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Angular momenta creation in relativistic electron-positron plasma
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Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain
of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear
Schrödinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of
angular momenta when it is applied to the MeV epoch of the early Universe.
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I. INTRODUCTION

The problem of electromagnetic~EM! wave propagation
and related phenomena in relativistic plasmas has attra
considerable attention in the recent past. From the nont
mal emission of the high-energy radiation coming from
variety of compact astrophysical objects it has become p
sible to deduce the presence of a population of relativi
electrons in the plasma created in the dense radiation fi
of those sources@1#. The principal components of these pla
mas could be either relativistic electrons and nonrelativi
ions ~protons! or relativistic electron-positron (e-p) pairs.

Relativistic e-p dominated plasmas may be created in
variety of astrophysical situations. Thee-p plasmas are
likely to be found in pulsar magnetospheres@2#, in the bipo-
lar outflows ~jets! in active galactic nuclei@3#, and at the
center of our own galaxy@4#. The presence ofe-p plasma is
also argued in the MeV epoch of the early Universe. In
standard cosmological model, temperatures in the M
range (T;1010 K21 MeV) prevail up to timest51 sec af-
ter the Big Bang@5#. In this epoch, the main constituent o
the Universe is the relativistice-p plasma in equilibrium
with photons, neutrinos, and antineutrinos.

Contemporary progress in the development of su
strong laser pulses with intensitiesI;1021223 W/cm2 has
also made it possible to create relativistic plasmas in
laboratory by a host of experimental techniques@6#. At the
focus of an ultrastrong laser pulse, the electrons can acq
velocities close to the speed of light, opening the possibi
of simulating in the laboratory the conditions and pheno
ena that, generally, belong to the astrophysical realm@7#.

Elucidation of the electromagnetic wave dynamics in
relativistic plasma will, perhaps, be an essential tool for
derstanding the radiation properties of astrophysical obj
as well as of the media exposed to the field of superstr
laser radiation. Although the study of wave propagation
relativistic plasmas has been in vogue for some time, i
only in the recent years that the nonlinear dynamics of E
radiation ine-p dominated plasmas@8# has come into focus
The enhanced interest stems from two facts:~1! e-p plasmas
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seem to be essential constituents of the Universe, and~2!
under certain conditions, even an ultrarelativistic electro
proton plasma can behave akin to ane-p plasma@9#.

Recently, we found dark soliton as well as vortex solit
solutions ine-p plasmas@10#. In Ref. @11#, it is also shown
analytically that the dark soliton is the natural nonlinear c
herent structure in unmagnetized colde-p plasmas. How-
ever, it is conceivable that soliton solutions obtained in
one-dimensional formulation will turn out to be unstable
higher dimensions, which may lead to the creation of vor
solitons. Since dark and vortex solitons are asymptotica
nonvanishing, they have received much less attention t
their localized cousins due to the generally accepted requ
ment that the fields be localized in a physical system. Ho
ever, in recent experiments studying laser field dynamics
different kinds of optical media, it was demonstrated th
dark and vortex solitons can be readily created as supe
positions upon a localized field background@12#. Vortex soli-
ton solutions have been also found in imperfect Bose ga
the superfluids@13# and have been extensively investigat
and discussed@14#. In this paper, we systematically invest
gate the instability of dark solitons and show that it can le
to the formation of vortex solitons. We speculate about
interesting application of the vortex soliton in the ear
Universe.

In a recent paper@10#, we had developed an argument f
the creation of domains of nonzero angular momentum in
MeV era of the early Universe when it was supposed to
dominated by a plasma ofe-p pairs. We first showed that in
such a plasma the dynamics of a pulse of electromagn
radiation, with a frequency much larger than the plasma
quency, is controlled by a generalized nonlinear Schro¨dinger
equation~GNSE! with a defocusing nonlinearity. Then, bo
rowing a result of nonlinear optics@12#, where the standard
nonlinear Schro¨dinger equation~NSE! with a cubic nonlin-
earity has been investigated in great depth and detail,
conjectured that even the GNSE, whose nonlinearity is si
lar in nature to that of NSE, will allow vortex soliton solu
tions with an angular momentum that is conserved dur
propagation. The latter system also allows dark soliton so
©2003 The American Physical Society09-1
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TATSUNO et al. PHYSICAL REVIEW E 68, 016409 ~2003!
tions in one dimension which are known to be unstable
two-dimensional~2D! perturbations and eventually evolve
2D vortex chains.

In this paper we demonstrate that the arguments give
Ref. @10# are actually borne out by the direct solutions of t
derived GNSE. We begin by analytically showing that t
1D dark solitons of the GNSE are, indeed, unstable to
perturbations. In the process, we derive the instability cr
rion which agrees with the numerical solution of the line
ized system.

The main part of the demonstration, however, comes fr
a numerical simulation of our GNSE. Starting from a bro
variety of initial conditions, we find the eventual emergen
of angular momentum carrying vortex solitons. That is,
stipulated solitonic structures are readily accessible wit
the framework of this general equation with a nonlinear
more complicated than that of NSE. Thus we can state w
much greater confidence that electromagnetism, operativ
the MeV era, could easily be the primordial source of an
lar momentum associated with various structures of the
servable universe.

We again stress that the present results are quite gene
the nonlinear dynamics in an electron-positron plasma.

II. SINGLE-VORTEX SOLITON

In the envelope approximation, a finite amplitude, circ
larly polarized EM pulse propagating in a relativistice-p
plasma obeys~for details, see Ref.@10#!

2iv]tA'1c2¹'
2 A'1

c2

gg
2
]j

2A'1
2ve

2

G0
S 12

G0

gG

n

n0
DA'50,

~1!

whereA' is the slowly varying amplitude of the perpendic
lar ~to the propagation direction! vector potential,¹'

2 5]x
2

1]y
2 , andj5z2vgt is the ‘‘comoving’’ ~with group veloc-

ity vg) coordinate witht5t. Hereve5(4pn0ee
2/me)

1/2 is
the electron Langmuir frequency,n05n0e5n0p is the num-
ber density of the unperturbed background~subscript 0 de-
notes the value at infinity!, g is the Lorentz factor, andG
5K3(mec

2/T)/K2(mec
2/T) with Kn , denoting thenth-order

modified Bessel functions of the second kind, is the entha
density.

In this approximation, the continuity equation, determ
ing the number densityn, becomes

1

gG

n

n0
5

vggg /c

@gg
2G0

22G22e2uA'u2/~mec
2!2#1/2

, ~2!

and the system is closed by the adiabatic equation of sta

nmec
2/n0T

gK2~mec
2/T!

exp~2mec
2G/T!5const. ~3!

Here, just like Ref.@15#, we have assumed that the tempe
ture variation in the system is negligibly small. Furthermo
in the density and temperature range of interest (T.mec
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and n;1030–1033 cm23), the radiation pressuresT4 is
small compared to the kinetic pressurenT, and was ne-
glected in Eq.~2!; inclusion of the photon gas in the syste
only leads to a small modification of the effective ‘‘mass’’ o
particles.

The low-frequency motion of the plasma is driven by t
ponderomotive pressure@;(pe,p)2# of the high-frequency
EM field, and is independent of the sign of the particle
charge. It is perfectly natural to assume that the electron
the positron fluids have equal temperatures (T0e,p5T0) in
equilibrium so that their effective masses (Ge,p5G) will
also be equal. The radiation pressure will impart equal lo
frequency momenta to both fluids allowing the possibility
overall density changes without producing charge separat
The charge neutrality conditionsne5np5n, f50 have
been assumed by neglecting the small inequality of
charge due to baryon asymmetry. It is also evident that
symmetry between the two fluids keeps their temperatu
always equal (Te,p5T) if they were equal initially. In deriv-
ing Eqs.~1! and~2!, we have also assumed that the plasma
transparent~i.e., v@ve), and that the longitudinal extent o
the pulse is much shorter than its transverse dimens
(L i!L').

Defining the normalized variables

ve
2

2vG0
t→t,

ve

cA2G0

r→r,
e

mec
2

1

ggG0
A'→A' , ~4!

and noting that even with the assumption]j@¹' , the dif-
fractive term can be of the same order or even greater t
the dispersive one for a highly transparent plasma (gg@1),
Eq. ~1! converts to the following GNSE (ggG0@G):

i ] tA1 1
2 ¹'

2 A1 f ~ uAu2!A50, ~5!

with the nonlinearity

f ~ uAu2!522S 1

A12uAu2
21D . ~6!

Note here thatuAu,1 is necessary for the regularity ofn @see
Eq. ~2!#. According to Eq.~14! of our previous paper@10#,
momentump becomes complex whenuAu.1, implying the
multistream motion of the fluid.

Equation~5! admits a symmetric two-dimensional solita
wave solution. For stationary solitons, the ansatz

A5A~r !exp~ imu2 ilt ! ~7!

reduces Eq.~5! to

d2

dr2
A1V8~A!52

1

r

dA

dr
1

m2

r 2
A, ~8!

with potentialV(A) defined as

V~A!5~l12!A214A12A224, ~9!
9-2
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with the prime denoting the derivative with respect to
argument, andl representing the nonlinear frequency shi

A numerical analysis of the solution of this eigenval
problem is given in Ref.@10#. Because of the absence ofj
derivatives in Eq.~5!, any pulselike localized structure i
allowed in the propagation direction. In the direction perpe
dicular to the propagation, on the other hand, the amplit
was shown to approach a constant value. Since there
exist a small baryon asymmetry in the early Universe t
acts on a longer characteristic length@15,16#, the extent of
the constant amplitude region may be considered to be fin

Due to the single valuedness of the vector potentialm
must be an integer andA must vanish at the origin for non
zero values ofm. The nonzerom solutions are particularly
important because they carry the orbital angular momen
M,

~M!z5
i

2E dr'@r'3~A*“'A2c.c.!#z . ~10!

It is straightforward to show that system~5! conserves angu
lar momentum, and expression~10! is just the paraxial ap-
proximation for the orbital angular momentum,ME5*dr@r
3(E3B)#, of the EM field @17#. The angular momentum
carried by the vortex isMz5mN, where the photon numbe
N5*dr'uAu2 is another conserved quantity;m is also known
as the ‘‘topological charge.’’ Strictly speaking, one must
define the integrals of motion for nonvanishing bounda
conditions@18#, but such a renormalization is not importa
here because of the fact that an infinite-extent solution is
a formal approximation. The presence of a small fraction
ions makes the physical solution decay at infinity@15,16#.

III. DYNAMICS OF ANGULAR MOMENTA CREATION

It is already suggested in Ref.@10# that dark stripe soli-
tons are unstable and break into vortex filaments. When
amplitude is small (uAu!1), the nonlinearity reduces t
simple Kerr-type, and the vortex dynamics of NSE with su
a nonlinearity has been studied in a variety of numeri
calculations@12,18–20#. Our full nonlinearity is somewha
different and has to be independently investigated. For
section, our goal is to show that the one-dimensional d
stripe solution is unstable against transverse perturbation
two dimensions. Such an instability causes the breakup
the stripe, leading to a chain of vortex solitons with altern
ing polarity.

A. Transverse instability

The one-dimensional stationary solution for the GNSE~5!
has the formg(x)e2 ilt(l.0), where the real functiong(x)
satisfies

lg1
1

2

d2g

dx2
1 f ~g2!g50. ~11!
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Since we are examining the linear stability of the soluti
with the least number of nodes,g is assumed to be an od
function with a single node at the origin.

Let us perturb the one-dimensional solution by

A5~g1u1 iv !e2 ilt, ~12!

where the small perturbationsu andv are real functions ofx
andy.

Assuming sinusoidal behavior,u}cos(ky2Vt) and v
}sin(ky2Vt), the linearized GNSE could be reduced to t
following eigenvalue problem:

V2v5L1L0v2
k2

2
~L01L1!v1

k4

4
v, ~13!

where

L05l1
1

2

]2

]x2
1 f ~g2!, ~14!

L15l1
1

2

]2

]x2
1 f ~g2!12g2f 8~g2!. ~15!

Remembering thatL0g50 and L1gx50, we can con-
struct from Eq.~13! the relation

V2^gxuv&5
k4

4
^gxuv&1^gxuL1L0v&2

k2

2
^gxu2L1v&

2
k2

2
^gxu22g2f 8v& ~16!

by multiplying gx on both sides and integrating with respe
to x. Self-adjointness ofL1 reduces Eq.~16! to

V25
k4

4
2

k2

2

^gxu22g2f 8v&

^gxuv&
, ~17!

provided ^gxuv& exists. A necessary condition for an exp
nential instability, then, is

^gxu22g2f 8v&

^gxuv&
.0. ~18!

If it is true, then, for sufficiently smalluku, we would have an
instability, i.e., Eq.~18! is also a sufficient condition. More
over, it is explicitly shown thatv→0 in the limit k→0 un-
less^gxuv& diverges.

We now make an approximate estimate of the ratio on
left hand side of Eq.~18!. Let us assume that operatorsL0
andL1 are of order unity andV2 andk2 are, in some sense
small. In this limit, we could estimatev by solving

L1L0v50, ~19!

which has the solutionv5g1q, where

L0q5gx . ~20!
9-3
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Notice that, forv5g, the integrals occurring in Eq.~17! are
zero and this part will not contribute to the integral; onlyq
will. From Eq. ~20!, we can deduce the following. The firs
consequence

^gxugx&5^gxuL0q&5^gxu~L02L1!q&5^gxu22g2f 8q&

5^gxu22g2f 8v& ~21!

converts Eq.~17! into

V25
k4

4
2

k2

2

^gxugx&

^gxuv&
. ~22!

To derive the second, we notice that

^gxuv&5^gxuq&5^gxuL 0
21gx&. ~23!

In principle, one can evaluate Eq.~23! in a rather straight-
forward way. But a very approximate estimate can be m
by simply dropping]x

2 in L0 so that

^gxuv&.K gxU gx

l1 f L ~24!

and

V25
k4

4
2

k2

2

^gxugx&

^gxugx /~l1 f !&
[

k4

4
2ak2. ~25!

In Eq. ~25! we have overestimated the denominator. The
genvalue is

V5 iakF12
k2

4aG1/2

, ~26!

implying a window 0,k,2a1/2 in k, where instability is
possible. From the property that the one-dimensional s
tion is stable to one-dimensional perturbation, the grow
rateV approaches zero as the wave numberk tends to zero.

In order to accomplish the numerical analysis, we int
duce a complex-valued functionw5u1 iv in Eq. ~12!. Then,
the linearized equation looks

2 i ] tw5lw1 1
2 ¹'

2 w1 f ~g2!w12g2f 8~g2!Re~w!,
~27!

where the prime denotes derivative with respect to its ar
ment. Putting] t52 iV and]y5 ik yields a linear eigenvalue
equation forw:

2Vw5lw1
1

2 S d2w

dx2
2k2wD 1 f ~g2!w12g2f 8~g2!Re~w!.

~28!

We have numerically solved Eq.~28! by the shooting method
with boundary conditionsw→0 (x→`) and dw/dx50 (x
01640
e

i-

u-
h

-

-

50). It is clear from Eq.~28! that the complex conjugate o
the eigenfunction is also an eigenfunction; namely, ifwe is
an eigenfunction of Eq.~28! corresponding to eigenvalu
Ve, thenwe* is also an eigenfunction of Eq.~28! correspond-
ing to eigenvalueVe* , where the asterisk denotes the com
plex conjugate.

For x→1`, g approaches a constant valueg0, which can
be expressed as

g05A12S 2

l12D 2

, ~29!

where the inhomogeneity due to the potential vanishes
this region,x also becomes an ignorable direction, and
can assumew}e2kx for the point spectra (k.0). Plugging
it into our eigenvalue problem, we obtain the following ‘‘dis
persion relation,’’ which is applicable for largex:

2V i
25@V r1

1
2 ~k22k2!#@V r1

1
2 ~k22k2!12g0

2f 8~g0
2!#,

~30!

where the subscriptsr and i denote the real and imag
inary part, respectively, and we have used the relat
f (g0

2)52l. By solving it for k, we obtain

k5$k222V r22g0
2f 8~g0

2!62Ag0
4@ f 8~g0

2!#22V i
2%1/2,

~31!

where f 8(g2) is explicitly shown as

f 8~u!52~12u!23/2. ~32!

The asymptotic argument ofw is also determined by

arg~w!5arctanS 2V i

k212V r2k2D . ~33!

With this information, we have solved Eq.~28! numeri-
cally. First, we fix an arbitrary value on the real part ofw at
x510. For an expected eigenvalue, the imaginary part ow
is calculated from Eq.~33!. Then, the derivativedw/dx is
estimated by using Eq.~31!, and Eq.~28! integrated fromx
510 to x50 by the fourth-order Runge-Kutta formula. Th
data of g(x) is drawn from the numerical solution of Eq

FIG. 1. Dispersion relation forl50.2, 0.5, and 1.
9-4
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~11!. At x50, the boundary conditiondw/dx50 is checked.
If this boundary condition is not satisfied, we guess the n
eigenvalue by Newton’s method and carry out the shoo
again.

The dispersion relation is shown in Fig. 1. We can se
good qualitative agreement with the analytic evaluation w
the fact that the growth rate begins from zero ask→0, ex-
periences a maximum value with respect tok, and the mode
is finally stabilized for a sufficiently largek. The eigenfunc-
tions corresponding tok50.1, 0.5, and 0.7 for the paramet
l50.5 are illustrated in Fig. 2. From Fig. 1, the mode w
k50.5 gives the maximum growth rate Im(V).0.137. As is
seen from Fig. 2, the imaginary part of the eigenfunct

FIG. 2. Eigenfunctions forl50.5 corresponding tok50.1, 0.5,
and 0.7.
01640
xt
g

a
h

becomes wider and wider ask→0, which agrees qualita
tively with the analytical estimate. Since we are performi
the numerical shooting in a finite domain, it becomes di
cult to estimate the correct eigenvalue in this regime.

B. Nonlinear evolution

We will now present the numerical simulation of the d
namics of angular momentum creation from one-dimensio
dark stripe solitons by solving the full nonlinear systems~5!
and~6!. The calculation was carried out on a 2003200 spa-
tial mesh placed in a calculation box of sizeL528. The
boundary conditions]xA50 (]yA50) are imposed at the
edgesx56L (y56L). Note that these boundary cond
tions numerically respect the constants of motion in the
main of integration. As an input, we choose the on
dimensionalx dependent stationary solution withl50.5. It
is to be noted that the photon number and the Hamilton
are conserved to order 1025 during the calculation. Since th
initial value of the integrated angular momentum is ze
it is found to always remain zero~within an error of
order 10215).

Strictly speaking, the eigenfunction in the preceding s
tion ~see Fig. 2! contains cores of angular momenta, i.
crossings of the real and imaginary zeros of the field due
the periodic form of the perturbation in they direction. Thus,
the growth of small amplitude perturbation itself does n
exactly mean the ‘‘creation’’ of angular momenta. In order
check the real creation of angular momenta from an ex
zero everywhere, we have first carried out the calculat
with an initial condition of the form

A~x,y,0!5aFg~x!1Ã1

dg

dx
exp~2by2!G1 iA12a2g~x!,

~34!

with a50.9, b50.0875, andÃ150.1. This initial condition
is so arranged that there is no crossing of the real and im
nary zeros. It is done by imposing a real-valued perturbat
on a complex-valued stationary solution. The zero line of
imaginary part exactly coincides with they axis, while that
of the real part deviates from they axis byÃ1. As the system
evolves, we observe the creation of crossings and the app
ance of vortex solitons. As the initial conditions are chang
~always starting form no crossings!, the main qualitative

FIG. 3. Zero lines of real and imaginary parts of the field
time t52.
9-5
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FIG. 4. Crossing of zeros a
time t540, 44, 48, and 72.
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result—the emergence of angular momentum carrying vo
soliton chains—is found to be fairly robust.

Next we investigate the evolution of the system und
transverse perturbations of the form

A~x,y,0!5g~x!1Ã
dg

dx
cosS np

L
yD , ~35!

with Ã50.1 andn56. The zero lines of the real and imag
nary parts att52 are shown in Fig. 3. As we noted in Sec.
the crossing points of two zero lines correspond to the vo
centers. We initially have 12 crossings, suggesting 12 vo
ces. These 12 vortices, however, do not have well-form
solitonic structures since they are too close and overlapp

As the system evolves, the vortices move and we
annihilations of pairs of opposite polarity. The first annihil
tion event was observed in the interval 28&t&34; two of the
vortices destroy one another near the center, and the o
two seem to disappear near the edge; the annihilation of
pairs removes four from the original 12 att52.

The second annihilation event occurs during 40&t&48.
As is depicted in Fig. 4, the zero lines of the real and ima
nary parts tend to separate around the centery;0. Here two
vortices approach the origin around 40&t&44, and then
they are annihilated. After the annihilation, two inner vor
01640
x

r

x
i-
d
g.
e

er
o

i-

ces approach the origin. Finally the remaining six vortic
tend to spread and align with equal intervortex spacing~see
t572 in Fig. 4!.

The amplitudeuAu corresponding to this sequence is illu
trated in Fig. 5. Att548, the vortices do not quite look like
vortex solitons, even though the number of vortices has b
reduced to six. Since the distance between adjacent vor
is still small, they overlap and are not quite independent. T
central hump aroundx;y;0 is the remnant of the secon
annihilation event. With time, the peaks tend to expand to
central region and are sufficiently apart to look and beh
like vortex solitons. Byt;72, we observe the formation o
six solitonic structures as predicted in Ref.@10# ~seet572 in
Fig. 5!. Notice that the vortices disappear only when anni
lated by another with opposite polarity.

After t*80, a propagating wave is clearly seen in t
regiony,210 andy.10 where the field was originally fla
~see Fig. 6!. This propagating field is the trace of the Che
enkov radiation which comes from the nonintegrability
the system@20#. The radiation will propagate away from vo
tices. In the finite calculation domain, the radiation will b
reflected back at the boundary.

When we extend the time evolution further, we obser
the third annihilation event aroundt;160. However, this
annihilation may be an artifact of the finite size of the d
main. When we carry out the simulation in a domain larg
FIG. 5. AmplitudeuAu at time
t548 and 72.
9-6
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than (L528) but with the same initial conditions, the thir
annihilation event takes place at a later time, while the tim
of the first and the second annihilation events remain
changed. The third annihilation event is likely to be driv
by the reflection of the Cherenkov radiation at the bound
Equivalently, it may be concluded that six vortex solitons a
stable in our domain and may stay forever. It is noted that
distance among vortices at the final stage approximately
incides with the inverse of the wave number with the ma
mum growth ratekm.

IV. SUMMARY

We have demonstrated the dynamics of angular mom
creation in a highly relativistic electron-positron plasma su
ject to the passage of a strong pulse of electromagnetic fie
The system is governed by a generalized nonlinear Sc¨-
dinger equation with a defocusing inverse-square-root-t
nonlinearity. It turns out that the one-dimensional dark so
ton stripe solutions of this equation, just like those of t

FIG. 6. Radiation appears aftert.80.
d
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standard nonlinear Schro¨dinger equation, are unstable t
transverse perturbations. By carrying out a linear analy
we have found that there exists an instability window
transverse wave numbers for the system. By a numer
simulation of the fully nonlinear equation, we have show
that the transverse instability will yield, after a few annihil
tion events, a well-separated chain of vortex solitons w
alternating, singly charged polarity or topological char
(m561). These singly charged vortex solitons are top
logically stable and do not disappear unless they collide w
their complements and annihilate. The number of the crea
vortex solitons seem to be determined by the inverse of
wave numberkm with the maximum linear growth rate. Fo
the box sizeL528, the six vortex soliton state is found to b
robust.

We have suggested a simple and plausible mechanism
angular momentum generation in the MeV epoch of the U
verse. Electromagnetism, operating through the versa
substrate of the electron-positron plasma, seems to rea
generate highly interesting, long-lived objects, which are
pable of carrying large amounts of mass, energy and ang
momentum. Since an initial localization of mass, energy, a
angular momentum is precisely the seed that gravity ne
for eventual structure formation, electromagnetism may h
provided a key element in the construction of the large-sc
map of the observable Universe.
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