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Stabilization effect of magnetic shear on the diocotron instability
Shigeo Kondoh, Tomoya Tatsuno, and Zensho Yoshida
Graduate School of Frontier Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan

~Received 13 December 2000; accepted 7 February 2001!

The diocotron instability in a magnetized non-neutral plasma is a close cousin of the Kelvin–
Helmholtz instability. A sheared magnetic field brings about coupling between the diocotron modes
and the Langmuir waves that propagate along the magnetic field. The motion of electrons parallel
to the magnetic field cancels the electric charge produced by the diocotron modes, resulting in
stabilization of the diocotron instability. ©2001 American Institute of Physics.
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I. INTRODUCTION

Recently a variety of new concepts on non-neut
plasma confinement have been proposed,1–3 which signifi-
cantly differ from the conventional Penning/Malmbe
trap.4,5 The Prototype Ring Trap~Proto-RT! experiment1,6,7

is aimed at pure magnetic confinement of a toroidal n
neutral plasma that is not in a rigid-rotating thermal equil
rium state. In such a system, the plasma flow is gener
sheared, and the diocotron instability8 can be destabilized
The application of magnetic shear is expected to be m
effective to stabilize the electrostatic modes. However,
exact stability analysis has not been completed, except
the special case of an electron beam with a relativi
speed.9

The physical mechanism of the diocotron instability
explained as follows10 ~see Fig. 1!: When a non-neutral slab
plasma has a finite thickness, a perturbation on one of
two plasma surfaces produces surface charges. The resu
perturbed electric field yields anEÃB flow in the plasma,
and the opposite surface is also perturbed. The motion of
opposite surface brings about a reciprocal perturbation,
the waves on the two surfaces couple with each other. Un
certain conditions, this coupling yields a positive feedba
and the diocotron instability occurs.

When a non-neutral plasma is confined in a unifo
magnetic field, the diocotron modes propagating in the p
pendicular direction to the magnetic field are independen
any modes that propagate in the parallel direction. Howe
if the magnetic field has a shear~see Fig. 2!, the wave vector
may have a local parallel componentki(x), and the dio-
cotron modes interact with the parallel modes, such as
Langmuir wave or the plasma oscillation. In a cold no
neutral plasma, the surface charge perturbation produce
the diocotron modes is short-circuited by the parallel mot
of charged particles, if the diocotron frequencyvD is much
smaller than the plasma frequencyvp , i.e., when a low den-
sity plasma embedded in a strong magnetic field. Theref
we expect that the diocotron instability is stabilized in
sheared magnetic field.

In this paper, we consider a slab plasma with a flat-
density profile and show the stabilizing effect of magne
2631070-664X/2001/8(6)/2635/6/$18.00
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shear analytically. The diocotron instability is formal
equivalent to the Kelvin–Helmholtz instabilities in fluids an
plasmas.11 The magnetic shear stabilization of these instab
ties is of the common interest and has a variety of appli
tions ~see Sec. IV!.

II. EIGENEQUATION FOR DIOCOTRON MODES IN A
SHEARED MAGNETIC FIELD

A. Slab plasma model in a sheared magnetic field

We consider a slab electron plasma embedded i
sheared magnetic field~see Fig. 2!. The plasma has a finite
thickness 2D in the x-direction. We assume that all equilib
rium quantities are functions of onlyx. We consider a
sheared magnetic field such as

B5„0,By~x!,Bz…, ~1!

where Bz is a constant. Since a non-neutral plasma ha
self-electric field, there is a stationary flow that is appro
mately equivalent to theEÃB drift for low densities.

The governing equations are

]n

]t
1v•“n1n“•v50, ~2!

]v

]t
1~v•“ !v52

1

s2 ~E1vÃB!, ~3!

¹2f52n, ~4!

wheren is normalized by the typical electron densityn0(0),
t by the inverse of the diocotron frequencyvD

21

5«0Bz /en0(0) ~«0 is the vacuum dielectric constant ande
is the elementary electric charge!, the spatial coordinatesx,
y, z by the half thickness of the slab plasmaD, v by the
mean flow velocity at the plasma surfaceuv0(1)u, B by the
axial magnetic fieldBz , E by the mean electric field at th
plasma surfaceuE(1)u, s[vp /vc5vD /vp is a dimension-
less parameter, andE52“f. Since we consider a low
density plasma in a strong axial magnetic field, we may
sumes!1. In this limit, we can replace Eq.~3! with

v'5
2“fÃB~x!

B~x!2 , ~5!
5 © 2001 American Institute of Physics
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]v i

]t
1~v•“ !v i5

1

s2“ if, ~6!

whereB(x)5ABy(x)21Bz
2. We are neglecting the polariza

tion drift velocity vp , becausevp5O(s2)!1. Substituting
Eq. ~5! into Eq.~2! and linearizing the resulting equation, w
obtain

~v2kyv0y2kzv0z!n12
d

dx FBykz2Bzky

B2 n0Gf12 in0“•vi1

50, ~7!

where we have Fourier-transformed all perturbed variab
C(x,y,z,t) as

C~x,y,z,t !5C0~x!1C1~x!exp@ i ~vt2kyy2kzz!#. ~8!

Here we perform a coordinate transform,

FIG. 1. A physical picture of diocotron modes in a uniform magnetic fie
Perturbation on one of the two plasma surfaces produces the surface c
and causes the electrostatic field perturbation. This perturbed electric
shakes the body of the plasma itself throughE3B drift, and the other
surface is also perturbed. The perturbation on the latter surface in
shakes the former one in the same way. Thus, the waves on the two su
couple with each other. Under certain conditions, the diocotron modes
be unstable.

FIG. 2. A physical picture of stabilizing effect of a sheared magnetic fi
on diocotron modes. The wave vector almost always has a local par
component, and the diocotron modes cannot be independent of the pa
modes, such as the Langmuir wave or the plasma oscillation. Therefo
coupling between them is caused. In a cold non-neutral plasma, the su
charge perturbation produced by the diocotron modes is canceled b
parallel motion of charged particles. Thus, the diocotron instability is st
lized by the sheared magnetic field.
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x5x8,

y5
Bz

B
y81

By

B
z8, ~9!

z52
By

B
y81

Bz

B
z8,

on Eqs.~7!. The newz8-axis is set to parallel the direction o
the magnetic field, and the newy8-axis is perpendicular to
both thex- andz8-directions. Equation~7! now reads as

„v2k'~x!v'0…n11
d

dx S k'~x!n0

B Df12n0ki~x!v i150,

~10!

wherek'(x) and ki(x) are the wave vector, in the perpen
dicular and parallel directions, with respect to the magne
field, respectively;

k'~x!5
ky2kzBy

A11By
2

, ~11!

ki~x!5
kyBy1kz

A11By
2

. ~12!

Similarly, from Eqs.~4! and ~6!, we obtain

d2f1

dx2 2k2f15n1 , ~13!

~v2k'v'0!v i152
ki

s2 f1 , ~14!

where k2[k'(x)21ki(x)25ky
21kz

2 , which is independent
of x. Substituting Eqs.~13! and~14! into Eq.~10!, we obtain
the eigenequation for the perturbed electrostatic potentia

S d2f1

dx2 2k2f1D1
1

v2k'v'0

d

dx S k'n0

B Df1

1
n0ki

2

s2~v2k'v'0!2 f150. ~15!

B. Coupling between diocotron wave and plasma
oscillation

The last term of Eq.~15! represents the coupling of th
parallel dynamics and the diocotron modes. In the limit o
shearless magnetic field (By50), the diocotron modes an
plasma oscillation are decoupled, and, hence, the last ter
the eigenequation~15! vanishes (ki50), and~15! reduces to

S d2f1

dx2 2ky
2f1D1

ky

v2kyvy0

dn0

dx
f150, ~16!

which is equivalent to Rayleigh’s equation for the Kelvin
Helmholtz instability.12,13 The diocotron instability, which is
thus a cousin of the Kelvin–Helmholtz instability, is caus
by the non-self-adjointness brought about by the second t
in Eq. ~15!.

In the sheared magnetic field, the diocotron modes
ways couple with the plasma oscillation in the direction p
allel to the magnetic field. This interaction is represented
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the last term in Eq.~15!. The last term includes a sma
parameters2 in its denominator, so a significant change
brought about in the characteristics of the equation. Ph
cally this means that the parallel motion of the plasma ea
cancels the charge perturbation and has a strong s
circuiting effect under the condition that the time scale of
plasma oscillation is much smaller than the diocotron mo
(s5vD /vp!1).

In the next section, we will show analytically that th
last term has a stabilizing effect.

III. STABILIZING EFFECT DUE TO PARALLEL
MOTION

A. Nonresonant frequency regime

First, we show that the diocotron modes are stabiliz
(v i50) for wave numbers without resonance between
phase velocity and the plasma flow, that is,v r2k'v'0Þ0
for all x. Multiplying Eq. ~15! by f* and integrating it over
(2`,`), we obtain from the imaginary part,

v iE
2`

` F 1

uv2k'v'0u
d

dx S k'n0

B D
1

2n0ki
2~v r2k'v'0!

s2uv2k'v'0u4 G uf1u2dx50. ~17!

Here we used the boundary condition

f1~6`!50. ~18!

Sinces2!1 andv r2k'v'0Þ0 at any point in the plasma
region, we obtainv i50, which means stability. This math
ematical treatment is the same as the standard Rayle
analysis.12

B. Dispersion relation with resonances

If the plasma has a resonant point, the analysis in S
III A does not apply to check whether the eigenvaluesv for
Eq. ~15! are real or not. In this case, we need to solve E
~15! directly. The eigenfunction determined by Eq.~15! is
oscillatory, because the sign of the last term, which we
sumed to be very large (s!1), is positive. Ifv is not real,
the real and imaginary parts of the eigenfunction have a r
tive phase angle of aboutp/2. When we consider a densit
profile with a sharp boundary, we have to connect both
real and imaginary parts of the eigenfunction at the plas
surfaces using the same boundary condition. If both of th
have a different phase angle, this process fails, which imp
that v must be real.

The essential characteristic of this eigenvalue problem
well understood by the following simplified model. First, w
neglect the second termk2f1 in the bracket of the first term
of Eq. ~15! in the plasma region (21,1), since it is much
smaller than the last term whenn0.1. We also assume tha
k'n0 /B jumps atx561 and its variation is negligible any
where else, i.e.,

d

dx S k'n0

B D5 f ~x!@d~x11!2d~x21!#, ~19!
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where f (x) is a given finite function. Furthermore, we a
sume

n0~x!ki~x!2

s2 [a25const@1, ~20!

k'~x!v'0~x!5x. ~21!

Under these assumptions, Eq.~15! reduces to

d2f1

dx2 1
a2

~v2x!2 f150 ~ uxu,1!, ~22!

d2f1

dx2 2k2f150 ~ uxu.1!, ~23!

with the boundary condition, Eq.~18!, and the jump condi-
tions

df1

dx
~211e!2

df1

dx
~212e!52

f ~21!

v11
f1~21!,

~24!

df1

dx
~11e!2

df1

dx
~12e!5

f ~1!

v21
f1~1!. ~25!

The general solution to Eqs.~22! and ~23! is given
by (k.0)

f1~x!55
f I5C1ekx ~x,21!,

f II5C2~v2x!(12A124a2)/2

1C3~v2x!(11A124a2)/2

.C2~v2x!(122ai)/2

1C3~v2x!(112ai)/2 ~ uxu,1!,

f III 5C4e2kx ~x.1!,

~26!

under the boundary condition~18!. Substituting Eq.~26! into
the jump conditions~24! and ~25! gives

C2F2S 1

2
2ai D ~v11!2(112ai)/21S f ~21!

v11
2kD

3~v11!(122ai)/2G1C3F2S 1

2
1ai D

3~v11!(2112ai)/21S f ~21!

v11
2kD ~v11!(112ai)/2G50,

~27!

C2F2S 1

2
2ai D ~v21!2(112ai)/21S f ~1!

v21
1kD

3~v21!(122ai)/2G1C3F2S 1

2
1ai D

3~v21!(2112ai)/21S f ~1!

v21
1kD ~v21!(112ai)/2G50.

~28!

If Eqs. ~27! and ~28! have nontrivial solutions forC2 and
C3 , the following relation must be satisfied:
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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F2S 1

2
2ai D ~v11!2(112ai)/21S f ~21!

v11
2kD ~v11!(122ai)/2G

3F2S 1

2
1ai D ~v21!(2112ai)/21S f ~1!

v21
1kD ~v21!(112ai)/2G2F2S 1

2
1ai D ~v11!(2112ai)/2

1S f ~21!

v11
2kD ~v11!(112ai)/2G3F2S 1

2
2ai D ~v21!2(112ai)/21S f ~1!

v21
1kD ~v21!(122ai)/2G50. ~29!

Equation~29! is the dispersion relation. We can show thatv is real for Eq.~29!. Substitutingv5v r1 iv i into Eq. ~29!, we
obtain

F ~a1kv i !
22k2v r

21S k1
1

2D 2

1 f ~21! f ~1!2S k1
1

2D „f ~21!1 f ~1!…

1kv r„f ~21!2 f ~1!…1 i ~a1kv i !„f ~21!2 f ~1!22kv r…G~v11!2ai

5F ~a2kv i !
22k2v r

21S k1
1

2D 2

1 f ~21! f ~1!2S k1
1

2D „f ~21!1 f ~1!…

1kv r„f ~21!2 f ~1!…2 i ~a2kv i !„f ~21!2 f ~1!22kv r…G~v21!2ai, ~30!
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wherev r5Rev andv i5Im v. Taking the absolute numbe
of Eq. ~30! gives

uA1u
uA2u

5expF2a argS v11

v21D G , ~31!

where

A15~a1kv i !
22k2v r

21S k1
1

2D 2

1 f ~21! f ~1!

2S k1
1

2D „f ~21!1 f ~1!…1kv r„f ~21!2 f ~1!…

1 i ~a1kv i !„f ~21!2 f ~1!22kv r…, ~32!

A25~a2kv i !
22k2v r

21S k1
1

2D 2

1 f ~21! f ~1!

2S k1
1

2D „f ~21!1 f ~1!…1kv r„f ~21!2 f ~1!…

2 i ~a2kv i !„f ~21!2 f ~1!22kv r…. ~33!

If v i.0, the left-hand side of Eq.~31! is greater than unity,
while the right-hand side is less than unity. Therefore,v i

.0 cannot be satisfied. Ifv i,0, the left-hand side of Eq
~31! is less than unity, while the right-hand side is grea
than unity. Therefore,v i,0 cannot be satisfied. Thusv i

50, which means stability. Ifv iÞ0, the eigenfunctions o
the three regionsf I , f II , andf III cannot be connected prop
erly at x561. We can also show thatuvu.1 for the point
spectrum.
Downloaded 24 May 2001 to 130.69.86.66. Redistribution subject to AI
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The eigenfunctions given by Eq.~26! are shown in Fig.
3. All v are real in this figure. The eigenfunctions are osc
latory in (21,1), because the sign of the second term of E
~22! is positive. If v is not real,f1 must be also nonreal
Figure 4 shows a nonreal solution to Eqs.~22! and ~23!. As
we can see from this figure, the relative phase angle betw
the real part and the imaginary part is aboutp/2. This pre-
vents both of them from connecting properly atx561.

IV. SUMMARY

We have shown that the magnetic shear has a str
stabilizing effect on the diocotron instability. The fluid mo
tion parallel to the magnetic field short-circuits the char
perturbation of the diocotron modes. The scaling param
is s[vD /vp . Since the time scale of the parallel motion
;vp

21 , the conditions!1 enables the parallel motion of th
plasma to cancel the perturbed charge sufficiently. Typ
non-neutral plasmas in laboratories satisfy this condition

Mathematically the last term of the eigenequation~15!
prohibits nonreal eigenvalues, because the last term m
the eigenfunction oscillatory. Ifv¹R, the relative phase
angle between the real and imaginary parts of the eigenfu
tion is aboutp/2. This phase angle disables both the real a
imaginary parts of the eigenfunction to satisfy the jump co
ditions ~24! and ~25! simultaneously.

The diocotron instability is formally equivalent to th
Kelvin–Helmholtz instability.11 The present analysis of th
effect of the parallel dynamics has, thus, a close analogy w
the study of the Kelvin–Helmholtz instability in a sheare
magnetic field14 and auroras with the longitudinal fluctuatin
electric field.15,16 In Ref. 14, Idomuraet al. discussed the
importance of the magnetic shear stabilization of t
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Kelvin–Helmholtz instability in connection with theE3B
zonal flow in high-temperature tokamak plasmas.14 Their
scaling parameter islDe/v te ~lDe is the Debye length andv te

is the electron thermal velocity!, and they reported that th
parallel Landau resonance is effective to stabilize
Kelvin–Helmholtz instability. In Refs. 15 and 16, Thompso
and Satyanarayana introduced the parallel motion of e
trons into their analyses to explain the field-aligned elec
fields and currents in the shear-flow region of the magne
sphere. They reported that the compressional energy of e
trons that comes from the parallel dynamics is the caus
stabilization of the Kelvin–Helmholtz instability.

FIG. 3. Eigenfunctions given by Eq.~26!. All eigenvalues are real, and n
jumps at the plasma surfaces are considered in this figure. The eigen
tions are oscillatory in the plasma region, because the sign of the se
term of Eq.~22! is positive.
Downloaded 24 May 2001 to 130.69.86.66. Redistribution subject to AI
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Finally we note that our analysis is based on a mo
approach which, however, may not be complete for n
Hermitian systems.17–19 There remains a possibility of secu
lar algebraic behavior, although we have shown that there
no exponentially unstable modes. This problem will be d
cussed elsewhere.
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