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Vortex solitons: Mass, energy, and angular momentum bunching
in relativistic electron-positron plasmas

T. Tatsuno and V. I. Berezhiani
Graduate School of Frontier Sciences, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
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It is shown that the interaction of large amplitude electromagnetic waves with a hot electron-positron (e-p)
plasma~a principal constituent of the universe in the MeV epoch! leads to a bunching of mass, energy, and
angular momentum in stable, long-lived structures. Electromagnetism in the MeV epoch, then, could provide
a possible route for seeding the observed large-scale structure of the universe.
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I. INTRODUCTION

It is widely believed that the currently observed larg
scale structure of the universe~the clusters and supercluste
of galaxies! grew gravitationally out of small density fluc
tuations@1#. The imprint of this density variation in the earl
universe was left on the cosmic microwave background
diation in the form of spatial temperature fluctuations. T
gravitational origin, however, can be only a part of the sto
the gravity can enhance, but it cannot produce these fluc
tions. The quest for the physical process~es! which produced
the initial matter-density fluctuations has led to the em
gence of the following two leading mechanisms: inflati
and topological defects@2,3#. Of these the former is, perhap
the most thoroughly investigated. According to this mec
nism there exists, in the evolution of the universe, an ea
inflationary period in which the universe expands so rapi
~exponentially! that quantum fluctuations become trapped
the expansion. By the end of the inflation, therefore, sm
irregularities covering a wide range of length scales perme
the entire universe. Gravitational instability then acts
these small initial irregularities, and enhances the concen
tion of matter from which galaxies and clusters of galax
eventually emerge@4#. The theory of such processes is, by
means, complete, and much needs to be done to deter
whether tiny quantum fluctuations can provide a stro
enough template for gravitational condensation to finally c
ate the structures that we observe today. Cosmologists,
ally, rely on the speculated existence of nonbaryonic d
matter to augment the gravitational force to aid and acce
ate the structure formation. The question is far from sett

It is natural, then, to look elsewhere for the source of
seed density ‘‘fluctuations.’’ An obvious possibility is to ex
plore if electromagnetic interactions taking place in a plas
~known to be the source of a whole variety of linear as w
as nonlinear waves! can cause the required density perturb
tions. In the standard cosmological model of the hot U
verse~the Big Bang model!, it is estimated that temperature
as high asT;1010 K;1 MeV prevail up to times of;1 s
(t'1 sec) after the Big Bang. In this epoch, the main co
stituents of the Universe are photons, neutrinos, and
tineutrinos, ande-p pairs @1,4#. As the plasma cools down
1063-651X/2001/63~4!/046403~7!/$20.00 63 0464
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the annihilation processe11e2→g1g dominates, and the
e1e2 pair concentration goes down. Since the equilibrat
rates are fast in comparison with the changes in plasma
rameters, an equilibriume-p plasma should be present in th
MeV epoch of the early Universe. It is this plasm
dominated era in which we will seek the seeds for futu
structure formation.

Relativistic e-p plasmas were investigated quite exte
sively @5#. Tajima and Taniuti@6# suggested that collective
processes in these plasmas could lead to interesting co
quences for structure formation. In thee-p plasma of the
early Universe, localized low frequency electromagne
~EM! waves (\v!T) could propagate as an envelope so
ton due to the interaction with sound waves. Plasma den
variations related to these solitons could potentially be us
toward structure formation in the Universe. However, t
analysis@6# was based on a one-dimensional formulatio
and the corresponding soliton solutions are likely to be
stable in higher dimensions. Berezhiani and Mahajan@7# ar-
gued that in the MeV epoch of the Universe, althoughe-p
pairs form the dominant constituent of the plasma, a mino
population of heavy ions is also present due to the bar
asymmetry. They were able to show that, under appropr
conditions @when the plasma is transparent, i.e.,v@ve ,
wherev (ve) is the pulse~plasma! frequency#, the resulting
e-p–ion plasma supports the propagation of stable, non
fracting, and nondispersing EM pulses~light bullets! with a
large density bunching. It was further shown in Ref.@8# that
these bullets are exceptionally robust: they can emerge f
a large variety of initial field distributions, and are remar
ably stable. Note that the characteristic dimensions of s
matter-filled light pulses are proportional to the electron
ion density ratio, and tend to be considerably larger than
skin depth (l5c/ve). The implication is that when one
deals with EM structures whose characteristic dimensions~of
the spatiotemporal inhomogeneities! are of the order of the
skin depth, the baryon asymmetry affects can be safely
glected, and the dynamical system can be assumed as a
electron-positron plasma.

In the present paper we examine the propagation of str
EM radiation in a hot puree-p plasma, with the explicit aim
©2001 The American Physical Society03-1
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of finding soliton-type solutions. The plasma is assumed
be transparent. We demonstrate that the dynamics of the
field envelope is governed by a generalized nonlinear Sc¨-
dinger equation~NSE! with a defocusing nonlinearity. In on
dimension, this equation admits dark soliton solutions, wh
in two dimensions, the so called vortex soliton solutions
also possible.

Dark solitons exist as dips on a continuous-wave ba
ground field. Being stable in one dimension, they appea
dark-stripe solitary waves in bulk medium. However, su
stripes are unstable to transverse modulations, which re
in the induced generation of vortices with alternating pola
ties.

Vortex solitons, which are the most fundamental tw
dimensional~2D! soliton solutions of NSE’s with an angula
2p phase ramp, appear as local dark minima in an otherw
bright background. Vortex solitons were recently observed
materials with a defocusing optical nonlinearity—the d
namics of laser beams in these materials is generally
scribed by the NSE@9#. Since electromagnetic vortices car
angular momentum that is conserved during propagation,
generation of vortex solitons in ane-p plasma is a poten
mechanism for creating domains with definite angular m
menta, even out of an initial field distribution devoid of a
gular momentum. To keep the total angular momentum
zero, domains of equal and opposite angular momenta m
be created in pairs.

II. FORMULATION

We use the following set of relativistic hydrodynam
equations in dimensionless form@7#:

d6

dt
~G6g6!2

1

n6

]

]t
P657v6

•

]A

]t
7~v6

•“f!, ~1!

d6

dt
~G6p6!1

1

n6
“P657

]A

]t
6@v63~“3A!#7“f,

~2!

]n6

]t
1“•~n6v6!50, ~3!

along with the field equation~in the Coulomb gauge“•A
50)

]2

]t2
A2“

2A1
]

]t
“f1~n2v22n1v1!50, ~4!

where p65g6v6 with factor g65@11(p6)2#1/2; d6 /dt
5]/]t1v6•“ is the comoving derivative; andG6

5K3(1/T6)/K2(1/T6), with Kn nth order modified Besse
functions of the second kind. The superscript labels the p
ticles, electrons (2), and positrons~1!, respectively. In
these equations the time and space variables are in uni
the electron plasma frequencyve5(4pe2n0 /me)

1/2, and the
collisionless skin depthc/ve , respectively, the field poten
tials (f, A) are in units ofmec

2/e, and the relativistic mo-
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mentum vectorp6 is in units of mec. The particle number
density n6 is normalized by the equilibrium densityn0

5n0
6 , and the plasma temperature (T6) is measured in units

of mec
2. The pressureP65nr

6T6, wherenr
6 is the density

in the rest frame of the fluid element (nr
65n6/g6). The

function G(z) defines the ‘‘effective’’ temperature depen
dent mass of the particles, and has the following limiti
expressions:G'115/2z for z@1, andG'4/z if z!1.

From Eqs.~1!–~3! it is straightforward to derive the adia
batic equation of state@10#:

n6/T6

g6K2~1/T6!
exp~2G6/T6!5const, ~5!

which, at nonrelativistic temperature (T6!1), reduces to the
standard adiabatic relation@nr

6/(T6)3/25const# for an ordi-
nary gas. In the ultrarelativistic limit@T6@1#, as expected,
Eq. ~5! describes the photon gas@nr

6/(T6)35const#. In the
ultrarelativistic case, one should take into account the ra
tive pressurePR5sT4 (s5p/45\3c3). For simplicity we
neglect this less important effect for the current consid
ations. Note that in the MeV epoch, the plasma tempera
T6'mec

2 ~i.e., z'1) and G'4, leading to an effective
mass ofe-p pairs of meff;4me . Since the particle masse
are just a few times larger than their rest mass at these
peratures, thee-p plasma can be considered as a two co
ponent fluid rather than a photon gas.

We consider the propagation of circularly polarized E
wave with a mean frequencyv, and a mean wave numberk
along thez axis. The choice of circular polarization is no
restrictive; it simplifies the analysis by preventing harmon
generation. The vector potential can be represented as

A'5
1

2
~x1 iy!A'~r' ,z,t !exp~ ikz2 ivt !1c.c., ~6!

whereA' is a slowly varying function ofr and t (k@“,
v@] t). The unit vectorsx and y define two mutually per-
pendicular axes in the plane normal to the direction of wa
propagation. The Coulomb gauge condition leads to the
lation Az5( i /k)(“'•A')!A' . Consequently the effects re
lated toAz will turn out to be negligibly small. We shall now
follow standard methods to analyze the system. In the slo
varying amplitude approximation, the transverse, hig
frequency component of the equation of motion yields
simple relation between the particle momentum and the v
tor potential@7#:

p'
6G657A' . ~7!

The low frequency motion of the plasma is driven by t
ponderomotive pressure@;(p6)2# of the high frequency EM
field, and it does not depend on the sign of the particl
charge. If we assume that in equilibrium the electron a
positron fluids have equal temperatures (T0

65T0), their ef-
fective masses will also be equal (G65G), and the radiation
pressure will impart equal low frequency momenta to bo
fluids, allowing the possibility of overall density change
3-2
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VORTEX SOLITONS: MASS, ENERGY, AND ANGULAR . . . PHYSICAL REVIEW E63 046403
without producing charge separation. The charge neutra
conditionsn25n15N, f50 will be assumed in the rest o
this paper. It is also evident that the symmetry between
two fluids keeps their temperatures always equal (T65T) if
they were equal initially.

A considerable simplification results when we invoke t
wide beam approximation@11#. We assume that the longitu
dinal variation of the field envelope is much stronger th
the transverse variation, i.e.,Lz , the characteristic length
along the propagation direction, is much shorter thanL' , the
characteristic length in the transverse plane. This approxi
tion, coupled with charge neutrality, allows us to extra
from Eqs.~1! and ~2!, the following, leading order descrip
tion for the low frequency response: the equation of mot

d

dt
Gp1

1

N

]

]z

NT

g
52

1

2gG

]uA'u2

]z
, ~8!

and the ‘‘energy’’ conservation equation

d

dt
Gg2

1

N

]

]t

NT

g
5

1

2gG

]uA'u2

]t
. ~9!

Here we have used the condition that the ponderomo
pressure gives equal longitudinal momenta to both electr
and positrons (pz

65p). Note that the assumed circular p
larization of the EM field insures that the relativistic factorg
does not depend on the ‘‘fast’’ time (1/v) scale; it can be
written as

g5F11
uA'u2

G2
1p2G 1/2

. ~10!

Substituting Eqs.~6! and~7! into Eq. ~4!, we find that the
slowly varying amplitudeA' must satisfy

2iv~] t1vg]z!A'1“'
2 A'1~]z

22] t
2!A'1~v22k2!A'

2
2N

gG
A'50, ~11!

where vg denotes the group velocity of the carrier wave
vg5dv/dk5k/v.

We are still not quite done with simplifying assumption
We seek solutions which vary slowly with time in a fram
comoving with the wave, that is, in a frame propagating w
the group velocityvg . The transformationsj5z2vgt and
t5t, with the conditionvg]j@]t , help implement this ap-
proximation. Equations~8! and~9! can now be combined to
derive

]

]j
@G~g2vgp!#50; ~12!

the implied constant of motion is to be determined from
boundary conditions. We demandp and A' to be zero at
infinite j, but allow them to be finite asr'→`. Integrating
Eq. ~12! leads to (T0 is the particle temperature at infinity!,

G~T!~g2vgp!5G0~T0!, ~13!
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which is readily solved for an explicit expression for th
longitudinal momentum in terms of the transverse vector
tential,

p5vggg
2 G0

G F12
1

G0vggg
~gg

2G0
22G22uA'u2!1/2G , ~14!

wheregg51/(12vg
2)1/2 is the ‘‘effective relativistic factor’’

associated with the group velocity of the wave; it is not to
confused with the particleg. The continuity equation can b
similarly integrated to determine the particle density@after
using Eq.~14! for p]:

N

gG
5

vggg

~gg
2G0

22G22uA'u2!1/2
. ~15!

Substituting Eq.~15! into Eq. ~11!, we obtain the follow-
ing nonlinear Schro¨dinger equation for the complex ampl
tudeA' :

2iv]tA'1“'
2 A'1

1

gg
2
]j

2A'

1
2

G0
S 12

vgggG0

~gg
2G0

22G22uA'u2!1/2D A'50, ~16!

where the wave frequencyv satisfies the dispersion relatio
v25k212/G0, implying that the parameter gg

5vAG0/2 @gg5(v/ve)AG0/2 in physical quantities#. A set
comprising Eq.~16!, and the equation of state~5! @in which
relation~15! could be easily incorporated# constitutes a com-
plete description of the dynamics of strong EM waves
relativistic e-p plasma in the wide beam approximation.

We remind the reader that Eq.~16! was derived under the
assumption]j@“' ~i.e., Lz!L'). In spite of this, for a
highly transparent plasma (gg@1) the second, ‘‘diffrac-
tive,’’ term can be of the same order or even greater than
third, ‘‘dispersive,’’ term. For this paper, we will not attemp
the general solutions of this quite complicated set of eq
tions; we will simply deal with waves for which the plasm
is so highly transparent that the diffractive term dominat
Using ggG0@G, and neglecting the dispersive term, th
NSE simplifies to

i]tA'1
1

2
“'

2 A'22F S 12
uA'u2

gg
2G0

2D 21/2

21GA'50, ~17!

where the following renormalizations are used:t/2vG0

→t and r' /A2G0→r' .
The vector potentialuA'u is restricted from above by the

condition uA'u,ggG0. This restriction is necessary for th
validity of the hydrodynamic treatment for the particles. F
larger amplitudes, the electromagnetic waves are overtur
causing a multistream motion of the plasma requiring a
netic description. Note that despite the upper bound on
3-3
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amplitude of the vector potential, the EM field can be s
relativistically strong, i.e., the normalizeduA'u@1, since
gg@1.

III. STATIONARY SOLUTIONS

In the NSE derived above the diffractive and nonline
terms have opposite signs and as a consequence Eq.~17!
does not admit transversely localized solutions~also called
bright solitons!. Any localized initial EM field, therefore,
will undergo transverse spreading during propagation. T
NSE with a defocusing nonlinearity can, however, supp
stationary structures with asymptotically~at infinity! nonva-
nishing fields. Dark solitons in one dimensions, and vor
solitons in two dimensions, are the fundamental represe
tives of such solutions. In the extreme low amplitude lim
uA'u!ggG0, Eq. ~17! reduces to a NSE with a cubic nonlin
earity. In one-dimensional geometry we have

i
]A'

]t
1

1

2

]2A'

]x2
2

1

gg
2G0

2
uA'u2A'50. ~18!

This equation is exactly integrable via the inverse scatte
method@12#, and its one-soliton solution can be written
@9#

A'~x,t!5ggG0A0~a tanhQ1 ib!e2 iA0
2t, ~19!

where

Q5aA0~x2bA0t!. ~20!

HereA0 is a measure of the asymptotic fields at the spa
infinity, and a and b are constants witha21b251. The
solution, with a nonzero value at the center of the dip,
termed the ‘‘gray soliton’’ to distinguish it from the ‘‘black
soliton’’ ~zero amplitude at the dip! corresponding tob50.
Dark solitons of this class of NSE’s do not have any thre
old values for their excitation, unlike bright solitons~of the
appropriate equations!, which do. In other words, dark soli
tons can be created by an arbitrary small initial dip on
homogeneous background.

In two transverse dimensions, a dark soliton represen
dark stripe imposed on a homogeneous bright backgroun
is well known that such a stripe is unstable to transve
long wavelength modulations@13#. The instability causes the
stripe to split into a sequence of vortex solitons of alternat
polarities@14#. The vortices are dark holes on a bright bac
ground, with a nested phase dislocation of the orderm5
61,62, . . . attheir core.

Vortex soliton solutions of the NSE were first sugges
by Pitaevskii@15# as topological excitations in an imperfe
Bose gas in the superfluids. The ability of some electrom
netic systems~like thee-p plasma! to simulate fluid dynami-
cal phenomena~like vortex formation! can be demonstrate
by applying the Madelung transformationA'5Ar exp(ic) to
the defining equations. The transformation converts
original set to one that is similar to the fluid hydrodynam
equations with a fluid ‘‘density’’r and fluid ‘‘velocity’’ v
04640
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5“'c. Vortices can exist despite the potential nature of
‘‘fluid’’ flow. Indeed, the Madelung transform is singular a
points wherer50; these are just branch points where t
real and imaginary parts of the field become zero, while
velocity circulationrv•dl52pm, where the integration is
done on a closed path enclosing the singular point, and
integerm is known as the topological ‘‘charge’’ of the vor
tex. Thus the vortex soliton is a topological structure; it c
disappear only when annihilated by a vortex soliton of t
opposite charge. The development of the transverse inst
ity of a dark soliton has close parallels in hydrodynamics:
instance, the Kelvin-Helmholtz instability, which occu
when the boundary between two flows develops so-ca
‘‘vortex streets’’ @14#. Since a dark solitary stripe does n
carry any topological charge, it is evident that vortices ha
to be born with equal and opposite topological charges.

It is straightforward to show thate-p plasmas can suppor
large amplitude dark solitons as well. In the general c
~amplitude large, but subject to the conditionuA'u,ggG0),
we cannot construct analytic solutions even in one dim
sion. It is possible, however, to extract the general proper
of the solution by using reasonably simple techniques, es
cially whenA' has the time dependence

A~x,t!5Â~x!exp~2 ilt!, ~21!

whereA5A' /ggG0 is the normalized amplitude, and is a
ways less than unity. Herel is so-called nonlinear frequenc
shift. This time dependence implies that the amplitude squ
is stationary~what follows, therefore, are classed as statio
ary solutions!, and the dip of the wave does not propagate
the comoving frame with quite the group velocity of th
linear wave.

The 1D equation~18! now can be cast in the form

d2

dx2
Â1V8~Â!50, ~22!

where the prime onV denotes the derivative with respect
Â, and

V~Â!5~l12!Â214A12Â224 ~23!

denotes the potential. The resemblance of Eq.~22! to the one
obeyed by a Newtonian particle in a nonlinear potential s
gests an obvious method for analysis. One can easily pr
that a bounded solution exists provided the nonlinear
quency shift is positive (l.0). The profile of the potential
shown in Fig. 1 forl51, reveals that the dark soliton solu
tion may reside in the potential well. Equatingd2Â/dx2 with
zero, we estimate the upper bound onÂ:

Âub5A12S 2

l12D 2

. ~24!

The lowermost value of the amplitudeuAu is zero, that is, we
recover the dark soliton. Note that for small values ofl

(!1), Âub→0, while Âub→1 for l@1.
3-4
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Similarly one can show the existence of vortex solit
solutions in two dimensions. We shall again seek station
solutions in 2D polar coordinates (r ,u). The ansatz

A5Â~r !exp~ imu2 ilt!, ~25!

with Â(r ) real, and with the perpendicular Laplacian ope
tor given by

“'
2 5

d2

dr2
1

1

r

d

dr
2

m2

r 2
, ~26!

converts Eq.~17! to the ordinary differential equation@simi-
lar to Eq.~22!#

d2

dr2
Â1V8~Â!52

1

r

dÂ

dr
1

m2

r 2
Â, ~27!

where the potentialV(Â) is the same as the one-dimension
expression given by Eq.~23!. If we were to extend the ‘‘par-
ticle in a potential’’ analogy further, Eq.~27! could be
viewed as the nonconservative motion of a particle. Since
right-hand side approaches zero in the limitr→`, Eq. ~27!
gives precisely the 1D asymptotic value@Eq. ~24! for the
vector potentialÂ]. The behavior at the origin (r 50) is
totally different; the regular singular point at the originr
50 forces the acceptableÂ to vanish form>1 asr m. The
numerical solutions of the two-dimensional nonlinear Sch¨-
dinger equation form51, 2, and 3 are shown in Fig. 2. A
expected, the solitonlike solutions evidently go to zero asr m

for small r, and reach anm-independent asymptotic valu
predicted by Eq.~24!.

More general aspects of the dynamics of the EM field c
be studied mainly through numerical simulations of E
~17!—this is beyond the intended scope of this paper.
content ourselves here by making a few qualitative rema
and pointing out directions for future efforts. The nonlinea
ity in Eq. ~17! is a faster growing function~faster than the
cubic! of the field amplitude, and does not exhibit saturatio
One would expect, then, that the development of vor
chain structures from the dark stripe soliton instability for t
general system will be faster in comparison with the lo
amplitude ~cubic nonlinearity! case. This is, indeed, con
firmed by a numerical solution of Eq.~17!; the detailed re-

FIG. 1. The form of the potentialV(Â) in Eq. ~22! is shown for
l51.
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sults of the simulation will be discussed in a later public
tion. The stability of the vortex soliton solution is anoth
issue that has to be dealt with. It is usually believed, ho
ever, that vortices withm561 are topologically stable
whereas vortices with larger value of the ‘‘charge’’m may
decay into ‘‘single-charge’’ vortices.

In three dimensions the vortices form the so-called vor
line ~it looks like a pancake with a hole in the center, han
ing and moving along the wire-vortex line!. Effects related to
the finite group velocity dispersion may lead to a transve
instability of the vortex line. All these interesting effects a
left for future studies.

We would like to emphasize that the electromagne
fields associated with dark and vortex solitons are asymp
cally nonvanishing~at infinity!. Due to the generally ac
cepted requirement that in physical system, the fields be
calized in all directions, these objects have received m
less attention than their localized cousins. However, in rec
experiments studying laser field dynamics in different kin
of optical media, it was demonstrated that dark and vor
solitons can be readily created as superimpositions upo
localized field background@9#. This background can be just
few times wider than the soliton width. During propagatio
the background spreads out, reducing its own intensity
light of these experiments let us try to put in perspective
current study of dark and vortex solitons ine-p plasmas in
the early Universe. Because the typical scale length of th
solitons is the collisionless skin depth, we would need a s
porting background spanning several skin depths. T
should pose no problem, because the ambient uniform fi
background could easily foot the bill. The next scale leng
on which we encounter ‘‘bulletlike’’ electromagnetic stru
tures ~which owe their origin to the baryon asymmetry! is
considerably larger than the skin depth. Thus the dark
vortex solitons can propagate in a slowly changing ba
ground ~spreading and decreasing in intensity with the d
fractive spreading rate of the soliton decreasing as the b
ground expands!, adiabatically maintaining their propertie
until they hit baryon-asymmetry scale lengths.

Topological considerations will insure the preservation
the singular points during propagation. In propagating vor
chains, the vortices can move away from one another, red
ing the possibility of their mutual annihilation. The propag
tion introduces elements similar to Hubble expansion—

FIG. 2. The form of the solitonlike solutions for the normalize

potentialÂ is shown form51, 2, and 3 in the case ofl51.
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structures ‘‘run away’’ from one another. These high
speculative remarks need careful investigation. It is poss
that the spreading of the background field may just affect
vortex distribution, and only a cosmological expansion w
drive them apart.

What is extremely significant is that during the evoluti
of the fields, the integrals of motion should be preserved.
easy to prove, by direct calculations, that Eq.~17! conserves
the angular momentumM:

~M!z5
i

2E dr'@r'3~A'
*“'A'2c.c.!#z . ~28!

Equation~28! for the angular momentum is a paraxial a
proximation for the orbital angular momentum,ME5*dr@r
3(E3B)#, of the EM field @16#. The angular momentum
carried by the vortices isMz5mN, whereN is another con-
served quantity known as the ‘‘photon number’’N
5*dr'uA'u2 @17#.

It follows, then, that relativistice-p plasmas are capabl
of sustaining electromagnetic vortexlike structures, and
these structures have domains in which the EM fields ca
nonzero angular momenta, although the total angular
mentum of the entire system is zero. If this angular mom
tum could, somehow, be locally transferred to the surrou
ing medium, we would have a rather effective mechani
for imparting angular momentum to different domains
matter in the early universe. In our next publication we w
show that when baryon asymmetry effects are incorpora
the medium can, indeed, acquire angular momentum f
the EM field vortices.

IV. CONCLUSIONS

We have investigated the dynamics of the highly relat
istic (gg@1) nonlinear propagation of electromagne
waves in unmagnetized hot electron-positron plasmas.
system is described by a nonlinear Schro¨dinger equation~17!
with an inverse square root type~nonsaturating! nonlinearity.
We have shown the possibility of dark and vortex solit
y

tt.

F.

h

J

04640
le
e
l

is

at
ry
o-
-
-

f
l
d,
m

-

he

type solutions for this equation. The transverse instability
dark soliton stripes leads to the formation of a vortex ch
such that the EM fields in each vortex carry angular mom
tum. Such objects could play an important role in cosmolo
as sources of the structure formation in the MeV epoch of
evolution of the Universe. In commonly adopted cosmolo
cal scenarios about the origin of the rotation of galaxi
structures grow in a hierarchy by the gravitational assem
of clumps out of subclumps. The origin of the angular m
mentum of galaxies, if they were formed from initial fluctu
tions in a Friedman Universe, was suggested~by Hoyle @18#!
to be due to tidal interactions between the condensing sys
@4#. However, it is still not clear whether this mechanis
gives an adequate solution@19#. We hope that the suggeste
mechanism of angular momentum generation in the M
epoch of the Universe is an interesting alternative to expl
and examine. Electromagnetism, operating through the
satile substrate of thee-p plasma, seems to readily genera
these highly interesting, long-lived objects—the carriers
large amounts of mass, energy, and angular moment
Since an initial localization of mass, energy, and angu
momentum is precisely the seed that gravity needs for ev
tual structure formation, electromagnetism may have p
vided a key element in the construction of a large-scale m
of the observable Universe.

Results of this paper can also be applied to astrophys
objects like pulsars, and active galactic nuclei—thee-p pairs
are thought to be a major constituent of the plasma ema
ing both from the pulsars, and from the inner region of t
accretion disks surrounding the central black holes.
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