativesi]td is replaced by eigenvalue
svd.

However, in deriving(2), we have assumedhomoge-
neousinitial conditions which satisfy

fp̃ + j̃ · ¹ P + gP ¹ · j̃gt=0 ; 0, s3d

fb̃ + ¹ 3 sB 3 j̃dgt=0 ; 0, s4d

whereg denotes the specific heat ratio. Hence, the solution
of (1) is wider than that of(2), and K is no longer self-
adjoint even for static plasmas. In this paper, we will show
complicated algebraic growth of fluctuation by solving(1).

In Sec. II, we will formulate the evolution equation in-
cluding the effect of shear flow. We consider an equilibrium
with slab geometry, which is inhomogeneous only in thex
direction. Assuming incompressibility, the fluctuations can

be represented by four variablesf = tsw̃x j̃x ỹx b̃xd. Writing

f1= tsw̃x j̃xd and f2= tsỹx b̃xd, the evolution equation can be
cast in a block form,
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i]tS f1

f2
D = SK1 N

0 K2
D S f1

f2
D , s5d

where K1, K2, and N are linear operators in 232 matrix
forms. As we will see later, the operatorK2 has only real
continuous spectra,sc

+=hva+sxd ;xPDj and sc
−=hva−sxd ;x

PDj, representing the(Doppler-shifted) Alfvén waves,
whereva+sxd andva−sxd denote the local Alfvén frequencies
associated with the two propagation directions along mag-
netic field, and there is no unstable point spectrum under
certain conditions proposed by Barston5 and Stern.11 If the
domainD is bounded, i.e., the thickness of the slab is finite,
K2 is a bounded operator. It will be shown that the operator
K1 is a multiplication operator and has the same spectrum as
K2. Since these four continuous spectra are degenerating and
the generator has an off-diagonal elementN, we can expect
algebraic growth off1 by analogy with the Jordan block in
linear algebra. However, the nilpotent among continuous
spectra is not mathematically resolved, and we therefore
must solve the initial value problem.

In Sec. III, the initial value problem will be solved by
using the Laplace transform. The major part of this section
will be devoted to solving

i]t f2 = K2f2. s6d

Barston,5 Sedláček,6 and Tataronis7 considered the math-
ematically equivalent problem without ambient flow, where
the continuous spectra do not receive the Doppler shift;sc

±

=h±vasxd ;xPDj with vasxd : =va+sxd=−va−sxd. They as-
sumed thatva

2sxd.0 for all xPD, which implies thatsc
+ and

sc
− are disjoint. In this case, as Sedláček pointed out, the

Laplace transform can be translated into the normal modes
analysis.

The normal modes analysis does not give a correct solu-
tion if there is a pointxr that satisfiesvasxrd=0. In the pres-
ence of thisxr (so-called rational surface), the forward and
backward Alfvén continuous spectra(sc

+ and sc
−) overlap.

Then we encounter a complicated singularity on the rational
surface, which implies a resonance between the two continu-
ous spectra at zero frequency in the subsystem(6). The hy-
perfunction theory enables analysis of this singularity. As a
result, we will find that the solutionf2 asymptotically
evolves into a standing wave that yields a magnetic island.
This phenomenon was omitted in the earlier works7,12 where
the Alfvén waves(except for zero frequency) receive the
phase mixing damping. The standard analysis based on
Lagrange representations excludes this solution because of
the assumption(4).

The effect of flow becomes essential if the gradient of
the flow shear exceeds that of the magnetic shear. Our analy-
sis will prove that the magnetic island cannot survive in such
a strong shear flow.

In the end of Sec. III, the equation forf1 will be solved
by using the givenf2. We will observe an algebraic growth
localized on the rational surface, which can be understood as

a resonance among the four Alfvén continuous spectra. The
physical explanation will be discussed in the summary.

II. GENERAL MODEL OF ALFVÉN WAVES

We formulate a system of equations that describes the
Alfvén waves in inhomogeneous ambient magnetic field and
flow. The incompressible ideal MHD equations read as

]tv + sv · ¹dv = − ¹ p +
1

a2F− ¹
ubu2

2
+ sb · ¹dbG , s7d

]tb + sv · ¹db = sb · ¹dv, s8d

¹ ·v = 0, ¹ ·b = 0, s9d

wherev, b, andp denote velocity, magnetic fields, and pres-
sure, respectively. The mass density is assumed to be con-
stant. Variables are in the standard Alfvén units. The scaling
parametera denotes the Alfvén Mach number. In what fol-
lows, we choose the representative magnetic field so thata
=1.

We consider an equilibrium with slab geometry,

Vsxd = s0,Vysxd,Vzsxdd, Bsxd = s0,Bysxd,Bzsxdd,

andPsxd + uBsxdu2/2 = const. s10d

Since the equilibrium may have strong magnetic shear, we
do not invoke the reduced MHD approximation, but consider
all components of the vector field in the fluctuation part
which depend on all coordinates. The essential independent
variable is, however, onlyx due to the homogeneity of the
equilibrium in they andz directions. We may introduce wave
numbers,ky andkz, and substitute the following expressions
into (7)–(9):

v = Vsxd + ṽsx,tdeiskyy+kzzd, s11d

b = Bsxd + b̃sx,tdeiskyy+kzzd, s12d

p = Psxd + p̃sx,tdeiskyy+kzzd. s13d

For these fluctuations, the use of so-callednormal velocity
and normal vorticity is more convenient(see Appendix C).
By introducing thex component of vorticity and current as,
respectively,

w̃x = ikyỹz − ikzỹy and j̃ x = ikyb̃z − ikzb̃y, s14d

the four variablesỹx, w̃x, b̃x, and j̃ x can reproduce all com-

ponents ofṽ and b̃.
Now we linearize(7)–(9). By taking the divergence of

(7), we obtain the linearized Poisson equation

Dp̃ + DsB · b̃d = − 2ik ·V8ỹx + 2ik ·B8b̃x, s15d

wherek =s0,ky,kzd and a primes8d denotes thex derivative.
Using (15), we can eliminatep̃ from the system(i.e., p̃ is not
an independent variable). After some manipulations, the lin-
earized equations are written in the matrix form of
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i]t1
w̃x

j̃x
Dỹx

b̃x

2 =1
k ·V − k ·B − sV8 3 kd ·exD

−1 sB8 3 kd ·ex

− k ·B k ·V − sB8 3 kd ·exD
−1 sV8 3 kd ·ex

0 0 k ·V − k ·V9D−1 − k ·BD + k ·B9

0 0 − k ·BD−1 k ·V
2 1

w̃x

j̃x
Dỹx

b̃x

2 . s16d

whereD=]x
2−k2 with k= uk u, andex=s1,0,0d is the unit vector. By considering a domainD,R with a Dirichlet boundary

condition, the operatorD−1 is uniquely given as a convolution integral.

In terms ofM±= ỹx7 b̃x andS±=w̃x7 j̃ x, (16) reads as

i]t1
S+

S−

DM+

DM−

2 =1
va+ 0 0 − i−D−1

0 va− − i+D−1 0

0 0 va+ + va+8 ]xD
−1 − v8a−]xD

−1 − v9a−D−1

0 0 − v8a+]xD
−1 − v9a+D−1 va− + v8a−]xD

−1
2 1

S+

S−

DM+

DM−

2 , s17d

where va±sxd=k ·Vsxd±k ·Bsxd and i±sxd=fV8sxd
3kg ·ex± fB8sxd3kg ·ex. If the ambient fields are uniform
[Vsxd;const andBsxd;const], the generator is reduced to a
diagonal form, and therefore each variable oscillates inde-
pendently with the frequencyva+ or va−. The variablesM±

andS± correspond to the Alfvén waves polarized in the two
directions perpendicular toB, and the subscripts + and −
identify the propagation directions.

Inhomogeneity of the ambient fields causes interactions
between two polarized waves. The behavior ofM± is not
affected byS±, while S± is forced byM±. In this paper, the
lower two equations and the upper two equations in(17) [or
(16)] will be referred to asmasterequations andslaveequa-

tions, respectively, and we callM± (or ỹx and b̃x) master
variables andS± (or w̃x and j̃ x) slavevariables.

If we consider normal modes such asỹxsx,td= ỹxsxde−ivt,

the master equations are combined, by eliminatingb̃x, into

d

dx
F„v − va+sxd…„v − va−sxd…

dũ

dx
G − k2

„v − va+sxd…„v

− va−sxd…ũ = 0, s18d

whereũ= ỹx/ sv−k ·Vd. This Sturmian equation becomes sin-
gular if vPsc=sc

+øsc
−, where sc

+ and sc
− are defined by

sc
±=hva±sxd ;xPDj and correspond to the(Doppler-shifted)

Alfvén continuous spectra. For a static equilibriumfVsxd
;0g and any functionBsxd, Barston5 considered a math-
ematically equivalent problem to(18) and proved that there
is no spectrum in addition tosc. Even in the presence of
flow, we can prove by applying Stern’s result,11 that expo-
nentially growing or damping modesv¹Rd does not exist if

uk ·Vsxdu ø uk ·Bsxdu s19d

is satisfied everywhere in a certain inertial frame. Even if
(19) is violated, the system might be still free from the ex-
ponential growth mode. For example, if bothk ·Vsxd and
k ·Bsxd are linear functions ofx, there is no drive for the
Kelvin–Helmholtz instability. We are interested in the con-
tinuous spectrum, and therefore consider only stable equilib-
ria in the sense of the dispersion relation.

The slave equations have the same continuous spectrasc
+

and sc
− due to the multiplication operatorva±sxd in (17).

Therefore, the evolution equation has four degenerate con-
tinuous spectra in total. Given that the mathematical struc-
ture of (17) is similar to that of Orr–Sommerfeld and Squire
equations13 in fluid dynamics, we can expect the algebraic
instability to be caused by the resonant energy transfer from
the master equations to the slave one. For example, if we
substitute the special configuration

V = s0,0,0d, B = s0,0,xd, ky Þ 0, kz = 0. s20d

the generator of(16) is reduced to a number matrix that is
called nilpotent in the linear algebra(see Appendix A). Our
linear system is, therefore, non-self-adjoint even for static
plasmas and the slave variables increase algebraically in pro-
portion to t. This example is too simple because the Alfvén
wave does not propagate and the continuous spectra com-
pletely degenerate into a pointssc=sc

±=h0jd. We will discuss
a less trivial problem in the next section, where the four
Alfvén continuous spectra yield spatially and temporally
complicated behavior. Compared with our problem, the Orr–
Sommerfeld and Squire equations have only point spectra
due to the viscosity, and then the eigenvalue problem is ap-
plicable based on some general theories like Ref. 14. In our
system, however, we must solve the initial value problem
directly because there is no theory for the non-self-adjoint
system with degenerate continuous spectra.

Before ending this section, we make a comment on the
effect of the compressibility. If we consider a compressible
plasma, we must include two other variables into the system,
viz., the pressure perturbationsp̃d and the other component
of velocity perturbation(say ikyỹy+ ikzỹz). The six variables
are generally coupled and no longer decomposed into the
master and slave variables as in(17). The continuous spectra
that we found in the master and slave equations, then, appear
as the slow and Alfvén continuous spectra, respectively.
Since the frequency of the slow wave coincides with that of
the Alfvén wave on the rational surface, the degeneracy of
the four continuous spectra still exists, and hence, the special
configuration given by(20) will cause the algebraic growth
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of ỹz even if we take into account the compressibility. Al-
though the similar transient behavior is expected, the analy-
sis of the compressible case is generally involved.

III. ANALYSIS OF ALGEBRAIC BEHAVIOR

In the following analysis, we will solve the initial value
problem of (17) by assuming linear profiles of the ambient
magnetic field and flow. Let one rational surface exist in the
domain and thex coordinate be chosen so that the surface is
located onx=0. In an appropriate inertial frame, we may
assumek ·Vs0d=0 without loss of generality. Thus, we have

k ·Vsxd = ax, k ·Bsxd = bx sa,b = constd. s21d

In this coordinate system, we consider a finite domainx
P f−L1,L2g sL1.0,L2.0d with the Dirichlet boundary con-
dition

ỹxs− L1,td = ỹxsL2,td = 0, b̃xs− L1,td = b̃xsL2,td = 0 s22d

for all t. Finally, we assume that the initial conditions are
holomorphic functions onf−L1,L2g. The Alfvén continuous
spectra discussed in the preceding section are represented by

sc
+ = hv P R;v = sa + bdx,x P f− L1,L2gj, s23d

sc
− = hv P R;v = sa − bdx,x P f− L1,L2gj. s24d

We denote the spectrum of the evolution equation bysc

=sc
+øsc

−, for there is no other spectrum. This linear system
is stable with regard to the dispersion relation(all v are real
numbers).

Because the spectrumsc is a bounded set, we can apply
the Laplace transform defined by

Lfṽxsx,tdg: =E
0

`

ṽxsx,tdeiVt dt, s25d

whereVPC must satisfy ImsVd.0 andsc lies on the real
axis of the complexV plane.

By making use of the master-slave structure of(17) [or
(16)], we can solve the master equations independent of the
slave equations. In Secs. III A–III E, we will evaluate the

asymptotic behavior ofṽx and b̃x instead ofM±, since the
master equations of(16) are simpler than that of(17). Using
this result, the slave equations will be solved in Sec. III E.

A. Fourier–Laplace analysis of master equations

In terms of Ṽsx,Vd=Lfṽxsx,tdg and B̃sx,Vd
=Lfb̃xsx,tdg, the master equations are transformed to

sV − axdDṼ = − bxDB̃ + Df,

sV − axdB̃ = − bxṼ+ c, s26d

where fsxd= iṽxsx,0d and csxd= ib̃xsx,0d are holomorphic
functions onf−L1,L2g.

By eliminating B̃, we obtain

fsV − axd2 − b2x2gDS Ṽ

V − ax
D − f2asV − axd

+ 2b2xg]xS Ṽ

V − ax
D = Df − bxDS c

V − ax
D . s27d

This equation becomes singular athsx,Vd ;V−sa±bdx=0j,
which is related to the two continuous spectrasc

±, but it is
important to note thathsx,Vd ;V−ax=0j is not a singularity
of (27) (see Appendix D). In general, we often encounter this
apparent singularity concurrent with the elimination of
variables.15

Let us suppose that we have a solution of(27). By the

Cauchy–Kovalevsky theorem, the solutionṼsx,Vd must be a
holomorphic function in

sx,Vd P sf− L1,L2g 3 Cd \ hsx,Vd;V − sa ± bdx = 0j.

s28d

Given that f−L1,L2g3 sC \scd is a subset of(28), this

Ṽsx,Vd is holomorphic for all xP f−L1,L2g as far asV
PC \sc (resolvent set).

The relation between the Laplace transform and the Fou-
rier transform is made clear in the hyperfunction theory(see
Appendix B). Since the spectrumsc is bounded, the inverse
Laplace transform is equivalent to the Dunford integral(or
the double Bromwich integral according to Sedláček6):

ṽxsx,td = −
1

2p
R

Csscd
Ṽsx,Vde−iVt dV, s29d

where the integral pathCsscd encircles the spectrumsc coun-
terclockwise. By deformingCsscd into the vicinity ofsc, we
may write

ṽxsx,td =E
sc

v̂̃xsx,vde−ivt dv, s30d

where

v̂̃xsx,vd =
1

2p
fṼsx,v + i0d − Ṽsx,v − i0dg. s31d

This v̂̃xsx,vd on f−L1,L2g3sc corresponds to the Fourier

transform ofṽxsx,td in a generalized sense, i.e.,v̂̃xsx,vd is a
singular eigenfunction defined by the hyperfunction theory.

B. Solutions near singular points

The singularity ofṼsx,Vd can be investigated by the
Frobenius method.16 However, since(27) has complicated
inhomogeneous terms, we need more careful treatment to
obtain the particular solution and understand its dependence
on V.

We perform the series expansion of the equation in the
neighborhood of two singular points,x=X+sVd and x
=X−sVd, which are defined asX±sVd=V / sa±bd. In the fol-
lowing calculation, we solve both cases simultaneously, us-
ing the double signsx=X±. Let j=sx−X±d / r be a local vari-
able that is scaled by
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r = X+ − X− =
2bV

b2 − a2 . s32d

In terms of this variable,(27) is transformed into

j2DjŨ + j
2j ± 1

j ± 1
]jŨ = Fsx,Vd, s33d

whereDj=]j
2−r2k2 and

Ũsx,Vd = r
Ṽsx,Vd
V − ax

=
Ṽsx,Vd

asg2 − jd
, s34d

Fsx,Vd =
j

sa2 − b2dsj ± 1dr

3FDjf + bsg1 − jdDjS c

asg2 − jdDG , s35d

g1 =
1

2
Sa

b
7 1D, g2 =

1

2
Sb

a
7 1D . s36d

In contrast to the normal modes analysis such as(18),
we have the complicated inhomogeneous termsFsx,Vd.

First, we solve the homogeneous equation of(33) by
setting Fsx,Vd;0. According to the Frobenius method,16

the substitution of the series expansionŨsj ;Vd
=on=0

` ŨnsVdjn+l [whereŨ0sVdÞ0] yields

jlo
m=0

`

o
n=0

m

ŨnsVdfm−nsn + ldjm = 0, s37d

where

f0sld = l2, f1sld = ± l, f2sld = − r2k2 − l, s38d

and

f jsld = − s71d jl for j ù 3. s39d

We can determinehŨnsVd ;n=1,2, . . .j recursively by equat-
ing the coefficients ofjm in (37) with zero. Since the indicial
equationf0sld=0 has a repeated rootl=0, we obtain a regu-
lar solution

Ũrsj;Vd = 1 +
r2k2

4
j2 7

r2k2

18
j3 + ¯ , s40d

and a singular solution

Ũssj;Vd = Ũrsj;VdLog j + F7j −
1

2
S r2k2

2
− 1D

j2 7
1

3
S5r2k2

36
+ 1Dj3 + ¯G , s41d

where we setŨ0sVd;1. The radius of convergence is found
to be ur u= uX+−X−u, which corresponds to the distance be-
tween the two singular points. Supposing that there is a com-
plex planeX with ResXd=x as shown in Fig. 1, we denote the
interior of the circle of convergence simply by

G±sVd = hX P C; uX − X±u , ur uj. s42d

The logarithmic function of complex variable, LogX, is de-
fined on a Riemann surfacehXPC ;−p,argX,pj, which
has a discontinuity on a real axis; we will use the formula

Logsx ± i0d = loguxu ± piYs− xd sx P Rd, s43d

whereYsxd denotes the Heaviside function.3

Next, we take into account the inhomogeneous term
Fsx,Vd, which includes the arbitrary initial conditionsf and

c. The particular solution(denoted byŨp) will be solved for
all VPC \ h0j, based on the fact thatFsx,Vd diverges atV
=0 (or r =0). Substituting arbitrary holomorphic functions
fsxd=on=0

` fnr
njn andcsxd=on=0

` cnr
njn, we can also expand

the inhomogeneous term asF=on=1
` FnsVdjn, where, for in-

stance,

F1sVd = ±
1

a2 − b2Fs2rf2 − rk2f0d

7 S2rc2 − rk2c0 +
2c1

g2
+

2c0

rg2
2DG . s44d

Let us substitute a holomorphic functionŨpsj ;Vd
=on=0

` ŨnsVdjn into (33). By comparing the coefficients of
jnsn=0,1, . . .d, we obtain

1
0

f1s0d f0s1d
f2s0d f1s1d f0s2d
f3s0d f2s1d f1s2d f0s3d

A �

21
Ũ0

Ũ1

Ũ2

Ũ3

A
2 =1

0

F1

F2

F3

A
2 .

s45d

In these relations, we may fixŨ0sVd;0 to remove the in-

definiteness of the homogeneous solutionŨrsj ;Vd from the

particular solution. Then we can determinehŨnsVd ;n
=1,2, . . .j uniquely for anyhFnsVd ;n=1,2, . . .j, due to the
fact that the diagonal componentsf0s1d , f0s2d , . . . are not

FIG. 1. Singular pointsX=X+ and X=X− in the complexX plane. The
Frobenius method develops the solutions in series near these points. The
circles of convergence are indicated by dotted lines, and the inner regions
are, respectively, denoted byG+ and G−. Wavy lines represent the branch
cuts of the logarithmic singularities.
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zero and are different from each other. In other words, the

particular solutionŨpsj ;Vd is found to be holomorphic at

j=0 for any initial conditions. Although thisŨp might be
singular atj=g2, we already know thatj=g2 is the apparent

singularity, and thereforeṼp=asg2−jdŨp must be holomor-
phic in G±sVd.

C. Singularity at v«sc \ ˆ0‰

Using Ṽr,s,psj ;Vd=asg2−jdŨr,s,psj ;Vd, the general so-
lution is represented by

Ṽsx,Vd = Cr
±sVdṼrsj;Vd + Cs

±sVdṼssj;Vd

+ Ṽpsj;Vd in G±sVd. s46d

The coefficientsCr
±sVd and Cs

±sVd are determined by the
following consideration. ForVPC \sc, the domain of

Ṽsx,Vd can be extended to(28) by the analytic continuation.
By imposing the boundary condition

Ṽs− L1,Vd = 0, ṼsL2,Vd = 0, s47d

the coefficientsCr
±sVd and Cs

±sVd are uniquely determined,
for V belongs to the resolvent setC \sc.

Let us investigate the limits ofṼsx,v+ i0d and Ṽsx,v
− i0d for vPsc\ h0j (the casev=0 will be discussed later).
In this case, the two singular pointsX+ and X− approach,

respectively,x+: =v / sa+bd and x−: =v / sa−bd. Since Ṽs

has a branch cut in the complexX plane as shown in Fig. 1,
there is discontinuity due to the logarithmic term[see(43)],

Ṽssj;v + i0d Þ Ṽssj;v − i0d, s48d

which causes, in general,

Cr
±sv + i0d Þ Cr

±sv − i0d, Cs
±sv + i0d Þ Cs

±sv − i0d.

s49d

Then the Fourier transformv̂̃xsx,vd given by(31) has singu-
larities of logux−x±u andYsx−x±d. This result is qualitatively
the same as the conventional Alfvén singularity without flow
which was studied by Barston,5 Hasegawa and Uberoi.12 The
inverse Laplace transform leads to phase-mixing damping
~1/t (see also Ref. 7).

Using this result,B̃sx,Vd is easily obtained by

B̃sx,Vd =
− bxṼsx,Vd + csxd

V − ax
. s50d

For the limit ofV→vPsc\ h0j, the singularity ofB̃sx,Vd is

essentially the same asṼsx,Vd.

D. Singularity at v=0

Within the continuous spectra, the case ofv=0 requires
more careful analysis. WhenV→0, the two singular points
x=X+ andx=X− collide with each other on the rational sur-
facex=0, and the radius of convergenceur u becomes zero. In
this case, we must deal with the two singularities at once to

obtain the solutionṼsx,Vd which is consistent in both re-

gionsG+sVd andG−sVd. For this purpose, we start our analy-
sis with the solution nearX+ and, from this point of view,
observe the other singularity atX−. Noting the formula

Logs1 + Xd = X −
X2

2
+

X3

3
− ¯ sX P Cd, s51d

we can rewrite the homogeneous solutions inG+sVd as

Ũrsj;Vd = 1 + r2Fk2

4
j2 −

k2

18
j3 + . . .G s52d

=1 +OsVd, s53d

Ũssj;Vd = Ũrsj;VdLog j − Log s1 + jd

+ r2F−
k2

4
j2 −

5k2

108
j3 − . . .G s54d

=Log
x − X+

x − X− + OsVd, s55d

wherej=sx−X+d / r, andOsVd represents the terms that con-
verge to zero uniformly inG+sVd for the limit of V→0 (or
r →0). The function(55) describes how two logarithmic sin-
gularities collide in this limit.

At the same time, forV→0, the inhomogeneous term
Fsx,Vd diverges in proportion to 1/V unlessc0=0. By mul-
tiplying both sides of(33) by V, we obtain

j2DjsVŨd + j
2j ± 1

j ± 1
]jsVŨd

= −
j

j ± 1

g1 − j

asg2 − jd3c0 + Osrd. s56d

After some considerations, we find that

VŨpsj;Vd =
c0

bsg2 − jd
+ Osrd s57d

is a particular solution. It follows that

VṼpsj;Vd =
a

b
c0 + Osrd in G±sVd. s58d

From these results, we successfully extract the singular-

ity of Ṽsx,Vd in the neighborhood ofV=0. The general
solution nearx=X+ is represented by

VṼsx,Vd = Cr
+sVdsV − axd + Cs

+sVdsV − axdLog
x − X+

x − X−

+
a

b
c0 + OsVd in G+sVd. s59d

Substituting this into(26), we get

VB̃sx,Vd = − Cr
+sVdbx − Cs

+sVdbx Log
x − X+

x − X− + c0

+ OsVd in G+sVd. s60d

These Laplace-transformed variablesṼsx,Vd and B̃sx,Vd
have the same singularity and include 1/V which must be
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distinguished from an isolated pole in that it has the logarith-
mic singularities in the numerator. This complicated singu-
larity at V=0 is closely related to the magnitude relation of
a andb.

If the magnetic shear is stronger than the flow shear
suau, ubud, the two singular pointsX+ and X− approach the
origin from opposite sides of thex=ResXd axis for the limit
of V→ ± i0 (see Fig. 2). Let us assumeb.0 (the case of
b,0 can be discussed in the same manner). The definition
X±sVd=V / sa±bd implies that the limit ofV→ ± i0 corre-
sponds toX+→ ± i0 andX−→ 7 i0. Then we get

fVṼsx,VdgV→±i0

= − Cr
+s± i0dax − Cs

+s± i0daxLog
x 7 i0

x ± i0
+

a

b
c0 s61d

=− Cr
+s± i0dax ± Cs

+s± i0dax2piYs− xd +
a

b
c0. s62d

It is important to note that this equality is valid only in the
infinitely small region G+s±i0d. The whole solution in
f−L1,L2g will be attained by the analytic continuation which
is always possible in the domain(28). By multiplying the
equations in(26) by V and taking the limit ofV→0, we
note that

DfVṼsx,VdgV→±i0 = 0 in f− L1,L2g \ h0j s63d

must be satisfied except in the case ofx=0. The solutions of
(63), a linear combination ofekx ande−kx, can be connected
with the local solution (62) at x=0, which determines
Cr

+s±i0d and Cs
+s±i0d. Taking the boundary condition into

account, we obtain

fVṼsx,VdgV→±i0 =
a

b
c0gsxd, s64d

where

gsxd: =5
sinhs− kL1 − kxd

sinhs− kL1d
s− L1 ø x ø 0d,

sinhskL2 − kxd
sinhskL2d

s0 , x ø L2d.

s65d

Similarly, we obtain

fVB̃sx,VdgV→±i0 = c0gsxd. s66d

By the inverse Laplace transform, the asymptotic behavior
st→`d is represented by

ṽxsx,td → a

b
b̃xs0,0dgsxd, s67d

b̃xsx,td → b̃xs0,0dgsxd, s68d

where we usedc0= ib̃xs0,0d. The convergence speed is char-
acterized by~1/t according to the result in the preceding

section. We conclude thatṽxsx,td and b̃xsx,td converge to
functions that have a derivative jump atx=0. Especially, the

value ofb̃xsx,td at x=0 remains constant, which can be con-
firmed by viewing(26) only atx=0. Even if we consider the
case ofa=0 (no flow shear), the above result is applicable
and we obtainṽxsx,td→0 instead of(67).

When the flow shear exceeds the magnetic shearsuau
. ubud, the singularities of(59) and (60) change drastically.
Since the signs of ImsX+d and ImsX−d are the same, the two
singular points approach the origin from the same side of the
x axis. For example, in the case ofa.b.0, bothX+ andX−

approach from the upper half-plane forV→ i0, and from the
lower half-plane forV→−i0 (see Fig. 3). Then one of the
two linearly independent solutions in(59) disappears due to

Log
x − X+

x − X− → Log
x 7 i0

x 7 i0
; 0 sV → ± i0d. s69d

This situation must be avoided by the divergence of the co-
efficientCs

+sVd~1/V, which recovers a linearly independent
solution. It follows that

FIG. 2. In the case ofb. uau.0, X+ and X− approach thex axis from,
respectively, the upper and lower half-planes whenV→ + i0.

FIG. 3. In the case ofa.b.0, X+ and X− approach thex axis from the
same direction whenV→ + i0.
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fVṼsx,VdgV→±i0 = − Cr
+s± i0dax − C1s± i0dafxsxd − 1g

+
a

b
c0 in G+s± i0d, s70d

where we setC1sVd=rCs
+sVd and

xsxd: = H1 sx = 0d,

0 sx Þ 0d.
s71d

The continuation between the solution of(63) and (70) re-
sults in

fVṼsx,VdgV→±i0 =
a

b
c0xsxd. s72d

Therefore, the inverse Laplace transform gives, fort→`,

ṽxsx,td → a

b
b̃xs0,0dxsxd, s73d

b̃xsx,td → b̃xs0,0dxsxd. s74d

We conclude thatṽxsx,td andb̃xsx,td converge to zero almost
everywhere.

E. Algebraic growths of slave variables

Finally, the slave equations are solved by using the result

of Ṽsx,Vd. The Laplace transform ofM±= ṽx7 b̃x is given
by

LfM±gsx,Vd =
− sa 7 bdsx − X7dṼsx,Vd 7 csxd

V − ax
. s75d

We note that either of the two logarithmic singularities,

Logsx−X+d or Logsx−X−d, of Ṽsx,Vd is smoothed by the
multiplication of sx−X7d. Plugging this into the Laplace-
transformed slave equations, we obtain

LfS±g = −
i7sxd

V − ax
FṼsx,Vd ±

csxd
V − sa ± bdxG

+ i
S±sx,0d

V − sa ± bdx
. s76d

The inverse Laplace transform of the last term on the
right-hand side yields the solution

S±sx,0de−isa±bdxt, s77d

which shows the phase mixing due to the Alfvén continuum
and always exists even if the master variables are initially
zero.

The first term in(76) represents the response to the mas-
ter variables. The singularity of this term atV=vPsc\ h0j
does not yield algebraic growth ofS±. However, there is a
strong singularity atV=0, for the substitution of(59) leads
to

LfS±g = −
i7sxd

V
FCr

+sVd + Cs
+sVdLog

x − X+

x − X− +
c0

bsX± − xd

+ OsVdG + i
S±sx,0d

V − sa ± bdx
in G+sVd. s78d

For i7s0dÞ0 and c0= ib̃xs0,0dÞ0, the singularity of
1/VsX±−xd brings about a localized algebraic growth atx
=0. The most dominant asymptotic behavior is, therefore,
estimated by

S±sx,td ,
1 − e−isa±bdxt

bx
i7s0db̃xs0,0d. s79d

By going back tow̃x=sS++S−d /2 and j̃ x=sS−−S+d /2, we
can conclude thatw̃x and j̃ x increase remarkably nearx=0.
Given that we supposedk ·Bs0d=0, the parallel components,

ṽi and b̃i, with respect toB increase in proportion tot, as
follows:

ṽis0,td = w̃xs0,td/ik ~ t, s80d

b̃is0,td = j̃ xs0,td/ik ~ t. s81d

If there is no shear flowsa=0d, the growths of Resw̃xd and
Ims j̃ xd vanish and only the parallel motionṽi increases in
proportion tot.

By viewing the generator of(17), we note that, among
the four Alfvén waves,M+ (or M−) acts onS− (or S+) that
propagates in the opposite direction. That is why the resonant
interaction occurs only at the zero frequencyv=0, while the
four continuous spectra degenerate in the regionsc

+ùsc
−.

IV. SUMMARY

The system of linearized equations governing the fluc-
tuations in ideal MHD has a non-self-adjoint generator with
essential singularities. The resonant interaction among the
four Alfvèn continuous spectra causes an algebraic instability
localized on the rational surfacex=xr wherek ·Bsxrd=0. The
initial fluctuation of magnetic field on the rational surface,

i.e., b̃xsxr ,0d, plays an essential role, which has been as-
sumed to be zero in the stability analysis of the Lagrange
displacement[see(4)].

The physical mechanism of this instability can be under-
stood as follows. If we have an ambient magnetic shear and
no flow, the fluctuation on the rational surface does not in-
flect the magnetic field line and remains temporally constant
because no force acts on it. In the equation of motion, the

electromagnetic force produced by this fluctuationb̃xsxr ,0d
and the ambient current constantly accelerates the parallel
motion ṽisxr ,td with respect toB, or, equivalently, the ambi-
ent pressure gradient along the magnetic field accelerates it,
which yields the algebraic growth,ṽisxr ,td~ t. In order to
avoid this algebraic instability, it is required that the condi-
tion fB8sxrd3kg ·ex=0 must be satisfied for arbitrary wave
numberk, which is equivalent to the condition

S uBu2

2
D8

sxrd = − P8sxrd = 0. s82d

Therefore, the pressure gradient on the rational surface must
be zero.

In the presence of flow, this algebraic behavior under-
goes a Doppler shift,ṽisxr ,td~ te−ivrt, where vr =k ·Vsxrd.
The advection of fluctuations by mean shear flow yields the
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algebraic growth ofb̃isxr ,td~ t in addition toṽisxr ,td~ t. The
algebraic instability we have shown can be more important
than that of Lau and Liu,17,18 for the growth of the latter
instability is transient and saturated in a finite time.

Asymptotic behavior of the master variables,ṽxsx,td and

b̃xsx,td, changes discontinuously when the flow shearsad
exceeds the magnetic shearsbd. It is interesting to note that
for large Bzs=constd and smallkz, the master variables are,
respectively, similar to the stream function and the flux func-
tion in the reduced MHD theory(see Appendix C). For weak
flow shearsuau, ubud, the asymptotic behavior given by(67)
and (68) represents the generation of a magnetic island as
shown in Fig. 4. On the other hand, for strong flow shear
suau. ubud, the asymptotic behavior makes the transition to
(73) and (74), where the stretching effect of shear flow de-
stroys the magnetic island as shown in Fig. 5. The ratio
b2/a2 is called the magnetic Richardson number, which is
known as an important parameter also in the normal modes
analysis.11 In real plasmas, such a time evolution into a sin-
gular structure is avoided by the dissipation effect. Our work
is, however, useful for understanding the universal behavior
of fluctuation; the generation of a magnetic island and the
stretching effect of shear flow. We clarified that the structure
of the magnetic island is closely related to the Alfvén con-
tinuous spectrum and is identified as the coalescence of two
Alfvén singularities.

From a mathematical point of view, if the initial value
problem of a non-self-adjoint system is solved by the

Laplace transform, complicated singularities far from simple
poles appear in the Dunford integral path. The translation
from the initial value problem into the normal modes analy-
sis is generally difficult because it requires the spectral reso-
lution of a non-self-adjoint operator, and we must generalize
the notion ofnilpotent for degenerate continuous spectra. In
our model, the algebraic behavior of the solution arose from
the coalescence of Alfvén singularities. The rigorous spectral
theory for this non-self-adjoint system will be discussed else-
where.
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APPENDIX A: NON-SELF-ADJOINTNESS
OF EVOLUTION EQUATION

In general, let us write a linear system in the form of an
evolution equation:i]t f =Kf where f denotes a variable and
K a linear operator.

When the space of variables has a finite dimensionn,
and K is a matrix, the solution is definitely given by the
linear algebra as follows. A matrix is calledsemisimpleif it
can be transformed into a diagonal matrix,

P−1KP =1
v1

v2

�

vn

2 , sA1d

by using a set of eigenvectorsP=sv1v2¯vnd, where
v1,v2, . . . ,vn may include repeated eigenvalues. A self-
adjoint matrix is always semisimple. For a semisimple gen-
eratorK, the solution is represented by a linear combination
of the exponential behaviorv je

−iv j t.
A general matrix does not assume the diagonalized form

(A1), while it can be always cast into a Jordan canonical
form,19

P−1KP =1
v1I + N

v2I + N

�

vmI + N
2 , sA2d

where generallymøn. Thev jI +N appearing on the diagonal
line denotes anj 3nj, block,

v jI + N =1
v j 1

� �

v j 1

v j

2 , sA3d

where I denotes unit matrix andN is called thenilpotent
matrix. In other words, a general matrix can be decomposed
into a semisimple part and a nilpotent part, and the diagonal-
ization fails due to the latter. In the presence of thenj 3nj

FIG. 4. Contour plot ofb̃xsx,tdeikyy at t=40 with the parametersa=0.5, b
=1, ky=1, andf−L1,L2g=f−1,1g. This is a typical numerical solution of the
initial value problem(16).

FIG. 5. Contour plot ofb̃xsx,tdeikyy at t=40 with the parametersa=1, b
=0.5, ky=1, andf−L1,L2g=f−1,1g.
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block, corresponding eigenvectors show algebraic behavior
such astke−iv j t sk=0,1,2, . . . ,nj −1d. Physically, the alge-
braic growth of amplitudes implies theresonanceof oscilla-
tors with a common frequency. A nilpotent matrix is, thus,
the mathematical representation of the resonant interactions
in degenerate(common eigenvalue) modes.

In the case of infinite dimensional(functional) space, the
Von Neumann’s theorem10 enables spectral resolution of any
self-adjoint operatorK, where we may observe a continuous
spectrum in addition to point spectra. However, we do not
have a general spectral theory for non-self-adjoint operators
in functional space. The resonant interaction among degen-
erate continuous spectra yields much more spatially and tem-
porally complicated behavior than degenerate point spectra.2

In plasma physics, inhomogeneity of equilibrium causes
a continuous spectrum(e.g., shear flow,20 magnetic shear,7

gradient of plasma density,5,6 and so on). Then, in the normal
modes analysis, the eigenvalue problem becomes a differen-
tial equation and the continuous spectrum is related to a sin-
gular point. We can formally obtain singular eigenfunctions
corresponding to the continuous spectrum(for example, Van
Kampen mode21). Although Case22 and Sedláček6 discussed
the equivalence of two approaches, the normal modes analy-
sis and the initial value problem, the continuous spectrum
they considered seems to besemisimple. In this paper, we
solve an initial value problem by using the Laplace trans-
form; the normal modes analysis is not well defined for de-
generate continuous spectra that might conceal anilpotent
part.

APPENDIX B: HYPERFUNCTION THEORY

Generalized functions(such as delta functions) are de-
fined by two approaches; Schwartz’s distribution theory and
Sato’s hyperfunction theory. We invoke the latter in this pa-
per because it clarifies the relation between the Laplace
transform and the Fourier transform,3 which enables us to
analyze the continuous spectrum rigorously.

Let BsDd be the set of all hyperfunctions on the domain
D,R. We introduce a regionU,C in the complex plane
such thatD,U and denote the set of all holomorphic func-
tion on U by OsUd. Each hyperfunction inBsDd is uniquely
defined by a element ofOsU \Dd /OsUd, i.e., BsDd
.OsU \Dd /OsUd. Formally, we may define a hyperfunction
fsxdPBsDd by taking the difference of the boundary values
of FszdPOsU \Dd like

fsxd: = lim
e→+0

fFsx + ied − Fsx − iedg sB1d

=Fsx + i0d − Fsx − i0d, sB2d

whereFszd is holomorphic everywhere inU except onD and
calleddefining function. For example, the delta functiondsxd
and the Heaviside functionYsxd are defined byFszd
=−1/s2pizd and Fszd=−Logs−zd / s2pid, respectively. The
derivative and integral offsxd are calculated in terms of the
defining function,

f8sxd: = F8sx + i0d − F8sx − i0d, sB3d

E
D

fsxddx: = −R
CsDd

Fszddz, sB4d

where the integral pathCsDd encirclesD counterclockwise.
Now we consider a general evolution equationi]t f =Kf

as in Appendix A. For simplicity, letK has a bounded con-
tinuous spectrumsc, on the real axis. The solution is repre-
sented by the Dunford integral(or the inverse Laplace trans-
form) which encirclessc [see Fig. 6(a)],

fstd = −
1

2p
E

Csscd
iRsVdfs0de−iVt dV, V P C, sB5d

=−
1

2p
R

Csscd
F̂sVde−iVt dV, sB6d

whereRsVd=sV−Kd−1 denotes the resolvent operator and

F̂sVd= iRsVdfs0d the Laplace transform offstd. By regard-

ing F̂sVd /2p as a defining function, we obtain a hyperfunc-

tion f̂svdPBsscd which satisfies

fstd =E
sc

f̂svde−ivt dv. sB7d

In other words, we deformedCsscd into the vicinity of sc

[Fig. 6(b)]. The integrandf̂svd is the Fourier transform of
fstd and is expected to represent singular eigenfunction cor-
responding to the continuous spectrum. Since the spectral
theory is not established ifK is non-self-adjoint, we must

derive f̂svd rigorously as stated above and the eigenvalue

problemsv−Kd f̂svd=0 is not valid.

APPENDIX C: NORMAL VELOCITY AND NORMAL
VORTICITY

The normal velocityṽx and the normal vorticityw̃x are
commonly used in fluid mechanics to represent three dimen-
sional incompressible fluctuations with only one independent

FIG. 6. Translation from(a) the Laplace transform(the initial value prob-
lem) into (b) the Fourier transform(the spectral resolution).
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variablex.13 The definition ofw̃x= iskyṽz−kzṽyd and the con-
dition ¹ ·ṽ=0 allow us to calculate the other velocity com-
ponents,

ṽy = i
ky]xṽx + kzw̃x

k2 , ṽz = i
kz]xṽx − kyw̃x

k2 . sC1d

These variablesṽx andw̃x recover the Clebsch representation
in the following special cases. Ifkz=0, we obtain

ṽ =
¹ ṽx 3 ez + w̃xez

iky
, sC2d

and if ky=0,

ṽ = −
¹ ṽx 3 ey + w̃xey

ikz
, sC3d

whereṽx parallels the stream function.
Since the magnetic field is also incompressible, the same

representation is applicable tob̃.

APPENDIX D: APPARENT SINGULARITY

If we eliminateṼ from (26), we obtain

fsV − axd2 − b2x2gDS B̃

bx
D − f2asV − axd + 2b2xg]xS B̃

bx
D

=− Df + sV − axdDS c

bx
D sD1d

instead of(27). In this equation, the pointhsx,Vd ;V−ax

=0j is not singular, and as a consequence the solutionB̃ must

be holomorphic there. By substituting thisB̃ into (26), we

obtain Ṽ, which must also be holomorphic athsx,Vd ;V

−ax=0j. It follows that the conditionV−ax=0 in (27) does
not yield singularity, which is so called the apparent
singularity.16 We can confirm this fact by applying the Frobe-
nius method to(27) nearx=V /a.

In the same manner, we can find that the pointx=0 is
also an apparent singularity of(D1).
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