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Kelvin—Helmholtz instability in Beltrami fields
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The stability of Beltrami flows has been analyzed. The model equation represents the coupling of
the Kelvin—Helmholtz(KH) instability with Alfvén waves. In a single Beltrami flow that parallels

a force-free magnetic field, the magnetic field reduces the growth rate of the KH instability, while
the marginally stable wave number is unchanged. Calculating the marginally stable eigenfunction of
a magnetohydrodynamic flow, the necessary and sufficient condition for the exponential stability has
been derived. The stability of double Beltrami flows has also been analyzed, which is represented
by linear combinations of two Beltrami flows. Coupling of two vortices yields both stabilizing and
destabilizing effects depending on the amplitudes and the eigenvalues of two Beltrami functions.
© 2002 American Institute of Physic§DOI: 10.1063/1.1518679

I. INTRODUCTION parts, the state with the minimum potential energy is guaran-
teed to be stable. For an equilibrium with a stationary flow,
Self-organization of ordered structure occurs in varioushowever, the interaction of a fluctuation and the ambient
plasma systems, in the universe as well as in laboratorieflow may not be written in a form of a potential force.
The Beltrami fields, eigenfunctions of the curl operaie-  Hence, the analysis of the stability is rather complicated.
scribe the essential characteristics of the structures created The model equation represents the coupling of Kelvin—
through nonlinear field-flow couplings. The Taylor relaxed Helmholtz (KH) instability with Alfvén waves(Sec. 1). A
staté is the most remarked model of self-organized magnetigheared magnetic field may bring about two different effects
field; the determining equation ®XB=AB (N is a real  on the stability of a shear flow; one is a strong stabilization
numbej. This Beltrami magnetic field is “force free” be- effect for sub-Alfveic flows®-8 and the other is the opposite
cause the current\(xB) parallels the magnetic field. A destabilizing effect:® The stability of single Beltrami fields
more general class of relaxed state may have a field-aligned analyzed in Sec. Ill. We derive the necessary and sufficient
flow satisfying V=cB (c is a real numberand VXV  condition of the stability by extending the theory of margin-
=\V. This field is no longer force free because of the dy-a|ly stable eigenfunction in a neutral fluid. In Sec. IV, we

namic pressure o¥/. These Beltrami magnetic and flow study the stability of double Beltrami fields within the frame-
fields can be characterized by variational principléEhe  work of the standard MHD equations.

minimizer of the magnetic energf}B|? dx (integral is taken
over the total volumefor a given magnetic helicitf A-B dx
(A is the vector potentiglis the Beltrami magnetic field. To |l. FORMULATION OF THE STABILITY PROBLEM
implement a flow, we minimizg (|V|2+|B|?) dx with re-
stricting the magnetic helicity and the cross helicity
JV-Bdx. The Beltrami fields in the two-fluigHall) magne-

An MHD plasma obeys the momentum and induction
equations;

tohydrodynamic(MHD) theory span a far richer set of re- N 1 V2

laxed states-B andV are represented by the linear combi- HzVX(VxV)ﬂL —(VXB)XB-V ?+p), (1)
nation of two Beltrami field$:* In such a “double Beltrami a

field,” the flow V no longer parallel®, and the model can B

capture remarkably new physical effects induced by the E:VX(VXB)’ (2

flow.
In this paper, we study the stability of single and doublewhere B is the magnetic fieldyV is the flow velocity (we
Beltrami flows. We remark that the notion of “relaxed state” assume incompressible flowandp is the pressure. We have
does not warrant the stability. Stability of a state may benormalized the magnetic field and the flow velocityV by
proved if the kinetic part of an appropriate total energy cartheir representative valu€s* andV*, scale length by the
be shown to be bounded. If the “energya constant of system sizé, time scalet by L/V* and pressure by pV*2,
motion) can be split into well-defined kinetic and “potential” The Alfven Mach numbea=V*/V, scales the flow velocity
in the unit of the Alfva velocity Vo=B*/\/uop (ion mass

. . * 2
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We consider a slab geometry in Cartesian coordinatewe find thatB,; andV,, describe a forced Alfve wave with
X,¥,z, and assume),=0. Using a flux functionys and a inhomogeneous driving tern{sight-hand sides Indeed, the
stream functionp, we may write general solutions of Eq$11) and(12) may be written in the

B=V(x,y) XVz+B,(x,y)Vz, form of
kB,
V=Vo(xy)XVZ+V,(x,y)Vz. Ba=—5 1+ Ban, (13
Equations(1) and(2) can be cast in a form of coupled non-
linear Liouville equations; kV,
V= QO ®1t Van, (14
1
d(—Ag)+{e,(-Ap)}+ ;{%Aill}zoy () whereB,;, andV,,;, are the usual Alfve-wave solution of
the homogeneous parts of Eq4.1) and (12). Hence, our
ap+{@, iy} =0, (4)  primary interest is solving Eq$7) and(8) for ¢; and ;.

Eliminating ¢, from Egs. (7) and (8), we obtain a

1 second-order ordinary differential equation governing
Uv)tvz—’_{(PvVL}_{— ;{Bbw}:O’ (5)
d d @1) @1)
2__ 2 2 2_ 2p2
B, +{0.B,} +{V,, g =0. ©) olx[(Q 2KB )dx(ﬂ —k (Q KB ) O
Here, {P,Q}=(dyP) - (4xQ) — (4xP) - (4yQ) is the standard -0. (15)

Poisson bracket. ) . .
We assume that the equilibrium fiel@& andV, have When the ambient flow/, vanishes, Eq(15) reduces into

only y andz components that are functions of onty the standard Alfve wave equation that gives only the Alfve
continuous spectrurtf. A nonconstantV, destroys the self-
Bo(x)=[0By(x),B,(x)], adjointness of Eq(15—an essential departure from the con-

_ ventional Hermitian MHD.
Vo) =[0.Vy(),V(x)] We may rewrite Eq(15) as
The thickness of the slab geometry is the system lsizd/e P .
consider the region of in the interval (0,1). We note that (0—kVy) (@1~ K @1) +KVigy

the pressure terp in Eqg. (1) has been eliminated in Eq. 2k2B (B! +KB,V!)
_ y\ Py y

(3) by taking the curl derivative. In a one dimensional sys- . 3 2y (Qej+ kV{,(Pl):O- (16)
tem, the de-curl of Eq3) can always reproduce the pressure a“Q(Q°-k"Bj/a“)

p by integratingd,p (however, it is not so in multi dimension When the ambient magnetic fieBj, vanishes, Eq(16) reads
systemg

as well-known Rayleigh’s equation of neutral fluid. The non-
self-adjointness originates from the term includM’g. The
change of the sign o¥/; y may produce the KH instability
(Rayleigh’s inflection- pomt theoret. The third term on the
left-hand side of Eq(16) represents the effect of a magnetic
Q@] — K1) +kVyps— 2k{Bwl—By( Y — K1)} =0, field on the KH instabilities.

R0 Equation(15) may have unstable point spectra in addi-

tion to the Alfven continuous spectrum. Multiplying E¢L5)

Qi +kByp; =0, (8) by the complex conjugate ofg /Q)) and integrating over
(0,1), we obtain a quadratic form;

We consider perturbatiofdenoted by suffix “1" of the
form of f;=f;(x)expi(ky—wt). Linearizing Egs.(3)—(6)
yields

OB, +kByV,;1 =KB o1 =KV, i1, ©)
! 2 1 2p2 2

. f 07— — 1282 || 42 dx=0, 17
QVzl“‘ kB yBa1=kV 01— — kB, (10) 0 a

a

where
where() = w—kV, is the Doppler-shifted frequency. We as- 5
sume rigid boundariev(=ik¢,;=0) atx=0,1. |p|2= d (ﬂ +K2 f1
Equations(7) and (8) constitute a closed system deter- Q Q

mining ¢; and ¢;. On the other hand, Eq$9) and (10)

The imaginary part of Eq17) implies
include,, ¢, V,; andB,;. Rewriting Eqs(9) and(10) as imaginary p L7 impli

1
1 1 Im( ) f {Re(w) —kVy}|¢|? dx=0. (18
Q(QZ—§k283>lesz;<Qz—;sz§)¢l, (12) 0 ’
If Im(w) #0, the integrand of Eq18) must change the sign

in (0,1), i.e.,

V21: kV;
Vymin< R @)/ K<V max. (19

1
2_ 2p2
Q(Q KB

1
02— ;k283> e, (12
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This is the reproduction of the standard relation for neutral 1.4 . . A

fluids.'? The region of Reg) for unstable eigenvalues is not ol Do 0.6 |

affected by magnetic fields. A “sufficient” condition of sta- 1/a=0.9 -

bility can be easily found if we rewrite Eq17) a$"’ 1
Aw?+2Bw+C=0, (20) I

where i

w=w—kV,, Vy=const,

1
A=f | #|%dx>0,
0

l~
Esz—kf0 Vy(X)] |2 dx,

C:k2J1
0

Vy(X)=Vy(x) = V.
If which implies sub-Alfvaic velocity.

The necessary and sufficient condition of stability can be
obtained by searching the marginally stable eigenfunction.
We extend the method of Tollmiéhthat was developed for
. ) ) . a neutral fluid. Let us start by reviewing the case &=10
in the whole region, the frequency in an appropriate refer{netral fluig. KH instability is a global mode that occurs
ence framew must be real numbers, implying stability. only for a finite wave number less thdg, the marginally

It may be useful to invoke the analogy of E46) and  stable wave numbeiFig. 1). Tollmien has shown the exis-
the (lagquatipn of diocotron modes in a sheared magnetifence of a marginally stable eigenfunctign- ¢ satisfying
field.™ A d!ocotrqn r_‘nodg is e;sentlally a KH instability of wlks=V,(Xs), Wherex; is an inflection poin[V;(xS)=O].
electrostatic oscillations in a single-species plasma. When @he eigenfunction for the sinusoidal flow/, = sin(\x
non-neutral plasma is confined in a sheared magnetic field; 5) (0<x<1) satisfies
the diocotron modéelectrostatic mode perpendicular to the
magnetic fieldl is coupled with parallel electron oscillations. sin(Ax+ 8){ 2+ (N2—k2) gt =0, (27
The latter neutralizes the charge of the diocotron mode, and
hence, the mode is strongly stabilized in a sheared magnetighereps=0 atx=0 and 1. The factor sing+ 5) on the left
field. This stabilization effect appears as an additional termhand side of Eq(27) produces a real continuous spectrum
to Rayleigh’s equations, which is similar to the third term in representing convective transp&ttThe KH mode, which
Eq. (16). Here, the Alfve wave works to reduce the insta- can become unstable, is characterized by the second factor

FIG. 1. The growth rate versus the wave number for three different param-
eters 14 with A=27 and §=0.

- 1
vy<x)2—;8y<x)2] || dx,

1/a=1, (26)

1 -
EBy(x)szy(x)Z, (21)

bility energy. {2+ (N2=Kk2) ¢} in Eq. (27), which yields
IIl. STABILITY OF BELTRAMI FLOWS ps=sinnmX, Kkg= WAZ—nZ72 (n=x1,+2,...).
28
In this section, we study the stability of a Beltrami field 28
given by Figure 1 shows the growth rate as a function of the wave
VXBy=\Bg, (22) numperk (N=2r). In this casew is pure imaginary._The
marginally stable wave numbét= \/37=5.44 is obtained
Bo=Vo, (23)  from Eq.(28). Figure 2 shows the vorticity of the eigenfunc-
V2 tion ¢,. The singularity akk=0.5 disappears in the limit of
—O+po=c0nst, (24)  k—Kks. This behavior can be understood by rewriting Ray-
2 leigh’s equation in terms of vorticitl' = — A ;
where \ is a real numbefthe magnitude ol is already .
normalized. In the slab geometry, we can write (Vy=e)¥ =V K, (29
0 wherec= w/k andK denotes the inverse-Laplacian operator.
Bo=Vo=| SINAx+d) |, (0=x=<1). (25) If c is a complex number¥(xs) is zero, while if c

Ny =V,(xs), we haveW¥ (x) #0. The stability condition is ob-
COYAX+ ) tained from Eq(28). If A<, the flow is stable even when
SinceV, =By, the sufficient condition of stability21) reads  V,, has an inflection point. IhN>, the flow is always un-
as stable.
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FIG. 2. The vorticity of the eigenfunctiog, for three different values df,
where 14=0, =27 and 6=0.

When we increase the magnetic fieldd)./the growth
rate diminishegFig. 3). The eigenfunctionp; tends to be
singular near stable regioriEig. 4), reflecting the essential
singularity of the Alfven continuum.

From this numerical analysis, we observe that the critical
wave numberkg is unchanged when the magnetic field is the

applied (14+0).
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FIG. 4. The vorticity of the eigenfunctiog, for three different values of
1l/a. k=3.6, \=27 and 6=0.

with the boundary conditiong¢(0)=¢4(1)=0. The solu-

tion of Eq. (31) is identical to Eq.(28). Hence, there is a

finite interval of the wave number (Q) where, as we will

show, the KH mode is unstable.

There are some different perturbation methods to study
neighborhood of the marginally stable wave

numbert?141Here we apply the scheme of Ref. 16. We may

In what follows, we analytically demonstrate the insta- assumegp(xs)#0, for n=1 in Eq. (28). We definey(x)
bility for k<<ks [ks is the critical wave number that is iden- — )X {%(X)} 2dx, that solves Eq(31). This i satis-

tical to that of the neutral fluid; see E@8)]. Here, we

assume H<1 [if 1/a=1, KH modes are always stable; see

Eqg. (26)]. Since the Beltrami condition demand§=B,,
Eq. (16) simplifies as ¢= w/k)

2cV,V,
Vy—c){a?(Vy—c)?—V}
x{(c—=Vy)e1+Vye.}=0. (30)

The existence of a marginally stable eigenfunctipy= ¢
with the critical wave numbeks (>0) is almost straightfor-
ward; Equation(30) reads

(Vy=c) (@] —K2@1) = Vypi— (

Vy (@l —k2pg) = Viyps=0, (31)

025 T T T T T

0.05

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

1/a
FIG. 3. The growth rate Im¢) as functions of the parameteral/The

dashed line is fon =27, =0 andk=1. The points\=2m, §=0 andk
=5.3 and the solid line is the analytic cur¢5).

fies also the MHD equatiofiL6), if
Vy: By+ CO y
By(Xs) =0,
wherec, is a real constant. Our Beltrami model satisfies Eq.

(32

(32) with co=0. We easily verify the WronskiaWV(¢s, s)
=1 and

Ps(0)=—1lpg(0),  s(1)=—1lpg(1),

W) =0 and v (x)=g(x). 39

For (k,c)~(ks,0), we expandp,(X;k,c) in powers of both
k—ks andc;

@1(X) = @t @1 (X) (K—Kg) + Pa(X)C+ - - -. (34)
Plugging Eq.(34) into (30), we find
V(D] —K2D 1) —Vyd ;= 2KsVy s, (35)

V! 2V'(V’(,DS—Vy(p;)
V(D= K2D,) — V' D,= Lo+ ——
AN s*2 y=2 Vy s (az—l)V§

(36)

The effect of the magnetic field (@# 0) appears only as the
second term on the right-hand side of Eg6). Therefore,
®, is modified by the magnetic field. Usingg and ¢ as the
Green functions, the solutions of Eq85) and(36), with the
boundary condition®,(0)=®,(0)=0, are given by
X X
q)l(X)Zst( ‘ﬁsfo <P§dx— (PSJ;( (Ps‘ﬁsdx) (37)

and
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X VH 2V,(V’(P _V QD,)
Do =ys || e ST o
Vi (a®~1)V;
f V” Ut ZV;(V;(PS_Vy(Ps,‘.) v, |dz
~ Ps GD
v2 e (a?=1)V3 °
(38)

In Eq. (38), the integral is taken along a path in the complex

plane to avoid the singularity of the integrand. We consider
the marginal stability as the limit approached from the insta-

bility regime (Im(c)>0), and hence, the path of integration
must be taken by the analytical continuation so Magoes
below zero. Atx=1, we observe

®y(1)=- %(i)fol ¢; dx, (39
- ——— [V, (40
(1-1a?)pl(1)Jo Vi ™
The real and imaginary parts df,(1) are given by
(Dzr(l):—; ’/<deX (41
(1-1a®eg(1) Jovy
and
wp(nym T WOV g

(1—1/a%) Vy2(xs) &(1)

whereP denotes the Cauchy principal value of the integral.
By the definitions(37) and (38), ¢; of Eq. (34) vanishes at
x=0. The other boundary conditiop;(1)=0 demands

®,(1)D5(1)
= 1(*2(2 —ks). (43
|®o(1)]
The imaginary part of Eq43) reads
D,(1)Pyi(1
Im(c)=l()72(2)(kfks) (44)
|®o(1)]
=Ci(1-1/a%) (1l/a<l), (45)
where Cj=Im(c) for 1/a=0. Since Vy'(xs)sgnVy(xs) <0

for the Beltrami flow, Eq(44) shows that Im¢) is positive
for k<kg when 14<1. Equation(45) shows that the growth
rate decreases when the magnetic fietd ) increases.

In Fig. 3, we compare Eq45) with the numerical result.
Combining with the abovementioned sufficient condition of
stability, the necessary and sufficient condition for stability
of the Beltrami flow is\<m or 1/a=1 (see Fig. 5.

IV. STABILITY OF DOUBLE BELTRAMI FLOWS

In this section, we analyze the stability of double Bel-
trami flows. We use the Alfweunit to set 14=1. The double

Ito et al.

Unstable

n
A

FIG. 5. The stable and unstable regions in the parameter spacéretip-
rocal length scaleand 14 (magnetic field strengihThe stability condition
on the axis 1d=0 is consistent to the well-known result of the KH mode in
neutral fluids(Ref. 14. The stable region of &<1 was predicted by the
guadratic form argumen(Ref. 6).

Vo=D1G;+ D56y, (47)
where

VXG=\G, (j=1.2,

D;/Ci=(\+all), (48)

D,/Co=(\p+all), (49)

a.=2[— (N +ho) =N —Np) 2+ 4]t (50)

We can consider two different pairs of amplitudé®) and
(49) depending on the choice of the sign®f . In the slab
geometry, Beltrami fields are given by

(0=x<1,j=1,2).

The necessary and sufficient condition for the stability of
each separate Beltrami vortex(see Sec. I

ID;/Cj|<1 (i=1,2).

Gj=(0,sin\jX,COS\X)

or

Beltrami fields are represented by linear combinations of two

Beltrami flows?

BO:C161+ Csz, (46)

FIG. 6. The maximum growth rate vers@, with N\¢;=27, \,=7 and
C;=1. In Case(A), \;=27 and A,=m. In Case(B) Ni=m and \,
=27.
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o PO

—_—

L4,
alalalalalatal

[4)[= & %)= 14,

Equations(48) and (49) show that the value®;/C; (]
=1,2) are defined by\; and \,, and their product must
satisfy

(D1/C1)(D,/Cp)=1, (51)

which means that one vortex is sub-Alfie while the other
is super-Alfvanic (|D,/C,|=|D,/C,|=1 occurs whem,
=\,). A combination of two unstable vortices is not pos-

sible in a slab geometry. There are two types of combina

tions:

(A) super-Alfvenic vortex with smaller structure and
sub-Alfvenic vortex with larger structure |P,/Cq|>1,
|D,/Cy|<1 andh;>1\y),

(B) super-Alfvanic vortex with larger structure and sub-
Alfvénic vortex with smaller structure |D,/Cq|>1,
|D,/Cyl<1 and\;<\y).

Kelvin—Helmholtz instability in Beltrami fields 4861

FIG. 7. The profiles of8,, V,, B}
—V?Z andV; versusC, in Case(A) of
Fig. 6.

We distinguish the super- and sub-Alfie vortices by
subscripts 1 and 2, respectively. In the double Beltrami
fields, the profiles 0B, andV, do not satisfy Eq(32), and
hence, the marginally stable eigenfunction cannot be found.
In the case(A) with A;=n\, (n is an integer numbgror
No,=, the sufficient condition for the stabilit)Bf/avi in
the whole region, holds for some appropriate choice€ pf
andC,. Otherwise, however, the sufficient condition is sat-
isfied only at the limit offC,/C,|— .

Fixing C;=1 and takingC, as a control parameter, we
compare the growth rates of Cagés and(B) for the same
pair of A, and\,. We denote the largérbsolute valugone
of N1, by A (smaller sizé and the smaller one by, . For
given\g and\|, the selection ofr, or «_ in Egs.(48) and
(49) switches the Casg#\) and(B).

FIG. 8. The profiles of8,, V,, B}
—V§ andvg versusC, in Case(B) of
Fig. 6.
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Figure 6 shows the maximum growth rate as a function

of C, (we chooseng=27 and\,=m). If we usea, , the
vortex of \¢ is unstable and that of, is stable[Case(A)].
The profiles ofB, andV, are shown in Fig. 7 as functions of
C,. When we increas€,, the amplitude of the magnetic
field increases. FOE,>6.87, the local Alfve velocity ex-

Ito et al.

In a general MHD flow, we can not find the marginally
stable solution, so that the necessary and sufficient condition
of stability is not known. The complexity of the stability
problem is seen in the analysis of the double Beltrami fields.
We have shown that the joint instabilitgestabilization by a
magnetic fieldd may occur.

ceeds the flow velocity everywhere in the domain (0,1). In

Fig. 7, we observe that the instability is suppressedder
=6.5, implying that the criteriaB;=V; in the whole do-
main) is almost the necessary and sufficient condition.

If we usea_, Case(B) occurs. Both vorticesN and
\|) are separately stabl¢ghe small vortex\ s becomes sub-
Alfvénic). The profiles oB, andV, are shown in Fig. 8. The
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combination of stable vortices causes instability. However,

the growth rate is smaller than that of Cd#e (see Fig. 6.

The flow of the combined vortices does not have an inflec-

tion point if C,<1.47 (see Fig. 8 If there was no magnetic
field, this flow is stable (Rayleigh's inflection-point
theorent!). However, the double Beltrami field is unstable
when C,=1 (see Fig. 6 This is the so-called joint
instability®®>—an example of the destabilizing effect of a
magnetic field.
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