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Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of

entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in

magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal

Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales

is numerically found in velocity and position space, with theoretically predicted scalings. The results are

important because they identify what is probably a universal Kolmogorov-like regime for kinetic

turbulence; and because any physical process that produces fluctuations of the gyrophase-independent

part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that

increases with the fluctuation amplitude, but is independent of the collision frequency.

DOI: 10.1103/PhysRevLett.103.015003 PACS numbers: 52.30.Gz, 52.35.Ra, 52.65.Tt

Introduction.—Turbulence is inherently nonlinear and
dynamically complicated. In the general case, a broad
spectrum of fluctuations is excited, in both wave number
and frequency. For turbulent, magnetized plasma, the equa-
tions of magnetohydrodynamics provide a pedagogically
rich description of the dynamics. However, for those tur-
bulent eddies whose parallel wavelengths (relative to the
magnetic field) are comparable to or smaller than the colli-
sional mean free path and whose perpendicular wave-
lengths are comparable to or smaller than the Larmor
radius of one of the constituent species of the plasma,
magnetohydrodynamic theory breaks down. In such cases,
the gyrokinetic (GK) theory [1,2] represents a rigorous
limit of plasma kinetics for anisotropic (kk � k?), low-
frequency (! � �, the ion cyclotron frequency) fluctua-
tions. In this Letter, we present a GK description of turbu-
lence in a simplified situation, chosen to isolate a novel
phenomenon which is a generic component of all GK
turbulence: the simultaneous cascade of entropy to smaller
scales in both real space and velocity space. This phase-
space cascade is the mechanism by which turbulent energy
associated with fluctuating fields is brought to small scales
in velocity space, where even very infrequent collisions are
sufficient to provide irreversibility and thus heating.
Below, we present the theory and first-principles simula-
tions of the phase-space cascade in a homogeneous, elec-
trostatic, magnetized plasma.

It is well known that Landau and Barnes damping of
electromagnetic plasma fluctuations lead to the generation
of small-scale structures in fðvkÞ, where f is the one-

particle distribution function, and vk is the velocity coor-

dinate along the background magnetic field [3,4]. This is
associated with the free-streaming of particles along the
field. As t increases, a single Fourier harmonic of the
distribution function fkk � eikkvkt gets progressively more

oscillatory in vk-space. Eventually, even infrequent colli-

sions are sufficient to smooth these oscillatory features,
since the collision operator is roughly a diffusion operator
in velocity space. As long as collisions are sufficiently
infrequent, the damping rate depends not on the collision
rate, but on the nature of the wave and its phase velocity
relative to the thermal speeds of the plasma species.
Physically, Landau damping is the smearing of spatial
perturbations that occurs when there is a spread in the
distribution of parallel velocities. We recall for future
reference that this generation of velocity-space structure
is independent of the fluctuation amplitudes.
Besides this linear parallel phase mixing, there exists a

nonlinear phase mixing process [5] that, in a strongly
turbulent plasma and at spatial scales smaller than the
Larmor radius, drives the formation of structure in fðv?Þ
muchmore rapidly than parallel phase mixing drives fðvkÞ.
Physically, this nonlinear phase mixing is the smearing of
spatial perturbations due to the spread in the distribution of
gyroaveraged E�B velocities (see Fig. 1). Unlike for the
parallel phase mixing, the rate of generation of v-space
structure by this process is proportional to the fluctuation
amplitude. In this Letter, we present a study of this non-
linear process, which we interpret as a turbulent cascade of
entropy in phase space [6]. As such, it represents a con-
ceptually novel nonlinear phenomenon, where generation
of small scales in the position and velocity space occurs in
an intertwined way. This process, which is likely to be a
fundamental and ubiquitous feature of magnetized plasma
turbulence, has never been numerically diagnosed and
analyzed before, although Krommes [3] did point out the
general possibility of the coupling between position and
velocity space.
Gyrokinetics in 2D.—Let the distribution function be

f ¼ F0 þ �f, where F0 is a Maxwellian with density n0

PRL 103, 015003 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 JULY 2009

0031-9007=09=103(1)=015003(4) 015003-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.015003


and temperature T0, and �f ¼ h� q’F0=T0, where q is
the particle charge and ’ is the electrostatic potential. To
keep the focus on the nonlinear process, we consider
electrostatic GK turbulence in slab geometry with kk ¼
0. Then the non-Boltzmann part h of the perturbed ion
distribution function satisfies [1]

@h

@t
þ cẑ� rh’iR

B0

� rh ¼ hC½h�iR þ qF0

T0

@h’iR
@t

; (1)

where B0 is the background magnetic field aligned with the
z axis and h�iR is the gyroaverage holding the guiding
center position R constant. The collision operator C½h�
used in our simulations contains pitch-angle scattering
and energy diffusion with proper conservation properties
[7]. The quasineutrality condition yields

Q’ ¼ q
Z
hhirdv ¼ q

X
k

eik�r
Z

J0

�
k?v?
�

�
hkdv; (2)

where h�ir denotes the gyroaverage at fixed particle posi-
tion r, J0 is the Bessel function, Q ¼ P

sq
2
sn0s=T0s for

Boltzmann-response (3D) electrons or Q ¼ q2i n0i=T0i for
no-response (2D) electrons, and s and i are the species
indices. Our results are not affected by the choice of the
electron response. For concreteness, we henceforth use no-
response electrons since electrons cannot contribute to the
potential if kk ¼ 0 exactly. In the absence of collisions, the
system has two positive definite conserved integrals [6,8]:

W ¼
ZZ T0�f

2

2F0

drdv¼
Z �Z T0hh2ir

2F0

dv�Q

2
’2

�
dr; (3)

E ¼ Q

2

X
k

ð1� �0Þj’kj2; (4)

where �0 ¼ I0ðk2?�2=2Þe�k2?�
2=2, I0 is the modified Bessel

function and � is the ion thermal Larmor radius. The

invariant W is proportional to minus the perturbed part
of the entropy of the system,�R

f lnfdrdv [3,4]. Here we
will refer toW as ‘‘entropy’’ to emphasize this connection.
The second invariantE is conserved in the 2D electrostatic
case only.
Scalings.—A scaling theory of the entropy cascade in

the sub-Larmor scale range can be developed in a way
reminiscent of the Kolmogorov-style turbulence theories
[6]. Assume that at (perpendicular) scales ‘ � �, the
transfer of entropy is local in scale. On dimensional
grounds, the entropy flux is

v2
th

�‘

�
hv3

th

n0

�
2 ¼ const (5)

until it reaches the collisional dissipation scale, where vth

is the thermal speed and �‘ is the nonlinear decorrelation
time at scale ‘. The neglect of the ’2 term inW [see (3)] is
justified post hoc due to its smallness in the ‘ � � regime
[see (9) and Fig. 3(a)]. There is a self-consistent electro-
static potential at the scale ‘: from (2),

q’

T0
�

�
‘

�

�
1=2

�
�v?
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�
1=2 � hv3

th

n0

‘

�
: (6)

Here we have assumed that the nonlinear phase mixing
produces velocity-space structures correlated with the spa-
tial scale via (see Fig. 1 and Refs. [6,8])

�v?
vth

� ‘

�
: (7)

This has allowed us to estimate the velocity integral in (2)
as a random-walk-like accumulation of the integrand rep-
resented by the product of hk, which is a random function
of v? whose ‘‘step size’’ is given by (7) with ‘� k�1

? , and

of the Bessel function, which introduces a reduction factor

of ð‘=�Þ1=2.
The decorrelation time �‘ may be estimated by balanc-

ing the @t term with the nonlinear term in (1), leading to

�‘ � ‘2

ch’iR=B0

�
�
�

‘

�
1=2 ‘2

c’=B0

: (8)

Substituting (6) into (8) and (8) into (5) yields h� ‘1=6 and

’� ‘7=6. Therefore, the spectra of h and ’ are

Ehðk?Þ � k�4=3
? ; E’ðk?Þ � k�10=3

? ; (9)

where Ehðk?Þ¼
P

jk?j¼k?

R
T0jhkj2=2F0dv and E’ðk?Þ ¼P

jk?j¼k?q
2n0j’kj2=2T0. Note that the total entropy (3) can

be expressed as W ¼ R½Ehðk?Þ � E’ðk?Þ�dk?.
Dissipation cutoff.—From the balance between the non-

linear decorrelation time (8) and the collision time ��1,
one obtains an estimate of the dissipation cutoff scales in
both the velocity space and the real space [see (7)]. Using
C½h� � �v2

thh=�v
2
?, we find the cutoffs

�v?c

vth

� 1

k?c�
�D�3=5; D ¼ 1

���
; (10)

FIG. 1 (color online). Schematic view of the nonlinear phase
mixing superimposed on the potential from the Run (iii) (see
Table I) at t=�init ¼ 10 and the largest wavelength mode taken
out. When the fluctuation scale ‘ & �, the gyroaverage of the
electric field induces a decorrelation of the distribution function
at the velocity-space scale corresponding to the difference in
Larmor radii ‘v ¼ �v=�� ‘ [see (7)].
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where �� is the nonlinear decorrelation time measured at

‘ ¼ �. We have introduced a new dimensionless numberD
to characterize the scale separation in gyrokinetic turbu-
lence: analogous to the Reynolds number in fluid turbu-
lence, large D corresponds to a broader scaling range over
which the entropy cascade extends, and to dissipation at
smaller scales. Here, however, the smallest spatial scale
observed is determined by the v-space scale for which
diffusion in velocities becomes important, through the
correlation between real and velocity space given by (7).
The fact that D increases with the amplitude of the fluctu-
ations at the Larmor scale clearly distinguishes this process
from linear Landau damping. We note that for 3D gyroki-
netic turbulence, the nonlinear phase mixing is a much
faster process than the linear one if the fluctuation ampli-
tude is sufficiently large.

Numerical simulations.—We now report the first-of-a-
kind numerical investigation of the entropy cascade in
phase space, carried out with the GK code AstroGK. The
code uses a Fourier pseudospectral scheme for the real-
space dimensions perpendicular to the background mag-
netic field and a Legendre collocation scheme for the
velocity-space integrations. The velocity space is discre-
tized in energy " ¼ v2 and � ¼ v2

?=". In the absence of

collisions, AstroGK conserves the invariants (3) and (4)
with a high precision.

The results reported below were obtained in three runs at
decreasing collision frequency � and correspondingly in-
creasing spatial and velocity resolution. They are indexed
in Table I, where Nx � Ny is number of collocation points

in the real space andN" � 2N� is the number of grid points
in velocity space—the factor of 2 corresponds to the sign of

vk ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ð1� �Þp

. Our highest-resolved run required 36

wallclock hours on 8192 processors.
The code evolves g ¼ h� qF0h’iR=T0 and ’ via

Eqs. (1) and (2). We take the box size Lx ¼ Ly ¼ 2��

and start from the initial condition ginit ¼ g0½cosð2x=�Þ þ
cosð2y=�Þ þ �ðx; yÞ�F0, where g0 is a constant and �ðx; yÞ
is a small-amplitude white noise superimposed on all
Fourier modes. From (2), we can calculate ’init.

Time evolution.—The initial jkx�j, jky�j ¼ 2 configura-

tion is unstable: the amplitudes of ’ corresponding to
jkx�j, jky�j ¼ 1 grow and then saturate around t=�init ’
9, where �init ¼ 2�B0=ðck2? k h’initiR kÞ is the turnover

time associated with the initial condition and k h’iR k¼
½ð1=n0Þ

RR jh’iRj2F0dvdR�1=2. The nonlinear interactions

between modes produce smaller scales down to a cutoff
determined byD [see (10)]. The turbulent spectra fill up by
t=�init ’ 10, then decay with time.

The time evolution of the collisionless conserved quan-
tities W and E [see (3) and (4)] is shown in Fig. 2. During
the initial growth of the instability of the jkx�j, jky�j ¼ 1,

W decays very slowly at a rate ��, consistent with a
collisional decay rate associated with the large-scale
phase-space variation of ginit. Once turbulence develops,

W decays more rapidly as the entropy cascade transfers it
nonlinearly to smaller scales in phase space, until the
fluctuations of the distribution function are thermalized
(dissipated) at the collisional cutoff.
The decrease of W from its initial value corresponds to

the amount of entropy (heat) production due to the irre-
versible collisional smearing of the distribution function.
The turbulence that follows the initial instability enhances
the heating, suggesting that small-scale velocity-space
structure is generated (this is confirmed below). As ex-
pected, the rate of dissipation is not strongly affected by the
collision frequency, i.e., there is a finite amount of dissi-
pation even as the collision frequency tends to zero. The
dissipation rate is determined instead by the nonlinear
cascade rate.
WhileW decays,E stays almost constant. If we increase

the size of the simulation box, the jkx�j, jky�j ¼ 1 modes

themselves become unstable to even longer-wavelength
modes. We attribute both this instability and the failure
of E to decay to the intrinsic tendency of E to have an
inverse cascade [8,9], which we do not discuss here.
Spectra and scalings.—The wave-number spectra of the

decaying developed turbulence are given in Fig. 3(a). They
are angle integrated over wave-number shells jk?j ¼ k?,
normalized by WðtÞ at each time and then averaged over
time for 10 � t=�init � 15. As resolution is increased, the
spectra appear to converge to the theoretically predicted
scalings (9), which supports the validity of our dimensional
and physical considerations of the entropy cascade.
To characterize the entropy cascade in the velocity

space, Plunk et al. [8] introduced velocity-space spectra

FIG. 2 (color online). Time evolution of W and E [Eqs. (3)
and (4)] normalized to initialW. The runs (i)–(iii) are indexed in
Table I. Evolution of E does not differ among runs significantly,
and is given for run (iii).

TABLE I. Index of the runs.

Run Nx � Ny N" � 2N� ��init D k?c�

(i) 642 322 5:6� 10�3 48 20

(ii) 1282 642 1:9� 10�3 118 35

(iii) 2562 1282 7:4� 10�4 440 77

PRL 103, 015003 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 JULY 2009

015003-3



ÊgðpÞ ¼ P
kpjĝkðpÞj2, where ĝkðpÞ ¼

R
J0ðpv?ÞgkðvÞdv

is a Hankel transform. The theoretical expectation is that

ÊgðpÞ � p�4=3 because the real- and velocity-space scales

should be related according to (7), which, in terms of the
dual variable p, becomes k?�� pvth. The time-averaged

Hankel spectrum ÊgðpÞ obtained in our simulations is

shown in Fig. 3(b). This again shows approximate consis-
tency with the theoretical prediction and confirms that
small-scale structure is formed in the velocity space.

Dissipation cutoff.—In Table I, we show for each of our
runs the dimensionless number D ¼ ð���Þ�1, where �� ¼
2�B0=ðck2? k h’0iR kÞ measured at t=�init ¼ 10 and ’0 is
’ with the jkx�j, jky�j ¼ 1 modes taken out (see also

Fig. 1). Also shown is the theoretical estimate (10) for

the wave-number cutoff k?c� ¼ �D3=5, where� ¼ 2 is an
empirical value that corresponds to our particular set up.
Comparing with the wave-number and velocity-space
spectra in Fig. 3, we see that (10) describes the resolution
requirements quite well. With fewer velocity grid points,
we find shallower wave-number spectra than the resolved
ones, while with more, we resolve below the velocity cutoff
without any change in the wave-number spectra. ThusD is
a good indicator of necessary and sufficient resolution in
full 4D phase space.

Conclusions.—We have presented electrostatic, de-
caying turbulence simulations for weakly collisional,
magnetized plasmas using the gyrokinetic model in 4D
phase space (two real-space and two velocity-space
dimensions). Landau damping was removed from the sys-
tem by ignoring variation along the background magnetic
field. Nonlinear interactions introduce an amplitude-
dependent perpendicular phase mixing of the gyrophase-
independent part of the perturbed distribution function and
create structure in v? which is finer for higher k?. We have
found that the wave-number (Fourier) and velocity-space
(Hankel) spectra of the perturbed distribution function and
the resulting electrostatic fluctuations at sub-Larmor scales
agree well with theoretical predictions based on the inter-
pretation of the nonlinear phase mixing as a cascade of
entropy in phase space [6,8]. We have introduced a dimen-
sionless number D (analogous to Reynolds number) that
characterizes the scale separation between the thermal
Larmor scale and the collisional cutoff in phase space [see

(10)], and showed that this number correctly predicts the
resolution requirements for our simulations.
We note that there are, in general, entropy cascades for

each plasma species. Equations for the gyrokinetic turbu-
lence at and below the electron Larmor scale are mathe-
matically similar to the model simulated here and identical
arguments apply [6,8]. Similar considerations are also
possible for ion-scale electromagnetic turbulence [6] and
for minority species.
The small-scale phase-space structure that we have dis-

covered is likely to be a universal feature of strong, mag-
netized plasma turbulence. Understanding it theoretically
and diagnosing it numerically is akin to the inertial-range
studies for Kolmogorov turbulence, extended to the kinetic
phase space. One should expect rich and interesting phys-
ics to emerge and it is likely that predicting large-scale
dynamics will require effective models for the small-scale
cascade. An immediate key physical implication of the
existence of the entropy cascade is a turbulent heating
rate independent of collisionality in weakly collisional
plasmas.
Numerical computations were performed at NERSC,
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Turbulence.
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FIG. 3 (color online). Time-averaged
normalized (a) wave-number (Fourier)
spectra Ehðk?Þ=W and E’ðk?Þ=W
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