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Stabilization effect of magnetic shear on the diocotron instability

Shigeo Kondoh, Tomoya Tatsuno, and Zensho Yoshida
Graduate School of Frontier Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan

(Received 13 December 2000; accepted 7 February)2001

The diocotron instability in a magnetized non-neutral plasma is a close cousin of the Kelvin—

Helmholtz instability. A sheared magnetic field brings about coupling between the diocotron modes
and the Langmuir waves that propagate along the magnetic field. The motion of electrons parallel
to the magnetic field cancels the electric charge produced by the diocotron modes, resulting in
stabilization of the diocotron instability. @001 American Institute of Physics.
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I. INTRODUCTION shear analytically. The diocotron instability is formally
equivalent to the Kelvin—Helmholtz instabilities in fluids and

Recently a variety of new concepts on non-neutralplasmas:! The magnetic shear stabilization of these instabili-
plasma confinement have been proposédyhich signifi-  ties is of the common interest and has a variety of applica-
cantly differ from the conventional Penning/Malmberg tions (see Sec. IV.
trap®° The Prototype Ring TrapProto-RT experiment®’
is aimed at pure magnetic confinement of a toroidal nony g|IGENEQUATION FOR DIOCOTRON MODES IN A
neutral plasma that is not in a rigid-rotating thermal equilib-sHEARED MAGNETIC FIELD
rium state. In such a system, the plasma flow is generally _ L
sheared, and the diocotron instabfiityan be destabilized. A. Slab plasma model in a sheared magnetic field
The application of magnetic shear is expected to be most We consider a slab electron plasma embedded in a
effective to stabilize the electrostatic modes. However, arsheared magnetic fielgee Fig. 2 The plasma has a finite
exact stability analysis has not been completed, except fahickness 2 in the x-direction. We assume that all equilib-
the special case of an electron beam with a relativistigium quantities are functions of onlx. We consider a
speed sheared magnetic field such as

The physical mechanism of the diocotron instability is _
explained as follow® (see Fig. 1: When a non-neutral slab B=(08,(x).By), @
plasma has a finite thickness, a perturbation on one of thehere B, is a constant. Since a non-neutral plasma has a
two plasma surfaces produces surface charges. The resultiaglf-electric field, there is a stationary flow that is approxi-
perturbed electric field yields aBXB flow in the plasma, mately equivalent to th&XB drift for low densities.
and the opposite surface is also perturbed. The motion of the The governing equations are
opposite surface brings about a reciprocal perturbation, and
the waves on the two surfaces couple with each other. Under E+v~ Vn+nV.v=0, (2
certain conditions, this coupling yields a positive feedback,

and the diocotron instability occurs. v

When a non-neutral plasma is confined in a uniform 2 +(V-V)v=— 5 (E+VXB), ()]
magnetic field, the diocotron modes propagating in the per-
pendicular direction to the magnetic field are independent of VZ¢p=—n, 4

any modes that propagate in the parallel direction. However,
if the magnetic field has a she@ee Fig. 2, the wave vec_tor t by the inverse of the diocotron frequency)gl
may have a local parallel componekf(x), and the dio-  __ 5 jan (0) (g, is the vacuum dielectric constant aad
cotron modes interact with the parallel modes, such as thg he elementary electric chajgehe spatial coordinates,
Langmuir wave or the plasma oscillation. In a cold non-y - 7 py the half thickness of the slab plasma v by the

neutral plasma, the surface charge perturbation produced Q¥ean flow velocity at the plasma surfasg(1)|, B by the
the diocotron modes is short-circuited by the parallel motion, ;) magnetic field,, E by the mean electric field at the

of charged particles, if the diocotron. frequenoy is much plasma surfacéE(1)), s=wy/w.=wplw, is a dimension-
smaller than the plasma frequeney, i.e., when a low den- less parameter, an=—V¢. Since we consider a low-

sity plasma embedded in a strong magnetic field. Thereforedensity plasma in a strong axial magnetic field, we may as-
we expect that the diocotron instability is stabilized in agmes<1. In this limit. we can replace Eq3) with

sheared magnetic field.

heren is normalized by the typical electron density(0),

In this paper, we consider a slab plasma with a flat-top _—V¢XB(X) 5)
density profile and show the stabilizing effect of magnetic + B(x)>
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on Egs.(7). The newz’-axis is set to parallel the direction of
the magnetic field, and the ney/-axis is perpendicular to
both thex- andz’-directions. Equatiori7) now reads as

d [k, (X)n
(w—k (X)v N+ &

dx B )¢1—n0k|(x)01=0,

FIG. 1. A physical picture of diocotron modes in a uniform magnetic field. (10
Perturbation on one of the two plasma surfaces produces the surface charge .

and causes the electrostatic field perturbation. This perturbed electric fielwherek, (x) andk (x) are the wave vector, in the perpen-
shakes the body of the plasma itself througlx B drift, and the other  dicular and parallel directions, with respect to the magnetic
surface is also perturbed. The perturbation on the latter surface in tu”ﬁeld, respectively;
shakes the former one in the same way. Thus, the waves on the two surfaces

couple with each other. Under certain conditions, the diocotron modes can ky_ szy

be unstable. k (X)= " —= (1)
2 1
V1+Bj§

v, 1 () = kyBy+kK, 12

i vV =2V,4, 6) i) Vi+BZ' 2
whereB(x) = \/By(x)2+ BZ2. We are neglecting the polariza- Similarly, from Egs.(4) and(6), we obtain
tion drift velocity v, becausevp=0(sz)<1. Substituting a2
Eq. (5) into Eq.(2) and linearizing the resulting equation, we 5 21 —K?¢1=ny, (13)
obtain X

d [B.k,— B,k , L

(w_kyUOy_kZUOZ)nl_& %no ¢1—In0V~VH1 (w_kJ_UJ_O)UHl__?d)l’ (14)

0, (77 Where k?=k, (x)2+k(x)?=k;+kZ, which is independent

. _ of x. Substituting Eqs(13) and(14) into Eq.(10), we obtain
WVEere we) have Fourier-transformed all perturbed variablege eigenequation for the perturbed electrostatic potential as
v (x,y,zt) as

_ d?¢; 1 d (k. ng
Yxy.z) =P+ ¥r(xexdi(wt—ky-k2)]. @) |Gz K|+ T | g 4
Here we perform a coordinate transform, K2
2ok o 1= (15)

s“(w—K v, 0)

B. Coupling between diocotron wave and plasma
oscillation

The last term of Eq(15) represents the coupling of the
parallel dynamics and the diocotron modes. In the limit of a
shearless magnetic fiel({=0), the diocotron modes and
plasma oscillation are decoupled, and, hence, the last term of
the eigenequatiofil5) vanishes k;=0), and(15) reduces to

d?¢; ky dng
a2 K +ma¢1—0, (16)

which is equivalent to Rayleigh’s equation for the Kelvin—
Helmholtz instability***3 The diocotron instability, which i

FIG. 2. A physical picture of stabilizing effect of a sheared magnetic field he olt .Sta? k;[yl Vi ed OICOrEOI . Stabb.le’ . chis d

on diocotron modes. The wave vector almost always has a local paralléi us a cousin o t.e_ Kelvin—Helmholtz instability, is cause

component, and the diocotron modes cannot be independent of the parallBly the non-self-adjointness brought about by the second term

modes, such as the Langmuir wave or the plasma oscillation. Therefore, g Eq. (15).

coupling between them is caused. In a cold non-neutral plasma, the surface In the sheared magnetic field. the diocotron modes al-
charge perturbation produced by the diocotron modes is canceled by the !

parallel motion of charged particles. Thus, the diocotron instability is stabi-Ways couple with the plasma_oscillatioq in _the direction par-
lized by the sheared magnetic field. allel to the magnetic field. This interaction is represented by
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the last term in Eq(15). The last term includes a small wheref(x) is a given finite function. Furthermore, we as-
parameters? in its denominator, so a significant change is sume
brought about in the characteristics of the equation. Physi- 2

i i v No(X)Ky(X)
cally this means that the parallel motion of the plasma easily %Eazzconsﬁ 1, (20)
cancels the charge perturbation and has a strong short- S
circuiting effect under the condition that the time scale of the

plasma oscillation is much smaller than the diocotron modes k(v o(x) =X, (21)
(s=wplw,<1). Under these assumptions, E@5) reduces to
In the next section, we will show analytically that the & )
last term has a stabilizing effect. 1 a _ -
dXZ + (w—X)2 ¢l 0 (|X| 1)1 (22)
I1l. STABILIZING EFFECT DUE TO PARALLEL d2¢>1 5
MOTION o " e1=0 (IX>1), (23)

A. Nonresonant frequency regime with the boundary condition, Eq18), and the jump condi-

First, we show that the diocotron modes are stabilizedions
(w;=0) for wave numbers without resonance between the

phase velocity and the plasma flow, that dg,—k v, o#0 %(_1+6)_ %(_1_6): (=1 bu(—1)

for all x. Multiplying Eq. (15) by ¢* and integrating it over dx dx w+l 7t '

(—9,%), we obtain from the imaginary part, (24)
- 1 d (king déy dey f(1)

R ir=r dx( B) ax (LT g (1ma= =g ad) 25

The general solution to Eqgs(22) and (23) is given

2nok?(w, —k
0 Il(wr ) |¢1|2dX=0. 17) by (k>0)

52|w_kLULO|4

( — kx _
Here we used the boundary condition #=C.7  (x<-1),
_ _Aa2
$1(+)=0. (18) b1 =Cow—x)(17 V1742072
—AAa2
Sinces?<1 andw,—k, v, o#0 at any point in the plasma be(X)= +Cy(w—x)(IHV1-4a%)2 28
region, we obtainw; =0, which means stability. This math- ! =C,(w—x)(L-2aDP2
ematical treatment is the same as the standard Rayleigh’s (1+2ai)/2
analysis'? +C3(w—xX) (Ix|<1),
[ pu=Cse™™ (x>1),
B. Dispersion relation with resonances under the boundary conditidd8). Substituting Eq(26) into

If the plasma has a resonant point, the analysis in Secthe Jump conditiong24) and (25) gives
f(=1) k)

[l A does not apply to check whether the eigenvaluefor

Eq. (15) are real or not. In this case, we need to solve EqC2 o1

(15 directly. The eigenfunction determined by E{5) is

oscillatory, because the sign of the last term, which we as-

sumed to be very larges€1), is positive. Ifw is not real,

the real and imaginary parts of the eigenfunction have a rela-

tive phase angle of about/2. When we consider a density X (w+1)C1+2adzy b —k

profile with a sharp boundary, we have to connect both the o+l

real and imaginary parts of the eigenfunction at the plasma (27)

surfaces using the same boundary condition. If both of them

have a different phase angle, this process fails, which implies 1

that @ must be real. Co| —| 5 —al
The essential characteristic of this eigenvalue problem is

_(%_ai (w+1)(1+2ai)/2+(

X ((U+ 1)(172ai)/2

1
+C; —(§+a|

f(—

((1)+ l)(1+2ai)/2} — 0,

o 1)
1

well understood by the following simplified model. First, we 4 (1-2ai)2 _ E .

neglect the second terkf ¢, in the bracket of the first term x(0-1)f 2|+ Cq (2 Tal

of Eq. (15) in the plasma region-1,1), since it is much f(1)

smaller than the last term when=1. We also assume that X(w—1)tr2abzy | T2 4 (w_l)(1+2ai)/2} =0.

k, ng/B jumps atx=*1 and its variation is negligible any- w-1

where else, i.e., (28)
d (king| If Egs. (27) and (28) have nontrivial solutions fo€, and
&(T) =TOOLo0+ 1) =o(x=1)], (19 Cs, the following relation must be satisfied:
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1 . f(—1) _
N B —(1+2ai)/2 _ (1-2ai)/2
[ 5 ai|(w+1) + ol k)(w+1)
x| — E+ai (0—1)"1r2ad2y HJFK (0—1)t+2a02 | _ E+ai (0+1)-1+2ad2
2 w—1 2
f(—1) 4 1 . f(1) .
_ (1+2ai)/2 I _1\—(1+2ai)/2 _1\(1-2ai)/2| _
] k|(w+1) X 5 —al (w—1) + a)—1+k (w—1) 0. (29

Equation(29) is the dispersion relation. We can show thats real for Eq.(29). Substitutingw = o, +iw; into Eq. (29), we
obtain

2

(a+ko)?— Ko+ k+% +f(—1)f(1)— k+% (f(—1)+f(1))

+ko (f(—1)—f(1)+i(atko)(f(—1)—f(1)— 2ko,) |(0+1)%

2

1
k+=| +f(—1)f(1)—

(a—kwj)?—k2w?+ 5

(f(=1)+1(1))

kl
2

+ko,(F(—1)—f(1)—i(a—ko))(F(—1)—f(1)—2kw,)|(0—1)2, (30)

wherew,=Rew and w;=Im w. Taking the absolute number The eigenfunctions given by E26) are shown in Fig.
of Eq. (30) gives 3. All w are real in this figure. The eigenfunctions are oscil-
latory in (—1,1), because the sign of the second term of Eq.
|A,] w+1 (22) is positive. If w is not real,¢»; must be also nonreal.
@zex;{Za aﬂ%m : (31)  Figure 4 shows a nonreal solution to E¢®2) and(23). As
we can see from this figure, the relative phase angle between
the real part and the imaginary part is abat2. This pre-
vents both of them from connecting properlyxat + 1.

where

2

A= (a+kaop)?— Kew?+ k+% +H(—1)f(1) IV. SUMMARY
We have shown that the magnetic shear has a strong
1 stabilizing effect on the diocotron instability. The fluid mo-
_(k+ 7| (=D + (1) +ko (F(—=1)— (1)) tion parallel to the magnetic field short-circuits the charge
perturbation of the diocotron modes. The scaling parameter
+i(at+ko)(f(=1)—f(1)—2ka), (32)  iss=wp/w,. Since the time scale of the parallel motion is
112 ~w,§l, the conditionrs<1 enables the parallel motion of the
A,=(a—kw)2— K22+ | k+=| +f(—1)f(1) plasma to cancel the' perturbed .charge. sufﬂqently. .Typ|cal
2 non-neutral plasmas in laboratories satisfy this condition.
1 Mathematically the last term of the eigenequatids’)
—(k+ | (F(=1)+f(1))+ ko, (F(—1)—f(1)) prohibits nonreal eigenvalues, because the last term makes
2 the eigenfunction oscillatory. Itv ¢ R, the relative phase
—i(a—ke)(f(—1)—f(1)—2kw,). (33) angle between the real and imaginary parts of the eigenfunc-

tion is aboutsr/2. This phase angle disables both the real and
If w;>0, the left-hand side of Eq31) is greater than unity, imaginary parts of the eigenfunction to satisfy the jump con-
while the right-hand side is less than unity. Therefapg, ditions (24) and(25) simultaneously.
>0 cannot be satisfied. b;<0, the left-hand side of Eg. The diocotron instability is formally equivalent to the
(31) is less than unity, while the right-hand side is greaterkelvin—Helmholtz instability:* The present analysis of the
than unity. Thereforew;<0 cannot be satisfied. Thus; effect of the parallel dynamics has, thus, a close analogy with
=0, which means stability. ltv; #0, the eigenfunctions of the study of the Kelvin—Helmholtz instability in a sheared
the three regions,, ¢, , and¢,, cannot be connected prop- magnetic field* and auroras with the longitudinal fluctuating
erly atx=*1. We can also show thai|>1 for the point electric field*>® In Ref. 14, Idomuraet al. discussed the
spectrum. importance of the magnetic shear stabilization of the
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a=20
k=1
®=23.28

Re ¢

®=0.2+0.005 i

a=20 )

x=1

FIG. 4. A complex solution to Eq$22) and(23) for imaginaryw. The real

part and the imaginary part @, have phase displacement of abatf@.

a=20 q) This prevents both the real and imaginary parts¢gf from connecting
properly atx=*1.

Finally we note that our analysis is based on a modal
approach which, however, may not be complete for non-
Hermitian system&’~1° There remains a possibility of secu-
lar algebraic behavior, although we have shown that there are
no exponentially unstable modes. This problem will be dis-
cussed elsewhere.
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