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Kelvin–Helmholtz instability in Beltrami fields
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The stability of Beltrami flows has been analyzed. The model equation represents the coupling of
the Kelvin–Helmholtz~KH! instability with Alfvén waves. In a single Beltrami flow that parallels
a force-free magnetic field, the magnetic field reduces the growth rate of the KH instability, while
the marginally stable wave number is unchanged. Calculating the marginally stable eigenfunction of
a magnetohydrodynamic flow, the necessary and sufficient condition for the exponential stability has
been derived. The stability of double Beltrami flows has also been analyzed, which is represented
by linear combinations of two Beltrami flows. Coupling of two vortices yields both stabilizing and
destabilizing effects depending on the amplitudes and the eigenvalues of two Beltrami functions.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1518679#
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I. INTRODUCTION

Self-organization of ordered structure occurs in vario
plasma systems, in the universe as well as in laborato
The Beltrami fields, eigenfunctions of the curl operator1 de-
scribe the essential characteristics of the structures cre
through nonlinear field-flow couplings. The Taylor relax
state2 is the most remarked model of self-organized magn
field; the determining equation is¹3B5lB (l is a real
number!. This Beltrami magnetic field is ‘‘force free’’ be
cause the current (¹3B) parallels the magnetic field. A
more general class of relaxed state may have a field-alig
flow satisfying V5cB (c is a real number! and ¹3V
5lV. This field is no longer force free because of the d
namic pressure ofV. These Beltrami magnetic and flow
fields can be characterized by variational principles.2 The
minimizer of the magnetic energy* uBu2 dx ~integral is taken
over the total volume! for a given magnetic helicity*A"B dx
(A is the vector potential! is the Beltrami magnetic field. To
implement a flow, we minimize*(uVu21uBu2) dx with re-
stricting the magnetic helicity and the cross helic
*V"B dx. The Beltrami fields in the two-fluid~Hall! magne-
tohydrodynamic~MHD! theory span a far richer set of re
laxed states—B andV are represented by the linear comb
nation of two Beltrami fields.3,4 In such a ‘‘double Beltrami
field,’’ the flow V no longer parallelsB, and the model can
capture remarkably new physical effects induced by
flow.5

In this paper, we study the stability of single and doub
Beltrami flows. We remark that the notion of ‘‘relaxed stat
does not warrant the stability. Stability of a state may
proved if the kinetic part of an appropriate total energy c
be shown to be bounded. If the ‘‘energy’’~a constant of
motion! can be split into well-defined kinetic and ‘‘potentia
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parts, the state with the minimum potential energy is guar
teed to be stable. For an equilibrium with a stationary flo
however, the interaction of a fluctuation and the ambi
flow may not be written in a form of a potential force
Hence, the analysis of the stability is rather complicated.

The model equation represents the coupling of Kelvi
Helmholtz ~KH! instability with Alfvén waves~Sec. II!. A
sheared magnetic field may bring about two different effe
on the stability of a shear flow; one is a strong stabilizat
effect for sub-Alfvénic flows,6–8 and the other is the opposit
destabilizing effect.6,9 The stability of single Beltrami fields
is analyzed in Sec. III. We derive the necessary and suffic
condition of the stability by extending the theory of margi
ally stable eigenfunction in a neutral fluid. In Sec. IV, w
study the stability of double Beltrami fields within the fram
work of the standard MHD equations.

II. FORMULATION OF THE STABILITY PROBLEM

An MHD plasma obeys the momentum and inducti
equations;

]V

]t
5V3~¹3V!1

1

a2
~¹3B!3B2¹S V2

2
1pD , ~1!

]B

]t
5¹3~VÃB!, ~2!

where B is the magnetic field,V is the flow velocity ~we
assume incompressible flows!, andp is the pressure. We hav
normalized the magnetic fieldB and the flow velocityV by
their representative valuesB* and V* , scale length by the
system sizeL, time scalet by L/V* and pressurep by rV* 2.
The Alfvén Mach numbera5V* /VA scales the flow velocity
in the unit of the Alfvén velocity VA5B* /Am0r ~ion mass
density r is assumed to be constant!. When B* 50 (1/a2

50), ~1! reduces into the momentum equation of a neu
fluid.

an,
onic
6 © 2002 American Institute of Physics
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We consider a slab geometry in Cartesian coordina
x,y,z, and assume]z50. Using a flux functionc and a
stream functionw, we may write

B5¹c~x,y!3¹z1Bz~x,y!¹z,

V5¹w~x,y!3¹z1Vz~x,y!¹z.

Equations~1! and ~2! can be cast in a form of coupled non
linear Liouville equations;

] t~2Dw!1$w,~2Dw!%1
1

a2
$c,Dc%50, ~3!

] tc1$w,c%50, ~4!

] tVz1$w,Vz%1
1

a2
$Bz ,c%50, ~5!

] tBz1$w,Bz%1$Vz ,c%50. ~6!

Here, $P,Q%[(]yP)•(]xQ)2(]xP)•(]yQ) is the standard
Poisson bracket.

We assume that the equilibrium fieldsB0 and V0 have
only y andz components that are functions of onlyx:

B0~x!5@0,By~x!,Bz~x!#,

V0~x!5@0,Vy~x!,Vz~x!#.

The thickness of the slab geometry is the system sizeL. We
consider the region ofx in the interval (0,1). We note tha
the pressure term¹p in Eq. ~1! has been eliminated in Eq
~3! by taking the curl derivative. In a one dimensional sy
tem, the de-curl of Eq.~3! can always reproduce the pressu
p by integrating]xp ~however, it is not so in multi dimension
systems!.

We consider perturbations~denoted by suffix ‘‘1’’! of the
form of f 15 f 1(x)expi(ky2vt). Linearizing Eqs.~3!–~6!
yields

V~w192k2w1!1kVy9w12
1

a2
k$By9c12By~c192k2c1!%50,

~7!

Vc11kByw150, ~8!

VBz11kByVz15kBz8w12kVz8c1 , ~9!

VVz11
1

a2
kByBz15kVz8w12

1

a2
kBz8c1 , ~10!

whereV5v2kVy is the Doppler-shifted frequency. We a
sume rigid boundaries (vx5 ikw150) at x50,1.

Equations~7! and ~8! constitute a closed system dete
mining w1 and c1 . On the other hand, Eqs.~9! and ~10!
includew1 , c1 , Vz1 andBz1 . Rewriting Eqs.~9! and~10! as

VS V22
1

a2
k2By

2D Bz15kBz8S V22
1

a2
k2By

2D w1 , ~11!

VS V22
1

a2
k2By

2D Vz15kVz8S V22
1

a2
k2By

2D w1 , ~12!
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we find thatBz1 andVz1 describe a forced Alfve´n wave with
inhomogeneous driving terms~right-hand sides!. Indeed, the
general solutions of Eqs.~11! and~12! may be written in the
form of

Bz15
kBz8

V
w11Bz1h , ~13!

Vz15
kVz8

V
w11Vz1h , ~14!

whereBz1h and Vz1h are the usual Alfve´n-wave solution of
the homogeneous parts of Eqs.~11! and ~12!. Hence, our
primary interest is solving Eqs.~7! and ~8! for w1 andc1 .

Eliminating c1 from Eqs. ~7! and ~8!, we obtain a
second-order ordinary differential equation governingw1 ;

d

dxF S V22
1

a2
k2By

2D d

dx S w1

V D G2k2S V22
1

a2
k2By

2D S w1

V D
50. ~15!

When the ambient flowVy vanishes, Eq.~15! reduces into
the standard Alfve´n wave equation that gives only the Alfve´n
continuous spectrum.10 A nonconstantVy destroys the self-
adjointness of Eq.~15!—an essential departure from the co
ventional Hermitian MHD.

We may rewrite Eq.~15! as

~v2kVy!~w192k2w1!1kVy9w1

2
2k2By~By8V1kByVy8!

a2V~V22k2By
2/a2!

~Vw181kVy8w1!50. ~16!

When the ambient magnetic fieldBy vanishes, Eq.~16! reads
as well-known Rayleigh’s equation of neutral fluid. The no
self-adjointness originates from the term includingVy9 . The
change of the sign ofVy9 may produce the KH instability
~Rayleigh’s inflection-point theorem11!. The third term on the
left-hand side of Eq.~16! represents the effect of a magnet
field on the KH instabilities.

Equation~15! may have unstable point spectra in add
tion to the Alfvén continuous spectrum. Multiplying Eq.~15!
by the complex conjugate of (w1 /V) and integrating over
(0,1), we obtain a quadratic form;

E
0

1S V22
1

a2
k2By

2D ufu2 dx50, ~17!

where

ufu25U d

dx S w1

V D U2

1k2Uw1

V U2

.

The imaginary part of Eq.~17! implies

Im~v!E
0

1

$Re~v!2kVy%ufu2 dx50. ~18!

If Im( v)Þ0, the integrand of Eq.~18! must change the sign
in (0,1), i.e.,

Vymin,Re~v!/k,Vy max. ~19!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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This is the reproduction of the standard relation for neu
fluids.12 The region of Re(v) for unstable eigenvalues is no
affected by magnetic fields. A ‘‘sufficient’’ condition of sta
bility can be easily found if we rewrite Eq.~17! as6,7

Aṽ212Bṽ1C50, ~20!

where

ṽ5v2kV0 , V05const,

A5E
0

1

ufu2 dx.0,

B52kE
0

1

Ṽy~x!ufu2 dx,

C5k2E
0

1H Ṽy~x!22
1

a2
By~x!2J ufu2 dx,

Ṽy~x!5Vy~x!2V0 .

If

1

a2
By~x!2>Ṽy~x!2, ~21!

in the whole region, the frequency in an appropriate re
ence frameṽ must be real numbers, implying stability.

It may be useful to invoke the analogy of Eq.~16! and
the equation of diocotron modes in a sheared magn
field.13 A diocotron mode is essentially a KH instability o
electrostatic oscillations in a single-species plasma. Whe
non-neutral plasma is confined in a sheared magnetic fi
the diocotron mode~electrostatic mode perpendicular to th
magnetic field! is coupled with parallel electron oscillation
The latter neutralizes the charge of the diocotron mode,
hence, the mode is strongly stabilized in a sheared magn
field. This stabilization effect appears as an additional te
to Rayleigh’s equations, which is similar to the third term
Eq. ~16!. Here, the Alfvén wave works to reduce the insta
bility energy.

III. STABILITY OF BELTRAMI FLOWS

In this section, we study the stability of a Beltrami fie
given by

¹3B05lB0 , ~22!

B05V0 , ~23!

V0
2

2
1p05const, ~24!

wherel is a real number~the magnitude ofV0 is already
normalized!. In the slab geometry, we can write

B05V05S 0

sin~lx1d!

cos~lx1d!
D , ~0<x<1!. ~25!

SinceVy5By , the sufficient condition of stability~21! reads
as
Downloaded 03 Aug 2003 to 133.11.199.16. Redistribution subject to A
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1/a>1, ~26!

which implies sub-Alfve´nic velocity.
The necessary and sufficient condition of stability can

obtained by searching the marginally stable eigenfuncti
We extend the method of Tollmien14 that was developed fo
a neutral fluid. Let us start by reviewing the case of 1/a50
~neutral fluid!. KH instability is a global mode that occur
only for a finite wave number less thanks , the marginally
stable wave number~Fig. 1!. Tollmien has shown the exis
tence of a marginally stable eigenfunctionw5ws satisfying
v/ks5Vy(xs), wherexs is an inflection point@Vy9(xs)50#.
The eigenfunction for the sinusoidal flowVy5sin(lx
1d) (0<x<1) satisfies

sin~lx1d!$ws91~l22ks
2!ws%50, ~27!

wherews50 atx50 and 1. The factor sin(lx1d) on the left
hand side of Eq.~27! produces a real continuous spectru
representing convective transport.15 The KH mode, which
can become unstable, is characterized by the second fa
$ws91(l22ks

2)ws% in Eq. ~27!, which yields

ws5sinnpx, ks5Al22n2p2 ~n561,62, . . . !.
~28!

Figure 1 shows the growth rate as a function of the wa
numberk (l52p). In this case,v is pure imaginary. The
marginally stable wave numberks5A3p.5.44 is obtained
from Eq.~28!. Figure 2 shows the vorticity of the eigenfunc
tion w1 . The singularity atx50.5 disappears in the limit o
k→ks . This behavior can be understood by rewriting Ra
leigh’s equation in terms of vorticityC52Dw1 ;

~Vy2c!C5Vy9KC, ~29!

wherec5v/k andK denotes the inverse-Laplacian operat
If c is a complex number,C(xs) is zero, while if c
5Vy(xs), we haveC(xs)Þ0. The stability condition is ob-
tained from Eq.~28!. If l<p, the flow is stable even when
Vy has an inflection point. Ifl.p, the flow is always un-
stable.

FIG. 1. The growth rate versus the wave number for three different par
eters 1/a with l52p andd50.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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When we increase the magnetic field (1/a), the growth
rate diminishes~Fig. 3!. The eigenfunctionw1 tends to be
singular near stable regions~Fig. 4!, reflecting the essentia
singularity of the Alfvén continuum.

From this numerical analysis, we observe that the criti
wave numberks is unchanged when the magnetic field
applied (1/aÞ0).

In what follows, we analytically demonstrate the inst
bility for k,ks @ks is the critical wave number that is iden
tical to that of the neutral fluid; see Eq.~28!#. Here, we
assume 1/a,1 @if 1/a>1, KH modes are always stable; se
Eq. ~26!#. Since the Beltrami condition demandsVy5By ,
Eq. ~16! simplifies as (c5v/k)

~Vy2c!~w192k2w1!2Vy9w12
2cVyVy8

~Vy2c!$a2~Vy2c!22Vy
2%

3$~c2Vy!w181Vy8w1%50. ~30!

The existence of a marginally stable eigenfunctionw15ws

with the critical wave numberks (.0) is almost straightfor-
ward; Equation~30! reads

Vy~ws92ks
2ws!2Vy9ws50, ~31!

FIG. 2. The vorticity of the eigenfunctionw1 for three different values ofk,
where 1/a50, l52p andd50.

FIG. 3. The growth rate Im(v) as functions of the parameter 1/a. The
dashed line is forl52p, d50 andk51. The pointsl52p, d50 andk
55.3 and the solid line is the analytic curve~45!.
Downloaded 03 Aug 2003 to 133.11.199.16. Redistribution subject to A
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with the boundary conditionsws(0)5ws(1)50. The solu-
tion of Eq. ~31! is identical to Eq.~28!. Hence, there is a
finite interval of the wave number (0,ks) where, as we will
show, the KH mode is unstable.

There are some different perturbation methods to st
the neighborhood of the marginally stable wa
number.12,14,16Here we apply the scheme of Ref. 16. We m
assumews(xs)Þ0, for n51 in Eq. ~28!. We definecs(x)
5ws(x)*xs

x $ws(x)%22 dx, that solves Eq.~31!. This cs satis-

fies also the MHD equation~16!, if

Vy5By1c0 ,
~32!

By~xs!50,

wherec0 is a real constant. Our Beltrami model satisfies E
~32! with c050. We easily verify the WronskianW(ws ,cs)
51 and

cs~0!521/ws8~0!, cs~1!521/ws8~1!,
~33!

c~xs!50 and c8~xs!51/ws~xs!.

For (k,c)'(ks,0), we expandw1(x;k,c) in powers of both
k2ks andc;

w1~x!5ws1F1~x!~k2ks!1F2~x!c1•••. ~34!

Plugging Eq.~34! into ~30!, we find

Vy~F192ks
2F1!2Vy9F152ksVyws , ~35!

Vy~F292ks
2F2!2Vy9F25

Vy9

Vy
ws1

2Vy8~Vy8ws2Vyws8!

~a221!Vy
2

.

~36!

The effect of the magnetic field (1/aÞ0) appears only as the
second term on the right-hand side of Eq.~36!. Therefore,
F2 is modified by the magnetic field. Usingfs andcs as the
Green functions, the solutions of Eqs.~35! and~36!, with the
boundary conditionsF1(0)5F2(0)50, are given by

F1~x!52ksS csE
0

x

ws
2 dx2wsE

xs

x

wscs dxD ~37!

and

FIG. 4. The vorticity of the eigenfunctionw1 for three different values of
1/a. k53.6, l52p andd50.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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F2~x!5csE
0

xFVy9

Vy
2

ws
21

2Vy8~Vy8ws2Vyws8!

~a221!Vy
3

wsGdz

2wsE
xs

xFVy9

Vy
2

wscs1
2Vy8~Vy8ws2Vyws8!

~a221!Vy
3

csGdz.

~38!

In Eq. ~38!, the integral is taken along a path in the compl
plane to avoid the singularity of the integrand. We consi
the marginal stability as the limit approached from the ins
bility regime ~Im(c).0), and hence, the path of integratio
must be taken by the analytical continuation so thatVy goes
below zero. Atx51, we observe

F1~1!52
2ks

ws8~1!
E

0

1

ws
2 dx, ~39!

F2~1!52
1

~121/a2!ws8~1!
E

0

1 Vy9

Vy
2

ws
2 dz. ~40!

The real and imaginary parts ofF2(1) are given by

F2r~1!52
1

~121/a2!ws8~1!
PE

0

1 Vy9

Vy
2

ws
2 dx ~41!

and

F2i~1!52
p

~121/a2!

Vy-~xs!

Vy8
2~xs!

ws
2~xs!

ws8~1!
sgnVy8~xs!, ~42!

whereP denotes the Cauchy principal value of the integr
By the definitions~37! and ~38!, w1 of Eq. ~34! vanishes at
x50. The other boundary conditionw1(1)50 demands

c52
F1~1!F2* ~1!

uF2~1!u2
~k2ks!. ~43!

The imaginary part of Eq.~43! reads

Im~c!5
F1~1!F2i~1!

uF2~1!u2
~k2ks! ~44!

5Ci~121/a2! ~1/a,1!, ~45!

where Ci5Im(c) for 1/a50. Since Vy-(xs)sgnVy8(xs),0
for the Beltrami flow, Eq.~44! shows that Im(c) is positive
for k&ks when 1/a,1. Equation~45! shows that the growth
rate decreases when the magnetic field (}1/a) increases.

In Fig. 3, we compare Eq.~45! with the numerical result.
Combining with the abovementioned sufficient condition
stability, the necessary and sufficient condition for stabi
of the Beltrami flow isl<p or 1/a>1 ~see Fig. 5!.

IV. STABILITY OF DOUBLE BELTRAMI FLOWS

In this section, we analyze the stability of double Be
trami flows. We use the Alfve´n unit to set 1/a51. The double
Beltrami fields are represented by linear combinations of
Beltrami flows:3

B05C1G11C2G2 , ~46!
Downloaded 03 Aug 2003 to 133.11.199.16. Redistribution subject to A
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f

o

V05D1G11D2G2 , ~47!

where

¹3Gj5l jGj ~ j 51,2!,

D1 /C15~l11a6
21!, ~48!

D2 /C25~l21a6
21!, ~49!

a652@2~l11l2!6A~l12l2!214#21. ~50!

We can consider two different pairs of amplitudes~48! and
~49! depending on the choice of the sign ofa6 . In the slab
geometry, Beltrami fields are given by

Gj5~0,sinl j x,cosl j x! ~0<x<1, j 51,2!.

The necessary and sufficient condition for the stability
each separate Beltrami vortex is~see Sec. III!

uD j /Cj u<1 or l j<p ~j 51,2).

FIG. 6. The maximum growth rate versusC2 with ls52p, l l5p and
C151. In Case~A!, l152p and l25p. In Case ~B!, l15p and l2

52p.

FIG. 5. The stable and unstable regions in the parameter space ofl ~recip-
rocal length scale! and 1/a ~magnetic field strength!. The stability condition
on the axis 1/a50 is consistent to the well-known result of the KH mode
neutral fluids~Ref. 14!. The stable region of 1/a<1 was predicted by the
quadratic form argument~Ref. 6!.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 7. The profiles ofBy , Vy , By
2

2Vy
2 andVy9 versusC2 in Case~A! of

Fig. 6.
t
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Equations ~48! and ~49! show that the valuesD j /Cj ( j
51,2) are defined byl1 and l2 , and their product mus
satisfy

~D1 /C1!~D2 /C2!51, ~51!

which means that one vortex is sub-Alfve´nic while the other
is super-Alfvénic (uD1 /C1u5uD2 /C2u51 occurs whenl1

5l2). A combination of two unstable vortices is not po
sible in a slab geometry. There are two types of combi
tions:

~A! super-Alfvénic vortex with smaller structure an
sub-Alfvénic vortex with larger structure (uD1 /C1u.1,
uD2 /C2u,1 andl1.l2),

~B! super-Alfvénic vortex with larger structure and sub
Alfvénic vortex with smaller structure (uD1 /C1u.1,
uD2 /C2u,1 andl1,l2).
Downloaded 03 Aug 2003 to 133.11.199.16. Redistribution subject to A
-

We distinguish the super- and sub-Alfve´nic vortices by
subscripts 1 and 2, respectively. In the double Beltra
fields, the profiles ofBy andVy do not satisfy Eq.~32!, and
hence, the marginally stable eigenfunction cannot be fou
In the case~A! with l15nl2 (n is an integer number! or
l2<p, the sufficient condition for the stability,By

2>Vy
2 in

the whole region, holds for some appropriate choices ofC1

andC2 . Otherwise, however, the sufficient condition is sa
isfied only at the limit ofuC2 /C1u→`.

Fixing C151 and takingC2 as a control parameter, w
compare the growth rates of Cases~A! and~B! for the same
pair of l1 andl2 . We denote the larger~absolute value! one
of l1,2 by ls ~smaller size! and the smaller one byl l . For
givenls andl l , the selection ofa1 or a2 in Eqs.~48! and
~49! switches the Cases~A! and ~B!.
FIG. 8. The profiles ofBy , Vy , By
2

2Vy
2 andVy9 versusC2 in Case~B! of

Fig. 6.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Figure 6 shows the maximum growth rate as a funct
of C2 ~we choosels52p and l l5p). If we usea1 , the
vortex of ls is unstable and that ofl l is stable@Case~A!#.
The profiles ofBy andVy are shown in Fig. 7 as functions o
C2 . When we increaseC2 , the amplitude of the magneti
field increases. ForC2.6.87, the local Alfve´n velocity ex-
ceeds the flow velocity everywhere in the domain (0,1).
Fig. 7, we observe that the instability is suppressed forC2

*6.5, implying that the criteria (By
2>Vy

2 in the whole do-
main! is almost the necessary and sufficient condition.

If we usea2 , Case~B! occurs. Both vortices (ls and
l l) are separately stable~the small vortexls becomes sub-
Alfvénic!. The profiles ofBy andVy are shown in Fig. 8. The
combination of stable vortices causes instability. Howev
the growth rate is smaller than that of Case~A! ~see Fig. 6!.
The flow of the combined vortices does not have an infl
tion point if C2,1.47 ~see Fig. 8!. If there was no magnetic
field, this flow is stable ~Rayleigh’s inflection-point
theorem11!. However, the double Beltrami field is unstab
when C2*1 ~see Fig. 6!. This is the so-called joint
instability6,9—an example of the destabilizing effect of
magnetic field.

V. SUMMARY

The stability of a plasma with ambient flow is a rath
complex problem. Both flow shear and magnetic shear
double edge sword—they have both stabilizing and dest
lizing effects. The stretching effect of a shear flow is b
lieved to stabilize instabilities. However, the evolution
fluctuations in an ambient shear flow is rath
complicated.15,17–19Nonexponential~possibly algebraic! be-
havior of fluctuations are left outside the scope of pres
paper. A sufficient condition of general stability~including
even the nonlinear regime! will be discussed elsewhere.
shear flow contains a free energy to excite KH instabilitie

The existence of marginally stable eigenfunction h
been shown analytically, which provides us with the nec
sary and sufficient condition for the exponential stability. W
have seen that the magnetic shear effect reduces the gr
rate of the instability, while the critical wave number is u
changed. We note that the assumption of a slab geom
omits the kink instabilities that are induced by the magne
field curvature effect.8 Instabilities in a cylindrical geometry
will be discussed elsewhere. The Beltrami fields are sim
in the sense of the relation~32! that allows us to construc
the marginally stable solution.
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In a general MHD flow, we can not find the marginal
stable solution, so that the necessary and sufficient cond
of stability is not known. The complexity of the stabilit
problem is seen in the analysis of the double Beltrami fiel
We have shown that the joint instability~destabilization by a
magnetic field! may occur.
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