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Abstract

Recent progress in linear spectral studies of incompressible plasma (fluid) with flows is reviewed.
Mathematically, non-Hermiticity of the generating operator brings about incompleteness of the
eigenvalue analysis and unremovable coupling between modes. This may lead to secular growth
(algebraic in time) even if all eigenvalues exhibit stable oscillations. Physically, the stretching effect of
shear flow is considered a stabilizing mechanism for various plasma instabilities; however, shear flow
may equally effectively destabilize a class of plasma modes. The condition for stabilization/
destabilization is discussed as well as its physical mechanisms.
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1. Introduction

Shear flows in plasmas are attracting much interest
because of their suppression effect on turbulence in
magnetically confined fusion devices. The current naïve
suggestion regarding this phenomena holds that the
stretching of modes in a shear flow brings about length
scale reduction leading to the suppression of
fluctuations. This argument for stability, however,
ignores the fact that the available free energy associated
with a shear flow may be a potent source for the
destabilization of some other class of fluctuations. The
Kelvin-Helmholtz (KH) instability [1-3], for instance, is
a well-known example of an instability that feeds on the
ambient flow-energy. On the other hand, various
discrepancies between theory and experiment regarding
the stability limit of neutral fluids have been reported

[4]. This is because rigorous treatment of the shear flow
effects encounters a fatal difficulty arising from the non-
Hermitian (non-self-adjoint) properties of the problem.
The standard normal mode approach breaks down, and
the theory may fail to provide correct predictions of
evolution even if fluctuation remains in the linear
regime.

Since the stability of an equilibrium has to be
discussed for arbitrary initial conditions, it is important
to find a general solution of the evolution equation
governing linear dynamics. Fortunately, the linearized
equation for a static (flow-less) equilibrium is described
by a Hermitian (self-adjoint) operator when we
determine the evolution equation in terms of the
displacement vector [5-7]. Thus, as we normally do in
conventional eigenvalue analysis, we may simply
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replace ∂t by –iω and see if the equilibrium may yield an
exponentially unstable eigenvalue and corresponding
eigenfunction. We may simply conclude that the
equilibrium is unstable if we find at least one eigenvalue
having a positive imaginary part of ω and if the
corresponding eigenfunction has finite energy (non-
divergent). The completeness of this spectral method is
guaranteed only for Hermitian operator due to von
Neumann’s theorem [8,9]. However, the question on the
stability problem is not answered yet when we do not
find any unstable eigenvalue.

As we already mentioned, the problem is related to
the completeness of the solutions. While it is well
known that complete solutions to nonlinear equations
are difficult to achieve, the difficulty of solving linear
ones is less recognized. Even if we suppose that all
eigenvalues are obtained, it’s still very difficult to
confirm if the obtained eigenfunctions sufficiently
describe complete dynamics. Initially, the number of
eigenvalues must be infinity for infinite-dimensional
operators (eg., integral or differential operators), and
worse, for the non-Hermitian operator, the
eigenfunctions are not orthogonal to each other. In the
case of finite-dimensional operators (eg., matrix
operators), the Jordan matrix is the known example in
which eigenvectors are not sufficient to describe
complete dynamics. It is known that secular growth
(algebraic in time) may lead to instability even if all
eigenvalues show stability [10]. Recently such an
algebraic instability has been pointed out to occur in the
infinite-dimensional system due to the frequency
overlapping between continuous spectra [11], and we
may even observe an instability with fractional power in
time [12]. We simply do not know what may happen in
the infinite-dimensional non-Hermitian operators!

There are also many unresolved problems related to
the physical understanding of the linear dynamics of
shear flow plasmas. KH instability is one of the most
famous instabilities in parallel shear flow systems, in
which the background flow is stable unless its curvature
changes sign in the domain. However, even the
background shear flow having a linear profile (free from
KH instability) can make the equilibrium more unstable
when combined with an Alfvén wave [13]. While the
stabilizing mechanisms of shear flow have been
stressed, relatively little attention has been paid to its
destabilizing effect. A shear flow may equally
effectively destabilize a class of plasma modes even if
the flow profile itself is stable.

In this paper, we describe both the mathematical

and physical aspects of the recent developments in
linear stability theories of shear flow plasmas. First, we
introduce the linearized reduced MHD equation
describing the incompressible motions of plasmas in
Sec. 2. We briefly review the energy principle and
properties of spectra in static (flow-less) plasmas.

In Sec. 3, we consider the surface-wave model
(piece-wise linear shear flow profile) of two-
dimensional vortex dynamics in neutral fluids. We first
revise the Rayleigh’s analysis of KH instability [14]. He
did not directly manipulate the evolution equation of
vorticity (Rayleigh equation), but his analysis gives us
deep physical insight into the problem. Next, we briefly
review the eigenvalue analysis of the Rayleigh equation
and discuss how each term affects the system by
comparison to Rayleigh’s analysis. We also show the
existence of degenerate frequencies (nilpotent) for a
KH-stable wave number. Since the generator of the
Rayleigh equation is non-Hermitian, the complete
spectra may contain the infinite-dimension analogue of
the Jordan block of a finite-dimension operator. Finally,
we include the effect of gravity. We show that
numerical integration shows localized secular behavior
in the vorticity due to coupling of two continuous
spectra [11]. This example shows that degenerate
frequency spectra may give rise to the algebraic
instability in non-Hermitian systems even if all
eigenvalues (point or continuous spectra) are real.

In Sec. 4, we show the stabilizing effect of shear
flow due to its stretching effect by invoking Kelvin’s
method of shearing modes [15]. While this method has
been previously called a ‘nonmodal’ approach in a wide
range of literatures [16], it is shown as a particular case
of a generalized ‘modal’ one [12,17,18]. We discuss the
transient and secular behaviors of interchange
fluctuations in Couette flow in an infinite interval. The
combined effect of shear flow mixing and Alfvén wave
propagation overcomes the instability driving force after
sufficiently long periods, and damps all fluctuations of
the magnetic flux with an inverse power of time. On the
other hand, electrostatic perturbations can be
destabilized for a sufficiently strong interchange drive.
The time asymptotic behavior in each case is algebraic
(non-exponential).

In Sec. 5, we discuss the destabilizing effect of
shear flow [13]. In contrast to its well-known
stabilization of the low-frequency plasma motions, a
shear flow may equally effectively destabilize a class of
plasma modes. We focus on the latter quality of the flow
by reviewing an incompressible ideal plasma having
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Couette flow in a finite interval. In the presence of the
flow shear, the growth rate of the perturbation increases
due to the coupling of the Alfvén wave with a Rayleigh-
Taylor type instability drive. Marginally stable modes in
the flow-less equilibrium achieve their maximum
growth rate when the maximum flow velocity becomes
comparable to the Alfvén velocity. At larger shear flow
velocities, however, the stabilizing “stretching” effect
becomes dominant and the instability is quenched.

2. Reduced Magnetohydrodynamics and its

Basic Properties

2.1 Formulation

In this article, we consider the ideal incompressible
motion of plasmas in the fluid description.We restrict
the geometry to a one-dimensional plane slab and
highlight the fundamental structures from both
mathematical and physical points of view.

In the Cartesian coordinates, we consider the
equilibria in which the plasma current density is taken
as J0 = J0ez, with ez denoting the unit vector in the z
direction, while a strong magnetic field is also applied in
the z direction. We restrict the problem by assuming

V0 = (0, Vy(x), 0). (1)

This situation is illustrated in Fig. 1.
Under the above conditions, we may assume that

the perturbed fields come from two-dimensional
incompressible motions and are written as

v1 = ∇φ × ez,  b1 = ∇ψ × ez, (2)

where φ and ψ denote the stream function and the flux

function, respectively.
In the linearized equation of motion, we neglect the

variation of the density in the inertial term, but not in
the gravitational force (Boussinesq approximation [1]).
This derivation is almost parallel to that of Strauss [19]
so that we do not describe it in detail here. By taking the
curl of the equation of motion and projecting it on the z
axis, we obtain the vorticity evolution equation;

ρ0 ∂t + Vy ∂y ∆φ – V ″y ∂yφ

= 1
µ 0

B0 ⋅ ∇∆ψ + ∇ J0 × ez ⋅ ∇ψ + g∂y ρ1 ,
(3)

where ∆ = ∂x
2 + ∂y

2 denotes the two dimensional
Laplacian operator. The continuity equation immediately
reads

(∂t + Vy∂y)ρ1 = –ρ0′∂yφ. (4)

The induction equation is decurled to yield

(∂t + Vy∂y)ψ = B0 · ∇φ. (5)

Equations (3)–(5) constitute a closed set of
equations describing the linearized incompressible
motion of the magnetized plasma. Actually, Eqs. (3)–(5)
can be obtained by directly replacing g = 2 /R0 in the
high β reduced MHD equations describing tokamak
plasmas [20], where R0 denotes the major radius of the
toroidal device.

Let us examine the structure of the governing
equations (3)–(5). In the flow-less case (Vy = 0), the left
hand sides of Eqs. (3)–(5) only contain the time
derivative. The first two terms on the right hand side of
Eq. (3) and the right hand side of Eq. (5) correspond to
the Alfvén wave. In homogeneous magnetic field, the
∇J0 term disappears and we obtain the simple wave
equation in which the phase velocity is given by the
Alfvén velocity vA = k · B0 / µ0ρ0 . The last term of
the right-hand side of Eq. (3) and right-hand side of Eq.
(4) correspond to the effect of the gravity. When ρ0′ > 0,
they yield a stable gravity wave propagating in the y
direction, and when ρ0′  < 0, they yield interchange
(Rayleigh-Taylor) instability. All these terms yield a
Hermitian contribution in energy norm (∫ |∇φ |2 dV) as
we show in Sec. 2.3.

On the other hand, when we add finite flow, the left
hand sides of Eqs. (3)–(5) become convective derivatives.
If the flow is shear-less (Vy = const), these contribution
yield simply the frequency shift (Doppler shift);
however, once if it is sheared, the problem becomes
non-Hermitian. The Vy∂y terms in the convective

FIg. 1 Equilibrium configurations we consider in this
paper.
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derivative are Hermitian in the vorticity norm ∫ |∆φ |2

dV), but not in the energy norm. These terms may
appear to add a simple multiplication operator if we
assume a wave number ky; however, the energy norm,
which is suitable for other terms (including Vy″ term),
makes them non-Hermitian [21]. Note that the left hand
side of Eq. (3) yields the Rayleigh equation which
describes Kelvin-Helmholtz instability when B0 and ρ0′
are absent.

2.2 Hermiticity (selfadjointness) and energy

principle for static equilibria

When the plasma equilibrium is static and uniform
(Vy  = 0, B0 = const, and ρ0′  = 0), the energy of the
perturbed field in two-dimensions is conserved [see Eq.
(2)];

d
dt

1
2

(ρv 1
2 ) + 1

2µ0

b1
2 dV = 0 . (6)

When we introduce an inhomogeneity of the ambient
magnetic field, however, the energy of the perturbed
field contained in Eq. (6) is no longer a conserved
quantity. We thus combine Eqs. (3)–(5) and obtain

ρ0∂t
2∆φ

= 1
µ 0

B0 ⋅ ∇∆ B0 ⋅ ∇φ

+ ∇ J0 × ez ⋅ ∇ B0 ⋅ ∇φ – ρ′0 g ∂y
2 φ ,

(7)

where we still assume the static equilibrium (Vy = 0).
Equation (7) is a second order evolution equation for
vorticity Ψ = –∆φ. When we consider a one-dimensional
equilibrium (equilibrium quantities depend only on x),
we may assume wave numbers (ky and kz) in the
homogeneous directions (y and z directions). The second
and the third terms in Eq. (7) then yield only
multiplications on φ. Since the stream function reads φ =
–∆–1Ψ, we find that the generator of Eq. (7) is Hermitian
(selfadjoint) under the norm

Ψ⏐Ψ : = – Ψ∆–1Ψ dV = ∇φ 2
dV , (8)

where the bar denotes the complex conjugate.
The mathematical grounds of Hermitian operators

are fairly well developed in the context of quantum
mechanics [22]. Namely, the spectra of a Hermitian
operator consists of points and continua, their
eigenvalues are real, and their eigenfunctions span the
whole function space (von Neumann theorem; see Refs.
[8,9]). Therefore, the general solution of an evolution

equation governed by a Hermitian generator is obtained
by means of the spectral resolution method. Since the
eigenfunctions of Hermitian operators are independent
and orthogonal with each other, we can draw informa-
tion regarding the stability from the eigenvalue analysis.
Thus we may replace ∂t by –iω and the equilibrium is
stable if and only if all ω corresponding to the
eigenvalues of generator are real.

Moreover, we obtain a conserved quantity from the
Hermiticity of the generator. Let us symbolically write
Eq. (7) by

ρ0∂ t
2Ψ = FΨ, (9)

where the operator F  is Hermitian and ρ0 is a positive
constant due to Boussinesq approximation. Then, the
Hermiticity of F  immediately yields

d
dt

ρ0 ∂tΨ⏐∂tΨ + δW = 0 , (10)

where

δW := –〈Ψ |FΨ〉, (11)

by taking the scalar products with ∂tΨ on both sides of
Eq. (9). The conserved quantity in Eq. (10) is also called
energy, while it is different from the conventional one in
Eq. (6). We also find from Eq. (9) the equality

ρ0

2
d2

d t 2
Ψ⏐Ψ = ρ0 ∂tΨ⏐∂tΨ – δW . (12)

Equations (10) and (12) lead to the energy principle
[5-7], which states that the equilibrium is linearly stable
if and only if

δW ≥ 0    ( Ψ) (13)

is satisfied. The sufficiency of the condition (13)
immediately follows from the conservation law (10).
The necessity is drawn from Eq. (12) [23], which
indicates, if we find a normalized function whose
bilinear form δW is negative, the existence of an
eigenfunction of F  whose eigenvalue λ = –ω2 is greater
or equal to –δW / ρ0 > 0.

2.3 Spectra of Alfvén waves in static

equilibria

We consider the equilibrium magnetic field

B = (0, By(x), Bz), (14)

with Bz = const. From the homogeneity of the
equilibrium quantities in the y and z directions, we may
assume the wave numbers k = (0, ky, kz). Since the
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generator is Hermitian as is seen in Sec. 2.2, we may
consider the eigenvalue λ of the generator when
replacing ∂t by –iω (λ = –ω2). Then, Eq. (7) gives

d
dx

ω 2 – ωA
2 dφ

dx
– ky

2 ω 2 – ωA
2 φ + ky

2 ρ′0 g
ρ0

φ = 0 ,

(15)

where we have defined F(x) = k · B(x) and ωA(x) = F(x)
/ µ0ρ .
2.3.1 Alfvén continuum

Let us consider the case in which ρ0′ = 0. First we
find a series of singular solutions. Equation (15) should
not contain any singular solution except the Alfvén
resonance (ω2 – ωA

2 = 0) [24]. Suppose that ω2 – ωA
2(x)

has the zero of the order h (∈N) at x = xs, i.e.,

ω2 – ωA
2(x) = c(x) (x – xs)h, (16)

where c(x) is an analytic function with finite value at x =
xs. For investigating the behavior of the solution in the
vicinity of the singular point xs, we take the leading
order of the Taylor expansion (16) and substitute it into
Eq. (15), which yields

d2φ
dx2

+ h
x – x s

dφ
dx

+ ky
2 φ = 0 . (17)

We thus find that the point x = xs is a regular singular
point of the ODE (15) for any h ∈ N. By means of the
Frobenius expansion [25], we obtain a logarithmic
singularity in the solution since two solutions of the
indicial equation have an integral difference for any h
[26];

φ(x) = a1g1(x) + a2[g1(x) log |x– xs| + g2(x)], (18)

where g1(x) and g2(x) are analytic functions with g1(xs)
≠ 0. When we apply the energy norm (8) to the solution
(18), which now reads

φ⏐φ = – φ ∆φ dV , (19)

we then find that Eq. (18) actually gives a non-square-
integrable solution corresponding to the continuous
spectrum [27]. We can show that Eq. (15) with ρ0′ = 0
has no other spectrum than the Alfvén continuum [21].
2.3.2 Interchange mode

When ρ0′ ≠ 0 in Eq. (15), the singularity is no
longer regular if the zero of Eq. (16) is not simple (h >
1). In this case, we do not have a general explicit
representation of the singular solution. Moreover, the
last term in  Eq. (15) admits the point spectra.

Let us briefly represent the case ρ0′, By = const in

order to highlight the essential properties of the point
spectra. In this case, Eq. (15) yields

d2φ
dx2

– ky
2 1 + G

ω 2 – k||
2

φ = 0 , (20)

where k|| = k · B / |B| (= const) is the wave number
parallel to the ambient magnetic field. For the
eigenfunctions to satisfy the boundary conditions, we
need

k||
2 – G < ω2. (21)

Since k ||
2 > 0, the Alfvén wave acts to stabilize

interchange modes. If Eq. (21) is satisfied, we obtain
even and odd eigenmodes;

φ =
cos (nπx /2) for n : odd
sin (nπx /2) for n : even

, (22)

respectively. The eigenmodes contain n – 1 nodes (zeros
in φ). The dispersion relation is

ω 2 = k||
2 –

ky
2 G

ky
2 + n2π 2 / 4

, (23)

showing that ω2 decreases monotonically as |ky |
increases.

The upper bound of ω2 is k | |
2, which is the

accumulation point of ωn
2 as n → ∞; i.e.,

k||
2 – G < ω2 < k||

2 . (24)

The distribution of the eigenvalues is illustrated in Fig.
2, which represents a typical spectral structure of the
discrete part of the shear Alfvén branch [29]. If k||

2, is
larger than the drive G, there is no instability even if G
> 0. The instability condition is given by

G > k||
2 1 +

π 2

4ky
2

. (25)

In more general cases, the following facts are
known. Due to Sturm’s oscillation theorem [25], we will
have an unstable eigenvalue ω2 < 0 which satisfies the
boundary condition on both sides if the solution for ω2 =

Fig. 2 Distribution of eigenvalues in ω2 space.
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0 satisfying the boundary condition only on one edge
has any node in the domain [28]. Furthermore, the
number of these point spectra are infinite, which
accumulate on the edge of the continuum ω2 = inf ωA

2

[29]. When the smallest eigenvalue is positive and the
mode has no resonant surface inside the plasma, the
eigenfunction shows a global stable oscillation, which is
similar to the global Alfvén eigenmode [30].

3. Surface Wave Model of Rayleigh

Equation

In this section, we focus on the Rayleigh equation

∂t∆φ + Vy∂y∆φ – Vy″∂yφ = 0, (26)

under the velocity profile shown in Fig. 3. We may
derive Eq. (26) from Eq. (3) by neglecting magnetic
field (B0 = 0) and gravity (g = 0). It is noted that the
assumption of a strong B0z in deriving Eq. (3) does not
create a problem because it directly takes into account
the curl of the original fluid equation under the
incompressibility condition.

3.1 Rayleigh’s analysis

Rayleigh had first introduced the piece-wise linear
shear flow profile for the analysis of KH instability [14].
His discussion was directly related to the surface
displacement which separates the distinct vorticity
regions. By following his analysis, we will discuss the
physical aspects of this issue in this subsection.

Suppose a stationary shear flow profile as
illustrated in Fig. 3. The profile of the velocity field
consists of two constant regions (x < –a and a < x) and a
single linear shear (–a < x < a) region. Thus, the
vorticity field is constant σ = U/a in –a < x < a and zero
elsewhere.

Suppose that we deform the boundary surface on x
= a by an infinitesimally small amount

ξ1(y,t) = H1ei(ky–ω t), (27)

where H1 denotes the complex amplitude. Since the
vorticity is discontinuous around x = a, deformation of
the surface induces perturbed velocity into the system.

By a theorem due to Helmholtz [14], the
infinitesimally small area element dA with the z-directed
vorticity σ induces the transverse velocity

dq= σdA
2πr

, (28)

where r denotes the distance from the element (see Fig.
4). This corresponds to the integral kernel of the
operator (∇ ×)–1 1. In the case of surface deformation
shown by Eq. (27), we obtain the velocity at (a + ζ,y)
induced by the surface element ξ1 dη at (a,η) as

Fig. 3 Rayleigh’s piece-wise linear shear flow profile.

Fig. 5 Surface displacement at (a,η) produces the
velocity field at (a + ζ, y).

Fig. 4 Helmholtz’ principle, which gives the integral
kernel of the operator (∇ ×)–1.

1 In three dimensions, the operator (∇ ×)–1 is described by v (r ) = 1
4π

Ω(r ′) × r – r ′

r – r ′
3

dr ′ in the infinite domain.

Integrating it with respect to z from –∞ to ∞, we obtain Eq. (28).
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dq=
σξ1 dη

2πr
, (29)

where r2 = (y – η)2 + b2. Taking the x component of the
velocity dq yields

dv1x =
η – y

r dq =
H1 σ
2π

(η – y ) eω t

r 2
e– iω t dη . (30)

Integrating Eq. (30) with respect to η yields the velocity
field at (a + ζ ,y) induced by the whole surface
displacement on x = a

v1x =
H1 σ
2π

e– iω t (η – y ) eikη

r 2
dη . (31)

=
iH1 σ

2
e– k ξ ei (ky – ω t ) , (32)

where we have used the formula

–∞

∞ x sin(αx )
β 2 + x 2

dx = π e–αβ . (33)

On the other hand, the evolution equation for the
perturbed surface is governed by

∂tξ1,2 = v1x – Vy∂yξ1,2, (34)

where
ξ2 (y, t) = H2ei(ky – ω t) (35)

denotes the surface displacement on x = –a. The first
term on the right hand side in Eq. (34) implies the
transfer of the surface due to perturbed velocity, and the
second one, the stretching effect of the ambient flow.
The y component of the perturbed velocity is omitted
since it gives a higher order contribution with the
combination of ∂yξ1,2. We thus estimate the perturbed
velocities on x = ±a by putting ζ = 0 and ζ = ±2a in Eq.
(32), which yields

v1x (a , y , t ) = iσ
2

ei (ky – ω t ) H1 – H2 e–2ka , (36)

v1x (–a , y , t ) = iσ
2

ei (ky – ω t ) H1 e–2ka – H2 . (37)

Substituting Eqs. (36) and (37) into Eq. (34), we obtain

1 – 2ka + 2 ω
σ H1 – e–2ka H2 = 0 , (38)

e–2ka H1 – 1 – 2ka – 2 ω
σ H2 = 0 . (39)

The consistency condition finally yields the dispersion

relation

ω 2 = σ 2

4
2ka – 1

2
–e–4ka . (40)

The unstable branch of Eq. (40) is

ω = i σ
2

e–4ka – 2ka – 1
2

, (41)

when |(2ka – 1)e2ka | < 1. The corresponding eigenstate
has the relative amplitude of the surface displacement

H2

H1

= (1 – 2ka ) e2ka + i 1 – (1 – 2ka )2 e4ka

= ei (π – θ ) ,
(42)

where

e– iθ : = (2ka –1) e2ka – i 1 – (2ka –1)2 e4ka . (43)

For the sake of simplicity, suppose ka = 1/2 (θ = π / 2).
In this case, v1x(a,y,t) induced by the surface ξ1 itself
exactly cancels the convective derivative term. There-
fore, the surface displacement is locked in the laboratory
frame due to the velocity field induced by itself (ξ1), and
is amplified due to that induced by the other (ξ2).

The schematic view of the unstable eigenstate Eq.
(42) is illustrated in Fig. 6. The perturbed velocity
induced by the deformation H1 at the surface x = a is
represented by the straight arrows. Since we assumed
the eiky dependence on ξ1 and ξ2, Eq. (42) implies that
the phase ξ2 advances in y direction with respect to ξ1

by an amount π – θ. Thus, the velocity field induced by
the perturbed vorticity field on x = a indicates the
direction of the amplification of the surface
displacement on x = –a, and vice versa. The perturbation
grows exponentially due to the mutual interaction of two
phase-shifted surface displacements.

The contour plot of the stream function φ = KΨ
corresponding to the unstable eigenmode is shown in
Fig. 7 (k = 0.5 and a = 1). In this figure, we take the x-

Fig. 6 Schematic view for the unstable eigenfunction
(42) or (62) of Kelvin-Helmholtz instability.
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axis in the horizontal direction. We observe that Vy′vxvy

< 0 is satisfied throughout in the finite flow shear region
(–1 < x < 1) [see Eq. (143) in Sec. 5.2]. The damped
mode has an opposite phase difference between surface
waves, which yields the opposite inclination of the flow
pattern. While the ambient shear flow is in the positive
y-direction in x > 0 and toward the negative in x < 0, the
mode structure is inclined in the opposite direction to it.
This may be attributed to the surface wave which we
will describe in the following section.

In order to see the surface wave explicitly, it is
helpful to consider the case of a single surface of
vorticity separation. The surface displacement will
produce the velocity field v1x with π /2 out-of-phase [see
Eq. (36)]. Due to this effect, the surface displacement
can propagate as a wave with respect to the rest frame
of the fluid (see Fig. 8). The dispersion relation of the
surface wave appears as

ω = – σ
2

, (44)

whose phase velocity is

v ph = – σ
2k

. (45)

Thus, the vorticity variation becomes a source of the
wave which corresponds to the Vy″ term in Eq. (26). It
is, therefore, deduced that the surface wave propagates
in the opposite direction to the ambient flow, which

supports the mode for escaping from the stretching
effect.

When wave number k is small, the phase velocity
vph of the surface wave is so large that it has a high
capability for the transfer of the vorticity, while the
velocity of the ambient flow is fixed (U). As k becomes
large, the phase velocity vph becomes small, and the
maximum growth rate is achieved around |vph| –~ |Vy |.
Namely, the mode becomes the most unstable when the
surface wave tends to stop due to the effect of
background flow. If the wave number k is too large, the
phase velocity vph becomes so small that it cannot
compete with the background flow. In other words, the x
component of the velocity created from the ambient
flow Vy∂yξ1,2 is too large in Eq. (34), and v1x of itself
cannot afford to lock the surface. Thus, the instability
will be suppressed.

3.2 Eigenvalue analysis

In this section, we define a generalized Rayleigh
equation

i∂tΨ = LΨ (46)

L : = kVy(x) + kW(x)K (47)

in the infinite domain (x ∈ R), where the Green operator
K  is represented by a convolution integral

(K f )(x ) =
–∞

+∞ e– k x – ξ

2k
f (ξ) dξ . (48)

In the following, we denote the Green function by
K(x,ξ );

K (x , ξ) = e– k x –ξ

2k
. (49)

In Eq. (47), we take Vy(x) and W(x) to be independent
arbitrary functions. The case in which W(x) = Vy″(x)
recovers the physically relevant equation (26).

Firstly, let us assume W(x) = 0 in Eq. (47) and
consider

i∂tΨ = kVy(x)Ψ (50)

with a continuous real function Vy(x). The formal
eigenvalue λ and the corresponding eigenfunction ϕ of
the generator of Eq. (50) are given by

λ = kVy(µ),    ϕ = δ (x – µ), (51)

where µ is an arbitrary real number. The solution of Eq.
(50) with initial condition Ψ (x,0), thus, yields

Ψ (x, t) = e –itkVy (x)Ψ (x, 0). (52)

Fig. 7 Contour plot of the real part of stream function.
The figure is plotted for k = 0.5 and a = 1.

Fig. 8 Surface wave due to vorticity variation.
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Second, we assume

Vy(x) = 0, (53)

W(x) = –σδ (x–a), (54)

then the operator reads

L 1 = – σ
2
δ (x – a )

–∞

∞

e– k x – ξ dξ . (55)

The eigenvalue and the corresponding eigenfunction of
L 1 are, respectively,

λ = – σ
2

, ϕ (x ) = δ (x – a ) . (56)

Eigenmode (56) corresponds to the surface wave (44).
When we include another surface of different vorticity
regions and assume

W(x) = –σ [δ (x – a) – δ (x + a)], (57)

the corresponding eigenvalues and eigenfunctions of the
resulting operator L 2 are

λ = ± σ
2

1 – e–4ka ,

ϕ (x ) = δ (x – a ) – 1 ± 1 – e–4ka e2ka δ (x + a ) .

(58)
Then, we may formally write the operator L 2 in the
matrix form by means of the basis vectors δ (x – a) and
δ (x + a),

L 2 = σ
2

– 1

e–2ka

– e–2ka

1
. (59)

These oscillations represent the coupled surface modes
which are excited on both surfaces x = ± a. Note that
these modes are stable for positive k in the absence of
continuous spectra. Since the governing equation is the
same as in the case of diocotron instabilities in non-
neutral plasmas [31,32], these oscillations are called
‘diocotron oscillations.’

The flow profile Vy(x) discussed in Sec. 3.1 is
accompanied by the W(x) of Eq. (57). Let us consider
the consistent profile given in Fig. 3 [Vy″(x) = W(x)] and
denote the resulting operator by  L 3. Then, by focusing
on the subspace spanned by the two surface waves δ (x –
a) and δ (x + a), we may obtain the following matrix
form for the operator L 3;

L 3 = kU
0

0
–kU

+ L 2 . (60)

Two eigenvalues of the 2 × 2 matrix L 3 denote the
KH mode [1], whose dispersion relation reads

λ2 = σ 2

4
(1 – 2ka )2 – e–4ka . (61)

When |(2ka – 1)e–2ka | < 1, the unstable branch of Eq.
(61) yields

λ– = i U
2a

e–4ka – (2ka – 1)2 ,

ϕ – = δ (x – a ) + e– iθ δ (x + a ) . (62)

Because of the eiky dependence of the vorticity, the
eigensolution (62) states that the phase of the surface
wave on x = a advances in y direction to that on x = –a
by an angle θ (0 < θ < π) [see Eqs. (41)–(43)].

This expression exactly coincides with the situation
illustrated in Fig. 6. According to the surface wave
perturbation of the form of Eq. (62), we plot the
coefficient of the δ-function by the solid curve on x = a
in the right figure. Since the phase of the surface wave
on x = a  advances in y direction to that on x = –a  by
the angle θ, we may plot the amplitude of the surface
wave on x = –a  by the dashed curve. Since the ambient
vorticity is positive in –a < x < a and zero elsewhere,
we can directly regard the perturbed amplitude on x = a
as an illustration of the surface displacement which
separates the two different vorticity region. However,
the surface displacement on x = –a is inverted from the
perturbed amplitude of the vorticity because of the
ambient vorticity field (positive in upward and zero in
lower), which yields the illustration of the surface
displacement by the solid curve.

Let us close this section by considering the effect

Fig. 9 Square of the growth rate when rigid wall is put
along x = ±b. The values of b are normalized by a.
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of the finite domain size by putting a rigid boundary at x
= ±b (b > a). The boundary condition for finite ky yields
φ = 0 on x = ±b. The dispersion relation then reads

ω 2

σ 2
= k2 a2 –

2ka (1 + X ) + (1 – X ) e–4ka – 1 + e–4ka

(1 + X )2 – (1 – X )2 e–4ka
,

(63)
where

1 < X = 1 + e–2k (b – a )

1 – e–2k (b – a )
< ∞ . (64)

By assuming ε : = ka << 1 with a and b – a kept finite,
we can put 1/X –~ k (b – a) << 1 and Eq. (63) is
approximated to O(ε 2) by

ω 2

σ 2
∼ a2

b
k2 (2a– b ) . (65)

If b/a becomes smaller than 2, the KH mode may be
stabilized (ω2 becomes positive in k << 1). Dispersion
relation (63) is numerically plotted in Fig. 9, which
clearly shows that the KH mode is stabilized for all
wave numbers when b/a < 2.

3.3 Nilpotent and resonance

We have studied the eigenmodes consisting of the
Rayleigh equation in the previous section. The
frequency of the surface wave is negative in the fluid
frame; therefore, the eigenvalues of Eqs. (51) and (56)
[or Eq. (61)] may overlap when |(2ka–1)e–2ka| > 1 is
satisfied. Frequency overlapping between modes in non-
Hermitian systems may cause algebraic instabilities
even if all eigenvalues are real. In this section, we show
the effect coming from such resonance or frequency
overlapping.

For simplicity, we consider the single surface of
vortical discontinuity (54) in Sec. 3.3.1, and next
consider the double-surface system corresponding to Eq.
(57) in Sec. 3.3.2. Here, the velocity field Vy(x) is taken
as consistent to W(x).
3.3.1 Single surface system

Let us first consider the following case

L 4 = kVy (x ) – σ
2
δ (x – a )

–∞

∞

e– k x – ξ dξ , (66)

Vy (x ) = σx
U

(x < a )
(a ≤ x )

, (67)

where σ = U/a. By assuming ϕ ∝ e–iλ t, we may obtain
the following eigenvalue problem.

λϕ (x ) = kVy (x )ϕ (x )

– σ
2
δ (x – a )

–∞

∞

e– k x – ξ ϕ (ξ) dξ . (68)

For this eigenvalue problem, we have the following sets
of eigenvalues and the corresponding eigenfunctions:

1. For λ0 = kU; the corresponding eigenfunctions
are arbitrary continuous functions ϕ0(x) which
satisfy

a

∞

ek (a – ξ )ϕ0 (ξ) dξ = 0 , and ϕ0 (x ) = 0 (x ≤ a ) .

(69)

2. For λ1 = kU – σ / 2; the corresponding eigen-
function is

ϕ1(x) = δ (x – a). (70)

3. For λµ = kUµ/a (µ < a and µ ≠ a – 1/2k); the
corresponding eigenfunctions are

ϕµ (x ) = δ (x – µ ) + e– k (a – µ )

2k (a – µ ) – 1
δ (x – a ) . (71)

However, these eigenvalues are not complete and
we have another eigenfunction in a wider sense
(nilpotent). That is ϕ2(x) = δ(x –�µ0) where µ0 := a –
1/2k. We can easily see that

(λ 1 – L 4)ϕ2 (x ) = U
2a

e– k (a – µ
0 )ϕ1 (x ) . (72)

Of course (λ1 – L 3)2ϕ2(x) = 0 also holds. These relations
are quite similar to the nilpotent in the finite dimension
operator. Thus we may write the operator L 4 in the
following matrix form including the case µ = µ0:

L 3 =
kU – σ

2
0

– σ
2

e– k (a – µ )

kσµ
, (73)

where a Jordan block is obtained for kU – σ /2 = kσµ (µ
= µ0).

Let us evaluate the time evolution of the perturba-
tion when we have taken this ϕ2(x) as an initial
condition. As we can see from Eq. (72), we will have
ϕ1(x) component by applying the generator L 4 to the
initial condition ϕ2(x). Here we may consider the
evolution to be closed in the subspace spanned by ϕ1(x)
and ϕ2(x). Then, it is natural to expand Ψ as

Ψ (x , t )= α i (t )Σ
i = 1

2

ϕi (x ) . (74)

Substituting Eq. (74) into the original equation (46), we
obtain
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i ∂t (α 1ϕ1 + α 2ϕ2 ) = λ 1α 1 – U
2α e

α 2 ϕ1 + λ 1ϕ2 .

(75)

When we decompose Eq. (75) into ϕ1 and ϕ2, we obtain
the time evolution of α1

α 1 (t ) = i σ
2 e

α 2 (0)t +α 1 (0) e– iλ 1t , (76)

where α1,2(0) denote initial values. We find that for
α2(0) ≠ 0, we have a secular growth due to the
resonance of the diocotron mode with one of the
singular eigenfunctions in the continuous spectrum.
3.3.2 Rayleigh’s system

Let us consider the case shown in Fig. 3. The
generator is written as

L 5 = kVy (x )

– σ
2

δ (x – a ) – δ (x + a ) e– k x – ξ

–∞

∞

dξ ,

(77)
where the velocity field is defined by

Vy (x ) =
–U
σx
U

(x ≤ –a )
(– a < x < a )

(a ≤ x )
. (78)

Note that we consider the case | (2ka – 1)e2ka | > 1, where
KH mode is exponentially stable.

If we set the basis vectors as ϕ1(x) = δ (x – a), ϕµ(x)
= δ (x – µ), and ϕ3(x) = δ (x + a), we can obtain the
following matrix representation for the operator L 5;

L 5 = σ
2

2ka – 1

0

e–2ka

– e– k (a – µ )

2kµ

e– k (a + µ )

– e–2ka

0

–(2ka – 1)

. (79)

When we expand the perturbed vortex field

Ψ (x , t )= α i (t )Σ
i = 1

3

ϕi (x ) , (80)

regarding ϕ2 as one of the ϕµ corresponding to a certain
µ, and substitute Eq. (80) into the Rayleigh equation, we
obtain

i dα 1

dt
= σ

2
(2ka – 1)α 1 – e– k (a – µ )α 2 – e–2kaα 3 , (81)

i dα 2

dt
= kσµα 2 , (82)

i dα 3

dt
= σ

2
e–2kaα 1 + e– k (a + µ )α 2 – (2ka – 1)α 3 . (83)

We find in the eigenvalues the coupling between
two diocotron oscillations

λ 1
† = σ

2
e–2ka sinh ψ , (84)

λ 3
† = – σ

2
e–2ka sinh ψ , (85)

and the corresponding eigenfunctions are

ϕ1
†(x) = δ (x – a) + e–ψδ (x + a), (86)

ϕ3
†(x) = e–ψδ (x – a) + (x + a), (87)

where cosh ψ = (2ka – 1)e2ka. By introducing new
coefficients

β1

β3
= 2

sinh ψ
eψ

– 1
– 1

eψ
α 1
α 3

, (88)

we may diagonalize the diocotron modes, which yields

i dβ1

dt
= λ 1

†β1

– σ
sinh ψ

e– k (a – µ ) eψ + e– k (a + µ ) α 2 ,
(89)

i dα 2

dt
= kσµ α 2 , (90)

i dβ3

dt
= λ 3

†β3

+ σ
sinh ψ

e– k (a – µ ) + e– k (a + µ ) eψ α 2 .
(91)

The solution of Eq. (90) is given by

α2(t) = α2(0) e–ikσµt. (92)

When we assume

kσµ = λ1
†  or  λ3

†, (93)

Fig. 10 Schematic view of the spectra for the KH (a)
unstable and (b) stable systems. The crosses and
wavy lines denote point and continuous spectra,
respectively.  Point spectra are embedded in the
continua for KH stable case. Open circles denote
the vacancy of continua (corresponding to
nilpotent).
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then we might have secularity due to the resonance with
the simple oscillator ϕ2

†. On the other hand, we do not
have it when the eigenvalues λ3

† are complex or pure
imaginary, namely when the system is unstable in a KH
sense (see Fig. 10).

3.4 Coupling with gravity wave and

secularity

In this section, we include the density gradient into
the Rayleigh equation, and show that the coupling to the
gravity wave will introduce a localized secular behavior.
The continuity equation (4) couples with the equation of
motion (3).

We consider the following stationary state:

Vy (x ) =
–U
Ux /a
U

,

ρ0 (x ) =

ρ0 e–α a /g

ρ0 e–α x /g

ρ0 eα a /g

(x < –a )
(– a < x < a )

(a < x )
,

(94)

where U, a, and ρ0 are constants. Let us normalize the
variable by a for length and a/U for time. By
introducing a new variable χ := ρ1/ρ0′ and normalizing it
by /a, we obtain

i∂tΨ = kVyΨ + kVy″φ + kvg
2χ (95)

i∂tχ = kVyχ + kφ, (96)

where we have introduced a wave number k in y-
direction, and vg

2 = ρ0′ga2/ρ0U2 (> 0) and Ψ = –∆φ are
the phase velocity of the gravity wave (normalized by

U) and vorticity, respectively.
Because Vy″(x) yields delta functions, the perturbed

vorticity Ψ must include delta functions, representing
the surface wave perturbations; We write

Ψ(x,t) = α1(t)δ (x + 1) + α2(t)δ (x – 1) + f (x, t), (97)

where α1(t) and α2(t) represent the amplitudes of the
surface waves and f (x, t) is the continuous part of the
vorticity fluctuation. Then, we obtain

i∂t f = kxf (x,t) + kVy″(x)φ(x,t) + kvg
2χ(x,t), (98)

i dα 1

dt
= kα 1 (t ) + kφ (–1, t ) , (99)

i dα 2

dt
= kα 2 (t ) – kφ (1, t ) , (100)

i∂tχ = kxχ(x, t) + kvg
2φ(x, t), (101)

where

φ (x , t )= K Ψ

= 1
2k

α 1 (t ) e– k x + 1 + α 2 (t ) e– k x – 1

+
–∞

+∞

e– k x –ξ f (ξ , t ) dξ ,
(102)

in the infinite domain. Or in the matrix form, we obtian

i∂ t

f (x )

χ(x )

α1

α2

=

kx

k K x

k K –1

–k K 1

k v g
2

kx

0

0

0
1
2
e– k x + 1

– 1
2

(2k – 1)

– 1
2
e– 2k

0
1
2
e– k x – 1

1
2
e– 2k

1
2

(2k – 1)

f (x )

χ(x )

α1

α2

.

(103)

The equations derived here are exactly equivalent
to those in Ref. [11]. Here, we have rederived them
from a different set of equations in order to demonstrate
that this structure has wide generality.

We rewrite λ±, µ± more generally as

λ ± = ± 1
2

(2k – 1)2 – e– 4k , (104)

µ ± = ± 1
2k

(2k – 1)2 – e– 4k . (105)
Fig. 11 The vorticity f(x,t) at t = 65. The initial condition

is ƒ(x,0) = √⎯ 2cos(πx /2). The amplitude increases
near the resonant surfaces x = µ±(–~ ±0.495).
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Observing f (x) at x = µ+ (or x = µ–), Eq. (103) reads

i d
dt

f ( µ+)
χ( µ+)
α 1

α 2

=

k µ+

0

0

0

k vg
2

k µ+

0

0

0
1
2
e–�k µ + + 1

–�1
2
(2k –�1)

–�1
2
e–�2k

0
1
2
e–�k µ + –�1

1
2
e–�2k

1
2
(2k –�1)

f ( µ+)
χ( µ+)
α 1

α 2

.

(106)

The generator of Eq. (106) can be written in a Jordan
canonical form

T

λ +

0
0
0

1
λ +

0
0

0
1
λ +

0

0

0

0
λ –

T –1 ,
(107)

by means of a non-orthogonal transform T . Therefore,
we conjecture that f(µ+, t) ∝ t 2 due to the third order
degeneracy of the frequency.

However, we observe in Fig. 12 that the asymptotic
behavior of f (µ+, t) is not proportional to t2, but f (µ+, t)
∝ t. This is because of the integral terms in Eq. (103),
which contribute to the phase mixing damping of the
surface waves. The phase mixing damping of the surface
wave can be evaluated by renormalizing the perturbative
analysis with the assumption vg

2 << 1 [33]. The

renormalized damping rate ν  agrees very well with the
numerical results.

We stress here that such an algebraic instability is
not only a mathematical artifact. As we have seen,
algebraic growth is observed when the spectra of the
Rayleigh equation shows the KH-stable structure [see
Fig. 10(b)]. In the infinite domain, KH-unstable
(exponential) mode certainly exists for sufficiently small
k (see b = ∞ case in Fig. 9). However, when a rigid wall
is placed close enough (b ≤ 2 in Figure 9), the spectra of
the Rayleigh equation becomes that of Fig. 10(b) for all
wave numbers. Thus, we may deduce that there is a
system in which algebraic growth dominates the
instability.

4. Couette Flow in the Infinite Domain

(Kelvin’s method)

4.1 Time-dependent eigenmodes

Kelvin’s method can resolve, for some classes of
mean flows, the evolution of the system

∂tu + V0 · ∇u = Au (108)

into new types of modes by means of which both
transient and secular asymptotic behaviors are
effectively described. Here A denotes a Hermitian
differential operator (time-independent) defined in a
Hilbert space V, and u (∈V ) denotes a state vector of the
perturbed field. Kelvin’s method consists of the com-
bined application of two methods which have been used
extensively in the analysis of wave equations. Precisely
the “Lagrangian” part of Eq. (108), ∂t + V0 · ∇, is solved
by means of the characteristics method, and the
“Hermitian” part A by means of the standard spectral
resolution.

The characteristics method is applied to solve the
characteristic ODE associated with the Lagrangian
derivative moving along the characteristic curve of the
ambient motion, which is given by

dx
dt

= V0 , x (0) = ξξ . (109)

By inverting the modes, which are denoted in
Lagrangian coordinates by ϕ (k,ξξ ), we represent the
modes in Eulerian coordinates as

ϕ̃ (t;  k,  x) = ϕ (k,ξξ (t;  x)), (110)

where ξξ (t; x) denotes the inverse of x(t; ξξ ). The
existence of the inverse mapping x(t) |→ ξξ  is guaranteed
in the case of incompressible mean flows. Due to Eq.
(110), ϕ̃ (t;  k,  x) satisfies the characteristic equation

Fig. 12 Time evolution of the vorticity fluctuation ƒ(x,t )
at   x = µ+. The amplitude starts to grow in
proportion to t 2 and converges to asymptotic
growth ∝ t. Dashed lines denote the analytical
fitting curve for a given damping rate ν.
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 ∂tϕ̃ (t; k, x) + V0 · ∇ϕ̃ (t; k, x) = 0. (111)

The essential condition for the applicability of
Kelvin’s method consists in the constraint for the
functions ϕ̃ (t; k, x) to form the complete set of
eigenfunctions of the operator A [18]. If such a set of
eigenfunctions exists, we can decompose the perturbed
field u by means of

u = u k (t )ϕ (t ; k, x ) dk . (112)

We notice that due to Eq. (110) the eigenvalues of A
become time-dependent. The new eigenvalue problem
for A  reads

A ϕ̃ (t; k, x) = λk(t)ϕ̃ (t; k, x), (113)

where the eigenvalue λk also depends on time.
Plugging Eq. (112) into Eq. (108) and exploiting

(111) and (113), we obtain

∂t u k (t ) ϕ (t ; k, x ) dk

= u k (t )λ k (t )ϕ (t ; k, x ) dk .
(114)

Due to the orthogonality of the modes ϕ̃ (t;k, x), the
evolution of ûk is governed by the equation

d
dt

u k (t ) = λ k (t ) u k (t ) . (115)

If ϕ̃ (t; k, x) do not satisfy both conditions given by
characteristic equation (111) and eigenequation (113),
then Eq. (114) will have additional terms representing
the complicated mode coupling, and thus, the
applicability of Kelvin’s method is compromised.

The evolution of ûk(t) will not exhibit a simple
exponential dependence due to the time dependence
present in the eigenvalues λk(t). By analyzing this ODE,
we can classify the transient motion and the time
asymptotic behavior of each mode.

4.2 Asymptotic and transient behavior

In this section, we show the behavior of Kelvin’s
mode [time-dependent eigenmode Eq. (110)] for
reduced MHD equations (3)–(5). We consider a plasma
slab of infinite domain with Vy(x) = σx and B0 = const.
The behavior is quite different depending on whether
the perturbation is coupled with Alfvén wave or not.
Thus, we separately discuss the behavior of the
electromagnetic (k · B0 ≠ 0) and electrostatic (k · B0 = 0)
modes.
4.2.1 Electromagnetic mode

Let us first see the time-asymptotic and transient

behavior of electromagnetic mode (k · B0 ≠ 0). In the
case of B0 · ∇ ≠ 0, we obtain from Eq. (3)–(5) (see Ref.
[12])

∂t + Vy ∂y ∆ ∂t + Vy ∂y ψ

=
B0 ⋅ ∇

2

µ 0 ρ0

∆ψ –
ρ′0 g
ρ0

∂y
2 ψ ,

(116)

where ∆ = ∂x
2 + ∂y

2 denotes the two-dimensional
Laplacian. Since the operator on the right hand side is
Hermitian, we can decompose the flux function ψ by
means of the shearing eigenmodes [see Eq. (112)]

ψ (x, t ) = ψ k
(t ) ϕ (t ; k, x ) dk , (117)

where each eigenmode can be expressed by the
sinusoidal function

ϕ̃ (t;  k,  x) = exp [ikxx + iky(y – Vyt) + ikzz]

= exp [ik̃xx(t)x + ikyy + ikzz],
(118)

and k̃x(t) = kx – kyσ t. Since Eq. (118) spans the function
space V, Eq. (117) gives a complete expansion by means
of ϕ̃  [18]. Eigenmodes (118) obeys the governing ODE
[see Eq. (115)]

d2ψ

dt 2
+ µ (t ) dψ

dt
+ 1 – S (t ) ψ = 0 , (119)

where

µ(t ) = –
2σky kx (t )

kx (t )2 + ky
2

,

S (t ) = –
ky

2 G

kx (t )2 + ky
2

,

and we have omit the subscript k for ψ̂ . We have
normalized the time t by the poloidal Alfvén time τA =
a µ0ρ0 / (k · B0), the wave vector k by the characteristic
length scale a, and τG

2 = –ρ0/ρ0′g and G = τA
2 /τG

2. We
notice that in the absence of shear flow (σ = 0) the usual
interchange instability equation for static equilibrium
can be obtained from Eq. (119) [see Eq. (20)].

When σ ≠ 0, we have µ(t) ≠ 0 and we can draw an
analogy with the dynamics of a damped oscillator with
time-dependent frictional coefficient µ(t). With time,
µ(t) becomes always positive, which means a formal
dissipation, and therefore the oscillation energy of the
Alfvén wave [(dψ̂/dt)2 + ψ̂2]/2 decreases monotonically.

In order to study the time asymptotic behavior, we
assume t >> kx /σ ky, 1/σ. In this limit we obtain the
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following ODE;

d2

dt 2
ψ + 2

t
d

dt
ψ + 1 – G / σ 2

t 2
ψ = 0 , (120)

where G = τA
2/τG

2 denotes the magnitude of the instability
drive term. Since Eq. (120) is the spherical Bessel
equation, the time asymptotic behavior of the mode
yields

ψ ∼ 1
t

sin t – πν
2

+ δ , (121)

where δ denotes a constant phase depending on the
initial conditions. Therefore the mode oscillates with
amplitude ψ̂ decaying with the inverse power of time.
The dependence Eq. (121) corresponds to the similar
asymptotic decay in the stream function φ, which reads
in the leading order as

φ ∼ 1
t

cos t – πν
2

+ δ . (122)

We note here that there is no threshold value for the
stabilization of the interchange instability, since the
spherical Bessel equation (120) is common to all modes.
Namely, the combined effect of the Alfvén wave
propagation and shear flow mixing always overcomes
the interchange drive and the oscillations of the
magnetic flux asymptotically decay proportional to the
inverse power of time.

Since an analytic expression is not available for the
transient behavior of each eigenmode, we discuss it by
qualitatively analyzing the ODE (119). In the absence of
the instability drive, we will have

d
dt

dψ
dt

2

+ ψ
2 = –µ(t )

dψ
dt

2

. (123)

Since the sign of the denominator in µ(t) is always
positive, its behavior will be determined by that of the
numerator. The numerator is written as 2σ2ky

2t – 2σkykx

and according to its initial value we can single out two
classes of the transients.

When the product σkykx is negative, the frictional
coefficient µ(t) is always positive from the beginning;
therefore, the shear flow acts as a damping force at any
time and the mode shows simple damped behavior. On
the other hand, if the product σkykx is positive, the
frictional coefficient µ(t) is initially negative and
changes its sign at the instant t* = kx/σky. Therefore the
mode experiences an initial amplification lasting until
the time t*, which is even faster than it would be in the
presence of only the interchange drive.

4.2.2 Electrostatic mode
When the wave vector is purely perpendicular to

the ambient magnetic field (k · B0 = 0), the flux function
ψ decouples from ρ and φ. From Eqs. (3)–(4), the
dynamics of the stream function is governed by

∂t + Vy ∂y

2
∆φ = –

ρ′0 g
ρ0

∂y
2 φ . (124)

When we represent φ in terms of the shearing mode
given in Eq. (118), we obtain the ODE

d2

dt 2
kx (t )2 + ky

2 φ = ky
2 γG

2φ , (125)

where γG
2 = – ρ0′g/ρ0(= τG

–2) denotes the characteristic
growth rate of the interchange instability. Here we have
dropped the subscript k for the sake of simplicity. In
order to investigate the asymptotic time behavior of
each mode, we again assume t >> kx /kyσ and t >> 1/σ.
Then Eq. (125) becomes

d2

dt 2
φ + 4

t
d

dt
φ +

2 – α

t 2
φ = 0 , (126)

where α = γG
2/σ2 denotes the ratio between the inter-

change destabilizing effect and the flow shear stabilizing
one (Richardson number). The general solution of Eq.
(126) is

φ̂ = C1t m+ + C2t m– (127)

where

m± =
–3 ± 1+ 4α

2
. (128)

The asymptotic time behavior is therefore dominated by
the larger index m+. Thus we can state the condition for
the boundedness of φ̃ as

α ≤ 2 ⇒ – 1
2

ρ′0 g
ρ0

≤ σ 2 . (129)

The condition for the boundedness of φ̃  is improved
compared with the static case (ρ0′ ≥ 0) due to the
stretching effect of the shear flow. The electrostatic (k ·
B0 = 0) mode can be linearly unstable while the electro-
magnetic (k · B0 ≠ 0) mode is completely stabilized [see
(121) and (122)]. However, the asymptotic behavior is
algebraic in time.

5. Couette Flow in the Finite Domain

5.1 Perturbative analysis of eigenvalues

We consider a finite domain [–a, a] in this section
with a linear flow such as (see also Fig. 13)
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Vy(x) = σx, (130)

where the shear parameter σ is a real constant. The
conventional KH instability is absent because Vy″ = 0
[3,14]. Transforming ∂t → –iω and ∇ → ik, we obtain

d2φ
dx2

– ky
2 φ –

2 ky σ k||
2

Ω 2 Ω 2 – k||
2

kyσφ + Ω dφ
dx

–
ky

2 G

Ω 2 – k||
2
φ = 0 .

(131)

under the normalization in terms of the Alfvén velocity
vA = B0/ µ0ρ0  and the system size a, where Ω = ω –
kyVy(x) is the Doppler shifted local frequency.

We now assume σ << 1 and represent a perturbative
analysis for the ODE (131). We expand eigenfunctions

and eigenvalues as

 φ = φ0 + φ1 + φ2 + …,    ω = ω0 + ω1 + ω2 + …, (132)

where |ωn|/|ω0| ~ |φn|/|φ0| ~ O(σ n). From the O(1) terms,
we obtain

d2φ0

dx2
– ky

2 1 + G
ω 0

2 – k||
2

φ0 = 0 , (133)

which has been already solved in Sec. 2.3. Eigenvalues
and eigenfunctions are

ω 0
(n ) 2

= k||
2 –

ky
2 G

ky
2 + n2π 2 / 4

, (134)

and

φ 0
(n ) =

cos (nπx / 2) for n : odd
sin (nπx / 2) for n : even

, (135)

respectively. We study the effect of the shear flow for
the mode n = 1, which is the most unstable when V0 = 0.

The terms of O(σ) yields

d2φ1

dx2
– ky

2 1+ G
ω 0

2 – k||
2

φ1

–
2 ky k||

2σ

ω 0 ω 0
2 – k||

2

dφ0

dx
+

2ω 0 ky
2 G

ω 0
2 – k||

2
2
ω 1 – kyσx φ0 = 0 .

(136)

Multiplying φ0
(1) on both sides of Eq. (136) and

integrating it over the domain, we find

ω1 = 0. (137)

The next order equation, thus, describes the effect
of the flow shear on the eigenvalue.

After the tedious but straightforward calculation
due to the expansion of φ1 in terms of φ0

(n), we finally
obtain the second order dispersion relation (see Ref.
[13])

2ω 0ω 2 = –
k||

2σ 2

G
1 + 4 P4 + B + 16

π 2
P4 +

2 A

+ ky
2 σ 2 16

π 6
P4 + A + 3B ,

(138)

where

A = Σ
m= 1

∞
m2

m2 – 1/4
5
∼ 4.219581 , (139)

B = 1
3

– 2
π 2

∼ 0.130691 , (140)

Fig. 13 Slab geometry with gravity.

Fig. 14 The growth as a function of the shear parameter
σ (G = 2.72 and ky = k|| = 0.5). Numerical results
are obtained from the direct solution to the
eigenvalue problem Eq. (131) by the shooting
method.
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P4 + = ky
2 + π 2

4
. (141)

When ω0 describes instability (pure imaginary with
Imω0 > 0), the first term on the right hand side of Eq.
(138) brings about a destabilizing effect, while the
second causes a stabilizing effect. The destabilizing term
contains both k || and G, while the stabilizing one
contains only ky. It is remarkable that k||

2 works to
increase the growth rate, and G, decreases it, which is
opposite to the conventional understandings for static
equilibrium. For k|| = 0 (or for a neutral fluid), this
destabilizing effect does not work. There is a threshold
in the ratio of k||

2 and G, where the coefficient of σ2

changes its sign.
Variational calculation yields the maximum growth

rate with respect to the local maximum flow velocity
Vmax = σ

Vmax ∼
k||

2
vA

ky

=
ωA

ky

, (142)

where ωA is the Alfvén frequency. Over this critical
velocity (or σ), the growth rate starts to diminish,
implying the onset of the shear flow stretching effect.

5.2 Discussion

Shear flows may stabilize instabilities when they
stretch the fluctuation. However, the condition (142)
shows that the stabilization occurs only if the local
velocity exceeds the phase velocity of the Alfvén wave.
When the flow shear is weak, modes may be even
destabilized; the growth rate achieves a maximum value,
as a function of the maximum flow velocity, near the
Alfvén velocity [see Eq. (142)], and it is then sup-
pressed due to the stretching effect overcoming the
Alfvénic phase propagation against the flow. We note
that this situation is very different when we consider a
mathematical model of infinite-domain linear shear flow
(Sec. 4). For such a model, the maximum velocity is
unbounded, and hence, we see only the stabilization of
instabilities [12].

Let us see how some interchange modes are
destabilized in a weak shear flow. Under the
incompressibility condition, the energy balance in the
perturbed field reads [see also Eq. (6)]

d
dt

1
2
ρ0 v2 + 1

2µ0

b2 +
g

2ρ′0
ρ1

2 dv

= –ρ0 V ′y vx vy +
V ′y
µ0

bx by dv .
(143)

where v2 = vx
2 + vy 2 and b2 = bx

2 + by
2. In the case of a

static equilibrium (Vy = 0), the eigenfunctions
determined by Eq. (20) are real functions. Then, we
obtain mirror symmetric streamlines, which leads to the
exact cancellation of the vxvy term when integrated.
However, an ambient shear flow (Vy′ ≠ 0) yields the
complex-valued eigenfunction φ, where the integral of
vxvy remains finite because of the breakdown of the
symmetry. Figure 15 shows the streamlines of the
eigenfunction for the cases σ = 0.7 and 1.5. We observe
that the product vxvy has negative value in most of the
domain, if σ = 0.7. Since Vy′ = σ is a positive constant,
this term (representing the work done by the shear flow)
gives a positive contribution in the right hand side of
Eq. (143). It is remarkable that the stream line contour is
inclined in the opposite direction to the ambient shear
flow. The mode corresponding to the complex conjugate
eigenvalue (damping mode) has the opposite structure
— the streamlines are distorted in the direction of the
flow. As σ increases, the ambient flow begins to distort
the mode to the direction of the flow, and finally
stabilizes it.

6. Summary

We have reviewed recent studies for constructing a
linear stability theory of shear flow plasmas from the
viewpoint of spectral analysis. Mathematically, the non-
Hermiticity of the operator due to shear flow does not
only imply complex eigenvalues, but also the
incompleteness of spectral resolution. Physically, shear
flow not only has a stabilizing effect due to its
stretching mechanism, but also has a destabilizing effect
by causing the mode for stationary standing structure in
the face of an ambient wave.

We first revisited Rayleigh’s analysis of Kelvin-
Helmholtz instability for a piece-wise linear shear flow
profile and clarified the necessity of nonzero Vy″ for
instability. The term containing Vy″ carries the surface
wave which supports the mode’s stationary structure.
Eigenvalue analysis of the Rayleigh equation indicates
the overlap of frequency spectra (nilpotent). This yields,

Fig. 15 Streamlines of the typical eigenfunction. The
parameters are Bz = 0, G = 2.72, k|| = ky = 0.5, and
σ = 0.7, and 1.5.
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when we include the density gradient (gravity wave), the
secular growth of vorticity in time (Sec. 3).

Kelvin’s modal approach is a particular form of
generalized spectral method to obtain a general solution
of the system; however, it is restricted to a particular
shear flow profile. According to this analysis, all modes
show asymptotically algebraic behavior in time (Sec. 4).
When we consider a finite domain by imposing a
conducting wall, we observe a destabilizing effect of
shear flow in the presence of the Alfvén wave (Sec. 5).

Many unresolved questions remain:
1. When we fix the flow profile and focus on the

field line bending effect, it affects the
destabilizing mechanism for finite domain
Couette flow [see Eq. (138)], while it also
affects stabilizing in the infinite domain [see
Eqs. (122) and (127)].

2. Rayleigh’s criterion insists Vy″ must change its
sign in the domain. We found here that nonzero
Vy″ is responsible for the stationary structure of
the mode; however, we still do not know why it
must change its sign. A complete physical
understanding of this phenomenon has not been
achieved.

3. Is resonance between continua universal over
the different sources? For example, does similar
secularity happen if Alfvén and flow continua
are in resonance?

4. It is obvious that exponential is not the only
dependence of instability for non-Hermitian
operators. How rich in variety do the linear
asymptotic behavior show for them?

When we consider multidimensional equilibrium, more
and more questions come to mind. Even area-occupied
spectra are observed for non-Hermitian operators
[34,35]. We still do not know if we may dream of the
possibility of spectral resolution for a non-Hermitian
operator, or if we may prove any necessary and
sufficient condition for stability such as an energy
principle for static equilibria. These questions are left to
be answered in the future.
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