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Numerical investigation of the two-dimensional magnetic reconnection is given in the context of the nonlinear evolution
of the Magneto-Rotational Instability (MRI). With a careful comparison to various theories using both one- and two-
dimensional analysis, it is found that a new stabilizing effect of the centrifugal force on tearing instability must be present
in the specific geometry of the MRI. Magnetic reconnection might play a key role to the formation of the nonaxisymmetric
structures observed in MRI experiments. The results may also be useful for the estimate of the accretion rate in various
astrophysical objects.
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1 Introduction

Magnetic reconnection is one of the most fundamental
phenomena in plasmas. It often entails vastly multiscale
physics, brings about the change of global topology, con-
verts magnetic energy into particle energy such as heat and
acceleration and plays a very important role in the turbu-
lent dynamo phenomena. While a fairly deep study and un-
derstanding have been made for the idealized steady recon-
necting system by taking various physical effects into ac-
count, the understanding of reconnection in the complex
development of the nonlinear plasma phenomena has not
been achieved even with a simplest model. Here we try to
investigate such a problem, namely the dynamic magnetic
reconnection in the nonlinear evolution of the background
plasma using the simplest model, two-dimensional incom-
pressible magnetohydrodynamics (MHD). We explore the
validity of several idealized theories on a dynamical system,
and report that the problem is not so straightforward as one
might expect. This is the first step to the understanding of
the dynamic magnetic reconnection in the real physical sys-
tem (developing system rather than an idealized stationary
system).

In this paper we focus on the nonlinear development
of the Magnetorotational instability (MRI) for our recon-
nection study. The first calculation of the MRI goes back
to Velikhov (1959) and Chandrasekhar (1960), but it is af-
ter Balbus & Hawley (1991) that it has attracted attention
for explaining accretion flows in various astrophysical ob-
jects. It has not been widely discussed so far, but in order
for both the accreting matter and the angular-momentum-
transporting matter to be detached from the main body of
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the magnetized plasma, magnetic reconnection has to take
place in the nonlinear evolution of the MRI (Hawley & Bal-
bus 1991; Machida & Matsumoto 2003). In this sense mag-
netic reconnection should be somehow related to, or might
even govern the actual accretion rate. Dynamic magnetic re-
connection is analyzed in other contexts such as supernova
shock (Tanuma et al. 2001), Parker instability (Tanuma et
al. 2003) and turbulent MHD plasmas (Lazarian & Vish-
niac 1999), however, there is no dedicated analysis in the
nonlinear evolution of MRI.

Recently there are several experimental efforts being
made to clarify the physics of the MRI (Sisan et al. 2004; Ji
et al. 2006; Stefani et al. 2006; Stefani et al. 2007; Wang et
al. 2007).

In the spherical experiment at Maryland using liquid
sodium (Sisan et al. 2004), coupled velocity and magnetic
field fluctuations are observed above critical applied mag-
netic field. These fluctuations mostly show nonaxisymmet-
ric structures while the primary MRI mode is expected ax-
isymmetric. Nevertheless the threshold of the applied mag-
netic field seems to agree quite well with the theoretical pre-
dictions of the stability boundary (Tillotson 2007). Cylin-
drical experiments are also being carried out using liquid
metal (Ji et al. 2006; Stefani et al. 2006; Stefani et al. 2007)
and plasma (Wang et al. 2007). PROMISE device (Stefani
et al. 2006) makes an experiment with a helical field us-
ing liquid metal alloy. For a fixed azimuthal field strength
they have increased the axial field and observed increased
level of axial velocity fluctuations in agreement with nu-
merical predictions. They also observed nonaxisymmetric
fluctuation in some parameter regimes (Stefani et al. 2007).
These nonaxisymmetric structure may be attributed to the
secondary instability of some sort, one of such an exam-
ple is the fluid dynamical wavy mode (Davey, Diprima &
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Stuart 1968). However, as the critical Reynolds number of
the wavy instability seems to increase in the presence of the
magnetic field (Tabeling 1981; Willis & Barenghi 2002),
one might speculate that other MHD instabilities, such as
tearing mode, the three-dimensional version of the recon-
nection presented here, might create the nonaxisymmetric
fluctuation. Thus, it is very important to understand the dy-
namics of the magnetic reconnection in this sense as well.

In this paper we investigate various (linear) properties of
the two-dimensional (2D) magnetic reconnection occurring
in the context of the laboratory MRI experiment. We first
show the normalized 2D equations for MRI in Sect. 2. Us-
ing our upgraded reduced MHD code (Tatsuno & Dorland
2006), we show when and how reconnection event takes
place in Sect. 3 including the general nonlinear evolution
of the MRI. Section 4 is the main part of the paper. We
investigate the validity of various linear reconnection the-
ory (tearing mode) using one-dimensional (1D) approxima-
tion (Furth, Killeen & Rosenbluth 1963; Coppi et al. 1976;
Paris 1982) and also make the 2D linearized simulation for
the comparison with other 2D results (Nishikawa & Sakai
1982; Paris 1987). We observe a beautiful 2D tearing eigen-
function during reconnection, and conclude that reconnec-
tion is attributed to the tearing instability of the opposing
radial magnetic field which is created by the nonlinear evo-
lution of the MRI. Note, however, that the creation of the
magnetic null (X-point) is not necessarily attributed to the
tearing mode. In some parameter regimes, X-point is cre-
ated passively by the MRI but reconnection does not con-
tinue unless the surrounding geometry is made tearing un-
stable. For sufficiently high magnetic Reynolds number we
observed a creation of the secondary island, which is briefly
summarized in Sect. 5 with a comparison to the tearing in-
stability of the current sheet (Bulanov, Sakai & Syrovatskii
1979). Finally, our conclusion is given in Sect. 6.

2 Reduced MHD equations for MRI

2.1 Formulation

We employ the 2D incompressible MHD equations in the
r-z plane of the cylindrical configuration (r, θ, z). Let

v = ∇× [φ(r, z)∇θ] + rvθ(r, z)∇θ, (1)

B = ∇× [ψ(r, z)∇θ] + rBθ(r, z)∇θ, (2)

and define

ω = −(∇× v)θ = ∂r

(
1
r
∂rφ

)
+

1
r
∂2

zφ =: ∇2
∗φ, (3)

j = −(∇× B)θ = ∂r

(
1
r
∂rψ

)
+

1
r
∂2

zψ = ∇2
∗ψ, (4)

[f, g] = ∂rf∂zg − ∂zf∂rf, (5)

then the normalized 2D MHD equations for the incompress-
ible plasmas yield

∂tω+
[
φ,
ω

r

]
+∂z

(
v2

θ

r

)
=

[
ψ,
j

r

]
+∂z

(
B2

θ

r

)
+ν∇2

∗(rω), (6)

∂tvθ +
1
r2

[φ, rvθ ] =
1
r2

[ψ, rBθ ] + ν∇2
∗(rvθ), (7)

∂tψ +
1
r
[φ, ψ] = ηrj, (8)

∂tBθ +
[
φ,
Bθ

r

]
−

[
ψ,
vθ

r

]
= η∇2

∗(rBθ). (9)

2.2 Boundary conditions

We consider a concentric cylinder with rigid ideal conduct-
ing walls at radii r = rin and rout. We assume periodicity
in the z direction.

2.2.1 Flow

Noslip boundary condition is imposed on the velocity field:

vθ(rin) = vin and vθ(rout) = vout. (10)

Corresponding to

vr = vz = 0 at both walls, (11)

we may impose

φ00 = 0, ∂rφ0|rout = 0 (12)

∂r(rω0) = 0 at both walls (13)

for kz = 0 component, and homogeneous Dirichlet condi-
tion for φ and the converted ω condition as is used in the
slab case for kz �= 0 (Tatsuno & Dorland 2006).

2.2.2 Magnetic field

Ideally conducting wall yields

n · B = 0, n × j = 0 at both walls, (14)

which correspond to

ψ = const in time and along walls, (15)

∂r(rBθ) = 0 at both walls, (16)

where n represents a unit vector normal to the surface. Note
that ∂tψ = 0 at wall would yield ∇2

∗ψ = 0 from induction
equation, together with vr = Br = 0.

In the vector form and for kz = 0 component, ∂rBz = 0
is derived from jθ = 0 condition.

2.3 Description of the code

We have extended the slab code used in Tatsuno & Dorland
(2006) to solve the cylindrical problem. This is a pseudo-
spectral code with Chebyshev-Fourier expansion and solves
reduced MHD Eqs. (6)–(9). Spectral accuracy is very useful
for detailed diagnostics presented here. Normally the recon-
nection point does not lie exactly on top of the grid and one
has to interpolate various physical quantities. Such interpo-
lations are easily made with high accuracy by a spectral
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scheme, which makes possible the sophisticated measure-
ment of some complicated quantities. For the time integra-
tion it uses 3rd order Adams-Bashforth scheme for nonlin-
ear terms and Crank-Nicholson scheme for linear terms.

The automatic resolution adjuster is implemented in the
code, which uses an empirical error estimate at each time
step and changes resolution globally by tapping zeroes in
the Chebyshev (or Fourier) space or just removing small
amplitudes. Time step is also automatically adjusted by the
Courant condition.

Details of the upgrade we have made for the cylindrical
version is described in Appendix A.

3 General evolution of MRI

In this section we show the general evolution of the MRI and
show when and where magnetic reconnection takes place.
We also discuss if saturation mechanism is attributed to it
(Goodman & Xu 1994). Parameters are:

rin = 0.5, rout = 1.5, Lz = 1,
ν = η = 1.5 × 10−4, Bz = 0.15, vθ(rin) = 1, (17)

which correspond to

Rm = 104, S = 1500, Pm = 1, (18)

where these dimensionless numbers are defined by

Rm =
Vθ,inrout

η
, S =

Bzrout

η
, Pm =

ν

η
. (19)

Remember that we use velocity unit for Bz in our normal-
ized equation.

We used the Keplerian flow profile (vθ ∼ r−1/2). Kep-
lerian flow is not a stationary solution of the reduced MHD
equations with finite dissipation rates, however, we do not
care about the decay of the background flow since the time
scale of the dissipation for a global structure is much slower
than the dynamics we are interested in. In all of our simula-
tions we use a magnetic Prandtl number of unity.

3.1 Linear growth

In order to prove the validity of our code, we show in Fig. 1
the growth rates taken from our 2D simulation as well as
the results from an independent ideal (ν = η = 0) shoot-
ing code. For this simulation we took Lz = 2 to have four
unstable modes in the domain to compare with the shooting
result. All four eigenvalues are sufficiently close but lower
than the ideal ones. We also confirmed that the ideal run us-
ing our code gives exact growth rates on top of the line from
the shooting code.
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Fig. 1 Growth rates taken from ideal shooting code and from
dissipative simulation.
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Fig. 2 (online colour at: www.an-journal.org) Time evolution of
MRI perturbation amplitude.
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Fig. 3 Magnetic island is observed as a consequence of the re-
connection. Contour scale is not equally spaced in order to high-
light the island.

3.2 Saturation mechanism

Time evolution of the L2 norm ||φ − φb|| and ||ψ − ψb||
are shown in Fig. 2, where the subscript b denotes the back-
ground field (axial field and azimuthal rotation). Saturation
is first observed in φ about t � 18 and that of ψ follows
about t � 21. As a consequence of the magnetic reconnec-
tion, magnetic island is observed at t = 22 as seen in Fig. 3.
Notice the island around (r, z) � (0.95, 0.75). It is true
that the coincidence of the peaking time of ψ curve and the
appearance of the island implies some relationships, since
stabilizing effect of the outflow stops at this stage, however,
they are not simultaneous in all cases. As we show later,
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Fig. 4 Schematic view of the geometry of the magnetic island.

there are cases where island appears long before the satura-
tion of ψ or even before the peak of φ.

Why is only the outgoing field line stretched here while
both incoming and outgoing fields are observed symmetric
in the shearing slab simulation (Hawley & Balbus 1991)?
It is surely related to the shape of the Taylor vortex which
is narrower in the outgoing direction than the other. In fact
the radial velocity at (r, z) � (0.95, 0.75) and t = 18 is
about vr = 0.087, which roughly agrees with the extension
speed of the field line. Keeping in mind that the local MRI
growth rate is proportional to the local rotation rate (Balbus
& Hawley 1991), the MRI grows faster in the inside region
due to its fast time scale, and the inward jet is killed by the
inner boundary there.

If this is the case, there may be observed two or more
outgoing jets simultaneously when higher wave number is
more unstable. In fact we observed two (or three) fingers
by extending the axial length twice, but as is observed by
Hawley & Balbus (1992) and Liu, Goodman & Ji (2006),
they eventually merge to form a single finger at a later time.
Such phenomena are of great interest from the viewpoint of
the magnetic reconnection since merging of fingers involve
numbers of reconnection events. However, we concentrate
on a formation of a single finger in this paper for the sim-
plicity of the analysis, since the axial motion of the finger
introduces the complex motion of the X-points. In our con-
figuration with a single finger, the X-point moves only along
the radial direction and not along the z-axis, which enables
us the detailed diagnostics with a relatively simple imple-
mentation.

Figure 4 shows the schematic view of the geometry of
the magnetic island. We implemented measurements of the
flux functions at the X- (ψX) and O-points (ψO) and the
island size as depicted. The inspection of the X- and O-
points are made by detecting the sign change of Bz along
the z = 0.75 line at every 0.01 time unit. From the time
evolution of the magnetic island we confirmed that the is-
land does not move in the z direction. It should be empha-
sized that we obtain rX and ψX with a spectrally interpo-
lated accuracy, which may not have been achieved by the
finite difference scheme. In the present simulation the is-
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Fig. 5 (online colour at: www.an-journal.org) Radial profile of
the averaged angular velocity.

land is first observed at t = 20.45, grows until t � 24 and
eventually disappears at t = 32.76. Another island appears
at t = 37.24 and follows more or less the same processes.
Since our interest is on the dynamical evolution of the is-
land, we do not ask the existence of the magnetic island in
the final stationary state. Such a steady state itself may or
may not exist, which may be separately an interesting sub-
ject of research and may be analyzed by tracing a steady
state solution for various plasma parameters finding a bifur-
cation diagram (Rincon, Ogilvie & Proctor 2007).

From the fact that the saturation of ψ follows that of φ
and that the magnetic reconnection starts at the saturated
level of ψ, we conclude that the magnetic reconnection is
not attributed to the saturation of the MRI as Goodman &
Xu (1994) has proposed in the shearing sheet geometry. In
our geometry, the created radial magnetic field strength is
comparable to the original axial field while Goodman & Xu
assumes Br � Bz . Instead the saturation may be attributed
to the disappearance of the drive as seen in the flat profile of
the averaged angular velocity (See Fig. 5).

3.3 Profiles of various fields

Right before the emergence of the magnetic island, at t =
20, the profiles of various field quantities sliced along r �
0.8 are shown in Fig. 6. There is a sharp counter-oriented
radial magnetic field (Br) centered at z = 0.75, which in-
troduces the following magnetic reconnection event. The
axial field (Bz) is almost zero around z � 0.75. The az-
imuthal field (Bθ) also contains the counter-oriented com-
ponent centered at the same place, which forms another
source of the reconnection for a nonaxisymmetric pertur-
bation. The radial velocity (vr) shows a weak outflow rep-
resenting a jet, and the profile of axial velocity (vz) shows
a weak counter-flow which may correspond to the inflow of
the reconnection.

It is noted that Kelvin-Helmholtz instability does not oc-
cur for this configuration. This is because the magnitude of
vr and vz are much smaller than the corresponding mag-
netic field components, and the spatial scale of vθ is much
larger than that of the other fields.

Now that we have finished explaining the environment
of the reconnection event, so in the following sections we
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proceed to actually characterize them in as much detail as
possible.

4 First reconnection

4.1 Slab tearing model

The first thing we can come out of is the calculation of ∆′

and the consequent growth rate in comparison to the basic
tearing mode analysis (Furth et al. 1963; Coppi et al. 1976;
Paris 1982). It actually turns out from the more detailed
analysis that slab approximation is a too much simplifica-
tion, but we here describe what we get from slab analysis
for the comparison to the later sections.

4.1.1 Theory

Here we take the equilibrium

B0 = [Bx(z), By(z), 0], (20)

which of course satisfies ∇ · B0 = 0, and neglect all back-
ground velocity. Invoking slab geometry we also assume
that curvature effect is negligible. We want to obtain ∆′,
the jump of the logarithmic derivative of the perturbed flux
function in the outer region. The ordinary differential equa-
tion for the outer region where inertial effect may be ne-
glected comes from the static vorticity equation

∇× (B · ∇B) = 0. (21)

Decomposing B = B0 + b, linearizing and assuming
exp(ikxx) dependence yields

d2bz
dz2

−
(
k2

x +
F ′′

F

)
bz = 0, (22)
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Fig. 7 Potential F ′′/F of the outer region ODE (22).

where we defined F = kxBx (Biskamp 2000, [4.21]). By
numerically solving (22), we estimate the jump of the loga-
rithmic derivative

∆′ =
b′z(+) − b′z(−)
bz(zsheet)

, (23)

where zsheet is the field reversal plane.
The growth rate may be obtained from (4.66) of

Biskamp (2000) (see also Paris 1982):

− 8
π

∆′

kx

(
τA
τη

)1/3

=
λ5/6Γ [(λ − 1)/4]

Γ [(λ+ 5)/4]
, (24)

where

λ = γ̂3/2 = γ3/2τ1/2
η τA, (25)

τη =
1
k2

xη
, (26)

τA =
kx

F ′ , (27)

and Γ is the Gamma function. In the case of small ∆′ we
may take the small λ limit and recover the FKR result (Furth
et al. 1963)

γ �
(

2Γ(5/4)
πΓ(3/4)

)4/5

τ
−2/5
A τ−3/5

η

(
∆′

kx

)4/5

. (28)

The large ∆′ limit may correspond to the limit λ → 1 − 0
yielding

γ � τ−1/3
η τ

−2/3
A , (29)

which we call CGPR limit (Coppi et al. 1976).

4.1.2 Numerical estimate of ∆′

In order to invoke the discussion of the previous subsection,
the boundary condition (BC) has to be determined. Let us
find out what can be imposed at where. Since Br looks like
hyperbolic tangent profile around z � 0.75 andB′′

r changes
sign just below z = 0.7, we may spot the light on this point.

The function F ′′/F is shown in Fig. 7 at t = 20 and
r � 0.8. Notice that F ′′/F doesn’t depend on the exact
value of kx. The minimum of the well is at z = 0.75 which
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corresponds to the field reversal plane. There is a very mild
concavity extending 0.1 � z � 0.4, but this should not
give a major effect and hence we neglect it in the following
global calculation.

Since (22) takes exactly the form of the Schrödinger
equation, we may regard F ′′/F as a potential and −k2

x as
an energy. If the energy −k2

x is larger than the minimum
of the potential well F ′′/F , there is a chance that we may
have oscillatory solution, while smaller, we may not. This
oscillatory behavior is needed for positive ∆′ since other-
wise two exponentially growing solutions from outside of
the well would never match at the center of the well with
positive ∆′.

Since the potential is bounded there is clearly a contin-
uum above its maximum if we allow −k2

x to be positive.
This fact brings a difficulty in the numerical estimate of the
∆′ for small wave number. For example, the energy corre-
sponding to kx = 0.5 is too large (−k2

x = −0.25) and the
solution is strongly affected by the existence of the contin-
uum.

Exponential BC So we should consider lower energy
and then we may impose the exponential BC at anywhere
we want (we denote it zstart) as far as it is outside of the
well since the solution out of the well is going to be almost
exponentially decaying. The gradient of bz is given so that
it matches the exponent corresponding to the local value of√
k2

x + F ′′/F . For example, the exponential BC given at
zstart = 0.6 would be sufficient for −k2

x � −100 (The sec-
ond smallest minima are around −50). Figure 8 shows the
dependence of ∆′ as a function of zstart for kx = 25 with
the exponential BC and the eigenfunction corresponding to
zstart = 0.6. For this setup, we conclude that ∆′ � 92.

Periodic BC Another fact we may use for the BC is the
periodicity of the system along z. Since the local minimum
of the potential is about 40 around z � 0.25, we simply
conjecture that resistive layer is not formed for sufficiently
negative −k2

x. Then, from the symmetry around the current
sheet at zsheet = 0.75, we may just flip the sign of b′z there
and continue integration to the right. Periodicity brings the
solution to z = 0 when it crosses 1, we may integrate nor-
mally through z = 0.25 and match the solution with itself
at the starting point zstart = 0.6.

The scheme seems well-defined even for a fairly small
kx, and the resulting solution is shown in Fig. 9 for kx = 2
and kx = 30. The logarithmic plot is shown for kx = 30,
which represents a very good exponential behavior between
the two field reversal planes. We also show the ∆′ obtained
from this scheme with a comparison to the previous expo-
nential assumption. The scheme doesn’t work with too high
kx since the exponential behavior becomes very rapid and
we cannot match it even with a double precision computa-
tion. On the other hand, it does work for even smaller val-
ues of kx than the exponential BC. So these two schemes
are complementary, and the difference is negligible in the
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Fig. 9 Eigenfunction obtained with the periodic boundary con-
dition.

overlapping region as shown in Fig. 10. The critical wave
number is obtained from the exponential BC and is about
kx � 40.8.

4.1.3 Results

Now the question is how we use this result. We should of
course have that 2π/kmax < Lr where kmax and Lr de-
note the critical wave number for positive ∆′ and the radial
length of the stretched field line. But probably more strin-
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Fig. 11 (online colour at: www.an-journal.org) Dispersion rela-
tion of the slab tearing instability for the background profile of
Fig. 6.

gent condition would be that the highest growth rate must be
larger than vr/Lr since otherwise the mode may be trans-
ferred away before it grows. We may estimate Lr by picking
a specific value of the fluxψ and see how long it is elongated
radially. Thus we need to obtain the growth rate.

The growth rate is shown with respect to kx in Fig. 11
with a comparison to FKR and CGPR’s analytic results. Our
scheme fails for kx � 1.5 since bz(zsheet) becomes too
close to zero and it erroneously changes sign. Nevertheless,
the growth rate approaches the ∆′ → ∞ limit, so that we
may use analytic estimate for this region. In any case this
does not cause any problem since the largest growth rate is
captured by our numerical estimate.

The radial length of the stretched field line Lr may be
evaluated by the radius at which the background ψ equals a
particular value along z = 0.75 and z = 0.25 chosen well in
the stretched field area. Taking ψ = 0.025 gives us Lr(ψ =
0.025) � 0.53 and, as seen in Fig. 6, vr(z = 0.75) � 0.062.
Thus

γ
Lr

vr
� 7.78 � 1, (30)

which shows that the tearing mode grows fast enough be-
fore it is transferred away by the radial flow. It is noted that
we don’t have to worry about vθ since the evolution is ax-
isymmetric as far as this analysis is concerned.
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Fig. 12 (online colour at: www.an-journal.org) Time evolution
of ||φ1|| with various background setup. The lines labeled ‘full’
used full set of the background fields; ‘ψ-only’ retained only ψ0

and set φ0, vθ,0, Bθ,0 = 0; ‘no vθ’ retained ψ0, φ0 and Bθ,0 with
vθ,0 = 0; ‘vθ,ave’ retained ψ0, φ0 and Bθ,0 with only vθ,0 aver-
aged along z; and ‘vθ,rigid’ retained ψ0, φ0 and Bθ,0 with only
vθ,0 replaced by a rigid rotation corresponding to the angular ve-
locity Ω = 0.7.

4.2 Linearized cylindrical simulation with a fixed
background

Here we fix all field quantities at a given time in the full
nonlinear simulation and evolve the linearized equation to
see if there is any instability. We divide the quantities as
f = f0 + f1, take the field of the nonlinear simulation at
some instant as f0, and fix it. Then we solve the linearized
reduced MHD equations (same 2D cylindrical ones):

∂tω1 +
[
φ0,

ω1

r

]
+

[
φ1,

ω0

r

]
+

2
r
∂z(vθ,0vθ,1) =[

ψ0,
j1
r

]
+

[
ψ1,

j0
r

]
+

2
r
∂z(Bθ,0Bθ,1)+ν∇2

∗(rω1), (31)

∂tvθ,1 +
1
r2

([φ0, rvθ,1] + [φ1, rvθ,0])

=
1
r2

([ψ0, rBθ,1] + [ψ1, rBθ,0]) + ν∇2
∗(rvθ,1), (32)

∂tψ1 +
1
r
([φ0, ψ1] + [φ1, ψ0]) = ηrj1, (33)

∂tBθ,1 +
[
φ0,

Bθ,1

r

]
+

[
φ1,

Bθ,0

r

]

=
[
ψ0,

vθ,1

r

]
+

[
ψ1,

vθ,0

r

]
+ η∇2

∗(rBθ,1), (34)

with a tiny initial perturbation on ω1. The background field
quantities (denoted with subscript zero) do not satisfy the
equilibrium equations exactly, however, we may neglect the
effect of their little imbalance as far as their changes are
slow compared to the reconnection dynamics. As a valida-
tion test of the linearized version of the code, we have re-
produced the growth rates and eigenfunctions of the primary
MRI and tearing instability with tanh(r)-like field profile.

The time evolution of the perturbed quantities are shown
in Fig. 12 with the fixed background corresponding to t =
20 of the nonlinear simulation. Here we note that t = 20
corresponds to the time right before the appearance of the
X-point (see Sect. 3). The lines labeled ‘full’ used full set
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of the background fields; ‘ψ-only’ retained only ψ0 and set
φ0, vθ,0, Bθ,0 = 0; ‘no vθ’ retained ψ0, φ0 and Bθ,0 with
vθ,0 = 0; ‘vθ,ave’ retained ψ0, φ0 and Bθ,0 with only vθ,0

averaged along z; and ‘vθ,rigid’ retained ψ0, φ0 and Bθ,0

with only vθ,0 replaced by a rigid rotation.

4.2.1 Stabilizing effect of rigid rotation

As ψ-only line shows, the flux function ψ0 is tearing unsta-
ble with a comparable growth rate to the time scale of the
reconnection (γ � 0.58). The result with full background
shows a very slow growth, while killing only vθ immedi-
ately recovers the comparable growth rate to the ψ-only
case. This fact suggests that vθ,0 has a strong stabilizing in-
fluence and the slab analysis we made in the previous sec-
tion may be a too much simplification.

In order to confirm the stabilizing effect of vθ,0, we have
turned on only the kz = 0 component of the background vθ

(labeled vθ,ave). The difference between no-vθ and vθ,ave is
only the average (kz = 0) component of the background
vθ . From the significant decrease of the growth rate with the
average vθ component, we may conclude that the stabilizing
effect is not given by the z-shear of vθ , which in fact has a
much larger length scale than the field reversal.

By the inspection of the radial profile of the angular ve-
locity Ω (see Fig. 5), the radial Ω shear is highly localized
around the inner wall for the averaged vθ model we used
in the linearized simulation. Thus we may conjecture that
the stabilization may not be attributed to the radial Ω shear
either. Instead the stabilizing effect may be caused by the
centrifugal force.

In order to check our conjecture, we prepared a rigid vθ

profile

vθ(r) = 0.7r, (35)

which gives rise to the constant angular velocity Ω = 0.7,
taken from the averaged angular velocity around the re-
connection site. The result is shown in Fig. 12 with a la-
bel vθ,rigid. From the fact that there is no growth at all for
this case, we may draw the following conclusion. The tear-
ing instability is completely stabilized due to the centrifu-
gal force of the background rotation vθ,rigid, and the slow
growth shown in the full and vθ,ave simulations is a remnant
of the magnetorotational instability, which is also indicated
by the structure of the eigenfunction (not shown here).

It is interesting to find that centrifugal force seems to
have a stabilizing effect while the similar conclusion is
drawn for the gravitational field in the normal field case
(Nishikawa & Sakai 1982; Paris 1987). The question is if
the reconnection is completely forced. To answer this, we
have to confirm the stabilization of tearing instability at ev-
ery instant, which may be carried out by changing the time
where background field is fixed.

Table 1 shows a summary of the linearized runs using
the various choice of the retained background fields at sev-
eral t. Finite growth rates labeled by ∗ have the eigenfunc-

Table 1 Growth rates for various combination of the background
field. In the field column, ‘◦’ denotes corresponding field is taken
from the nonlinear simulation, while ‘–’ denotes it is zeroed out.
The labels ‘ave’ and ‘rig’ for vθ denote the usage of average vθ and
rigid rotation. In the growth rate columns, ‘–’ denotes no instability
observed, and the numbers carrying ‘*’ have MRI eigenfunctions.

Case ψ Bθ φ vθ γ(t = 21) γ(t = 20) γ(t = 18)

1 ◦ – – – 0.47 0.58 0.64

2a ◦ – – ◦ 0.32
2b ◦ – – ave 0.40
2c ◦ – – rig 0.31 0.40 0.35

3 ◦ ◦ – – 0.47 0.56 0.52

4a ◦ ◦ – ◦ – 0.33∗

4b ◦ ◦ – rig 0.23 – –

5 ◦ ◦ ◦ – 0.37 0.50 0.13

6a ◦ ◦ ◦ ◦ 0.2 0.06∗ 0.39∗

6b ◦ ◦ ◦ ave 0.08∗

6c ◦ ◦ ◦ rig 0.17 – –

tion structure corresponding to MRI. As seen in Table 1 we
have tearing instability for ψ-only case, but not with rigid
rotation until t = 20 (cases 1 and 6c). It is noted that for
t = 16 we did not observe tearing instability even with ψ-
only case. Comparison of cases 1, 2c and 4b for t = 20 and
t = 18 tells us that the application of only rigid rotation
do not completely stabilize the tearing instability, but that
combined with Bθ does.

4.2.2 Destabilization mechanism

At t = 21, however, we observed a tearing instability with
a growth rate γ � 0.2 for the full background field. The av-
erage angular velocity around reconnection site decreases
only about 10%, but Bθ is only 50% of the t = 20 back-
ground. Since the effect of Bθ for finite vθ is big (compare
cases 2a/2c with 4a/4b), we may speculate that reduction
of Bθ is affecting the destabilization. In fact by making the
linearized simulation with Bθ(t = 20) and other fields at
t = 21, the growth rate diminishes to γ � 0.03. Thus the
background field at t = 20 is almost marginal for tearing
instability.

Figure 13 shows the eigenfunction of the 2D linearized
simulation using the full background field of the nonlin-
ear simulation at t = 21 sliced along r � 0.8 and that of
the 1D shooting calculation explained in the previous sec-
tion using the 1D version of the same background. For the
1D shooting calculation we have taken kx = 20 for which
the growth rate achieves the maximum. The 2D eigenfunc-
tion structure suggests that kx � 15 along z = 0.75. It is
shown that the eigenfunction structure becomes wider and
∆′ seems smaller for the 2D calculation. The significant
global change of the eigenfunction suggests that the effect
of stabilizing mechanism due to centrifugal force and Bθ is
global and we may need to reconstruct the theory including
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taken from slab shooting analysis and 2D linearized simulation.

Table 2 Critical magnetic Reynolds number for the appearance
of the magnetic island in the nonlinear simulation and the corre-
sponding tearing stability properties with 1D theory and 2D lin-
earized simulation.

Rm 1D tearing γ of lin sim 2D NL sim

10 000 unstable 0.17 island
5 000 unstable 0.11 island
4 000 unstable 0.08 island
3 000 unstable 0.045 no island
2 000 unstable — no island
1 000 unstable — no island
750 stable — no island

the change of the outer solution. From the inspection of the
2D linear simulation result, the ∆′ is estimated to be

∆′ � 12.0, (36)

where we have used the largest gradient and the local mini-
mum of ψ1 around z � 0.75 for its jump.

4.2.3 Critical magnetic Reynolds number

The effect of producing magnetic finger becomes weak as
we decrease the Reynolds number due to the increase of the
magnetic diffusivity. Thus the magnetic island ceases to ap-
pear for a sufficiently small magnetic Reynolds number. In
such a case, we can compare the critical magnetic Reynolds
number of the 2D nonlinear simulation, below which mag-
netic reconnection does not take place, with the linearized
tearing instability calculation both for 1D theory and 2D
simulation, and make it a validity test of our explanation.

The rough comparison is shown in Table 2. Here for the
critical point of the 1D theory we used the coincidence of
the quantity in the lhs of (30) to be unity. This condition
may be too generous for the instability but it qualitatively
shows an agreement with the appearance of the magnetic
island in the nonlinear simulation. On the other hand the 2D
linearized simulations show a much better agreement.

4.3 Reconnection rate

Figure 14 shows a plot of the reconnected flux ψX − ψO

versus time for various magnetic Reynolds numbers. Here
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Fig. 14 (online colour at: www.an-journal.org) Time evolution
of the reconnected flux ψX − ψO at various Rm.

we see two-step behaviors for Rm � 20 000. This is be-
cause the background field is not unstable to tearing mode
until t � 20. The X-point is formed by the nonlinear effect
of the overall evolution, however, the system is not tearing
unstable yet. As soon as the background field enters tearing-
unstable regime, the reconnection speeds-up, leading to the
two-step behavior in the evolution of the island thickness
and reconnected flux.

Figure 14 also shows that reconnection rate saturates
around Rm � 20, 000 and becomes independent of resis-
tivity. From the linear fit, the reconnection rate is evaluated
as

1
v2
Au

d(ψX − ψO)
dt

� 0.019, (37)

where vAu denotes the upstream Alfvén velocity for which
we used a typical value of the maximum Br along r � 0.8
(Br,max � 0.28).

There are other measures for the reconnection rate. The
quantity vin/vAu is one of them, which is

max
z∈(0.7,0.8)

vin
vAu

� 0.026 (38)

at r � 0.82 and t = 21 for the Rm = 10 000 run. The
order-of-magnitude of this measurement is consistent with
d(ψX−ψO)/dt. This rate corresponds to slow reconnection
as we expect from the usage of the resistive MHD model
with a homogeneous resistivity.

Another measure may be given by vin/vout, which is

max
z∈(0.7,0.8)

vz(r � 0.82)

max
r∈(0.6,1)

|vr(z = 0.75)|
� 0.22, (39)

for the same situation. Note that vr(z = 0.75) is asymmet-
ric with respect to the X-point and we may obtain the larger
number when we use the maximum value within the island
(� 0.38). It is interesting to see vout is so different from
vAu, which normally have the same value in Sweet-Parker
reconnection (Sweet 1958; Parker 1963). This is because of
the finite size of the island. This fact is partly because the
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Fig. 15 Snapshot of the flux function at t = 36 for Rm =
30 000. Secondary magnetic island (inner one) appears for Rm ≥
2 · 104.

radial simulation box size is finite, but more crucial reason
is the existence of the magnetic field at the outer region as
well. In order to have a radially elongated island, the island
has to push the outer magnetic field, which is resisted by
the tension force of the field line. By only making a larger
domain simulation doesn’t help for enlarging vout.

5 Secondary reconnection

We find that the secondary island appears above Rm =
20 000 as shown in the contour plot of the flux function
(Fig. 15). In these parameters, the aspect ratio of the cur-
rent sheet exceeds 10 around t � 35, which coincides with
the simple theoretical argument of the threshold of tearing
instability of the current sheet (A > 2π) (Biskamp 2000).
Notice the difference of critical aspect ratio with the slab
geometry (critical A seems much larger there, see Loureiro
et al. 2005).

5.1 Linear analysis

In order to understand the secondary reconnection event
we have made the linearized cylindrical simulation as in
Sect. 4.2. Figure 16 shows the time evolution obtained from
the linearized simulations for Rm = 20 000 with rigid rota-
tion and full background field.

The time evolution of the perturbation amplitude shows
a small difference in oscillation period but the growth rate is
almost same. The place where the secondary reconnection
takes place is around r � 0.7 and z � 0.75, so we show
the slice along r � 0.7 of the eigenfunction for the full
background field case in Fig. 17. The flux function suggests
a large ∆′ and the instability is identified a strong tearing
instability. As we’ve shown before, the aspect ratio of the
current sheet for this case is A � 11.7.

5.2 Bulanov’s theory

Bulanov et al. (1979) points out that the expanding outflow
along the current sheet has a stabilizing influence on the
tearing instability, which is attributed to the much greater
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Fig. 16 (online colour at: www.an-journal.org) Growth of the
perturbed field in the linearized 2D cylindrical simulation: (a)
shows the results from rigid simulation with Ω = 0.7 and (b)
corresponds to the full background field at t = 35.

-8e-20

-6e-20

-4e-20

-2e-20

 0

 2e-20

 4e-20

 6e-20

 8e-20

 1e-19

 1.2e-19

 1.4e-19

 0  0.2  0.4  0.6  0.8  1

φ 1
 &

 ψ
1 

@
 r

=
0.

67
96

52

z

φ1
ψ1

Fig. 17 (online colour at: www.an-journal.org) Slice of the
eigenfunction for the secondary reconnection event.

critical aspect ratio in the slab geometry. The radial velocity
profile in this case turns out

vr(r � rX , z = 0.75) � 1.5(r − rX) + vr,X (40)

at t = 35 and anti-symmetric around the X-point. Accord-
ing to the 2D cylindrical simulation of the linearized equa-
tions (same calculation with Sect. 4.2) without background
φ, we obtained a growth rate of γ � 0.82, which is more
than double of that with the finite φ. Thus Bulanov’s sta-
bilizing effect is in fact effective in this case. It is also
pointed out that Table 1 already shows a slight stabilizing
tendency of φ on the tearing instability (Compare cases 3/4b
and 5/6c). However, the vr shear at this stage is very weak
(dvr/dr � 0.13–0.45) compared to the present case.

Bulanov’s analysis seems plausible qualitatively, how-
ever, the dvr/dr observed in (40) is almost twice as large as
the growth rate without it. The stability condition dvr/dr �
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γ0 is satisfied but the configuration seems still unstable,
where γ0 is the growth rate without vr. Thus the analysis
given by Bulanov et al. is quantitatively unsatisfactory in
our example.

6 Conclusion

We have numerically investigated the 2D magnetic recon-
nection during the nonlinear evolution of the MRI in the
cylindrical geometry with rigid conducting walls. The out-
going radial jet is created in the inner region, which drags
the initial axial field and forms a reversing radial field line
configuration (magnetic finger). From the numerical simu-
lations using our reduced MHD code, magnetic reconnec-
tion event is observed in the finger region (Sect. 3). How-
ever, unlike the theory by Goodman & Xu (1994) for the
shearing slab geometry, the saturation is attributed to the ra-
dial flattening of the average angular velocity profile whose
radial decrease has fed energy to the MRI (Sect. 3.2).

We have focused on the finger region and applied linear
1D and 2D theories (Furth et al. 1963; Coppi et al. 1976;
Paris 1982; Nishikawa & Sakai 1982; Paris 1987). Slab 1D
theory suggests that tearing instability can arise which may
lead to the reconnection (Sect. 4.1), however, we need to in-
voke 2D analysis in order to explain the observation quanti-
tatively (Sect. 4.2).

By the careful comparison to the conventional theories,
we found that a new stabilizing effect must be present for
explaining our results. The saturated MRI includes a radi-
ally flattened average angular velocity profile for a fairly
wide regions. It corresponds to a rigid rotation whose cen-
trifugal force has a stabilizing influence on the tearing insta-
bility. On the other hand, Kelvin-Helmholtz instability does
not take place since the radial field strength is much stronger
and is stabilized, although the radial outflow jet contains in-
flection points.

Therefore, the configuration is stable for a much higher
field elongation even with a passively created X-point, and
finally becomes tearing unstable and it is then when the re-
connection speeds up (Sect. 4.3). It is interesting to point out
that the creation of an X-point is not necessarily attributed to
the tearing instability, but the reconnection is. The obtained
reconnection rate has no dependence with respect to the
resistivity for sufficiently high magnetic Reynolds number
and corresponds to the slow reconnection rate as one might
expect from the usage of the conventional MHD model.

In some parameter regimes we observe a creation of the
secondary island which results from the tearing instability
of the current sheet (Sect. 5). The threshold of the aspect
ratio of the current sheet seems much smaller than the slab
cases (Laureiro et al. 2005), and it is closer to the conven-
tional argument of the tearing instability without any flow
effects taken into account. However, the stabilizing effect of
the flow is indeed observed, which suggests that the work by
Bulanov et al. (1979) is qualitatively correct but not quanti-
tatively. The stabilizing effect of the outflow is rather weak.

There are many things to be done to understand the dy-
namic properties of magnetic reconnection events. First, we
need a theory about the centrifugal stabilization of the tear-
ing instability. The effect of centrifugal (or gravitational)
force perpendicular to the field reversal plane is analyzed
in the early seminal paper (Furth et al. 1963), but that of
the parallel one is unknown. According to the inspection of
the eigenmode obtained numerically (Fig. 13), this effect is
global and we need to modify the treatment of the outer re-
gion as well. To make such a theory may be rather involved,
however, it should be important with various applications to
the most astrophysical objects which include rotation and
reconnection, such as accretion disks and earth’s magneto-
tails. The secondary stability analysis from an exact station-
ary state may also be a good work in order to support our
results here. In the real turbulent cases including fully turbu-
lent MRI, we need to take the statistics of the reconnection
events analysed here. From the viewpoint of the numeri-
cal simulation, it is very interesting to replace the physical
model at the reconnection site with kinetic one and make a
multiscale computation with a proper boundary condition,
especially for the astrophysical applications.

For more close comparison with the observations of the
laboratory experiments, it is highly desired to make a full
three-dimensional (3D) analysis. In this case, things become
more complicated. It may be especially interesting to ask
whether tearing instability discussed here or 3D fluid in-
stability (Davey et al. 1968) enters in the first place on the
bifurcation diagram. In the non-magnetized fluid there is a
transition to 3D mode as analyzed by Davey et al. (1968),
however, such a disturbance seems easily stabilized by a su-
perposition of an axial magnetic field (Tabeling 1981; Willis
& Barenghi 2002). On the other hand, the magnetic recon-
nection may be easier for the 3D case than 2D since the MRI
creates azimuthal magnetic field which contains reversing
structure around the radial field reversal plane (See Fig. 6).
Exploration of such a problem may be extremely helpful
to understand the formation of nonaxisymmetric structures
observed in the experiments (Sisan et al. 2004; Stefani et al.
2007).
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A Numerical implementation

For our simulation we used a code developed by Tatsuno & Dor-
land (2006), however, we needed some upgrade in order to solve
the cylindrical problem. In this section we describe the specific
changes we have made for the cylindrical version. For notation re-
fer Tatsuno & Dorland (2006) or Coutsias et al. (1996).

A.1 Preconditioning

Making the band matrix for the inversion becomes a little bit tricky
because of the Jacobian and we end up with a denser matrix. Pois-
son equation

∇2
∗φ = ω (A1)

is written as

∂r

„
1

r
∂rφ

«
+

1

r
∂2

zφ = ∂2
r (rΦ) + ∂rΦ+ ∂2

z (rΦ) = ω, (A2)

where Φ = φ/r2. By multiplying [2]D−2 on both sides from the
left, ∂r and ∂2

r are banded, and we obtain a band matrix on the left
hand side:h
[2]D−2

`
∂2

rr + ∂r − k2
zr

´i
Φ = [2]D−2ω. (A3)

By inverting it and multiplying r2, we obtain φ. We used LAPACK
for the inversion of these banded matrix (Anderson et al. 1999).

A.2 Time integration

The equations for ω, vθ , and Bθ share their form

∂tf = NL + µ∇2
∗(rf), (A4)

where f is one of the ω, vθ , or Bθ , NL is a symbolic expres-
sion for the nonlinear term, and µ is the diffusion coefficient, ν or
η. The diffusion term is treated implicitly, using Crank-Nicholson
scheme. The time derivative and Laplacian terms are discretized
as

fn+1 − fn

∆t
= NL + µ∇2

∗

„
r
fn+1 + fn

2

«
, (A5)

where the superscript denotes the time step. By manipulation and
multiplication of [2]D−2, we obtain a banded matrix on the left
hand side:

[2]D−2

»
r − µ

∆t

2

`
∂2

rr + ∂r − k2
zr

´–
fn+1

r

= [2]D−2

»
fn + ∆tNL + µ

∆t

2
∇2

∗(rf
n)

–
. (A6)

The boundary conditions on f are converted to the ones on f/r,
and implemented in the first two rows of (A6).

The equation for ψ has a different form:

∂tψ = NL + ηr∇2
∗ψ (A7)

thus its discretization yields

ψn+1 − ψn

∆t
= NL + ηr∇2

∗

„
ψn+1 + ψn

2

«
. (A8)

Manipulation and multiplication of [2]D−2 on both sides yields

[2]D−2

»
r2 − η

∆t

2

`
∂2

rr
2 − ∂rr − 1 − k2

zr
2´–

Ψn+1

= [2]D−2

„
ψn + ∆tNL + η

∆t

2
rj

«
, (A9)

where we used Ψ = ψ/r2 and

r∇2
∗ψ = ∂2

r (r2Ψ) − ∂r(rΨ) − Ψ + r2∂2
zΨ. (A10)

A.3 Two-step Sherman-Morrison formula

Tatsuno & Dorland (2006) succeeded to make a band matrix with
single extra dense row by splitting the matrix equation into odd
and even parts of the Chebyshev coefficients. However, since they
are coupled in the cylindrical geometry, we have two dense rows
related to the boundary conditions. We solve this problem by ap-
plying Sherman-Morrison formula twice (Press et al. 1988).

Let A be the perturbed matrix

A = A0 + u1 ⊗ v1| {z }
A1

+u2 ⊗ v2, (A11)

where A0 is the band matrix and u1,2 v1,2 are the vectors. We
want to solve

Ax = b. (A12)
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Then, from Sherman-Morrison formula, the solution of

(A1 + u2 ⊗ v2)x = b (A13)

is obtained by solving

A1y = b A1z2 = u2 (A14)

as

x = y − v2 · y
1 + v2 · z2

z2. (A15)

The solution of

A1y = b (A16)

is obtained by solving

A0x1 = b A0z1 = u1 (A17)

as

y = x1 − v1 · x1

1 + v1 · z1
z1. (A18)

The solution of

A1z2 = u2 (A19)

is obtained by solving

A0z
′
2 = u2 A0z

′′
2 = u1 (A20)

as

z2 = z′
2 − v1 · z′

2

1 + v1 · z′′
2

z′′
2 (A21)

where z′′
2 turns out to be z′′

2 = z1.

B Analytic estimate of 2D tearing

In this section we discuss the stabilizing effect of the gravitational
force in the two-dimensional magnetic field configuration in order
to point out the similarity to the centrifugal stabilization. This ef-
fect is pointed out by the numerical calculation in Nishikawa &
Sakai (1982) and implicitly obtained by the analytic calculation of
Paris (1987). In this section we briefly revisit the result of Paris and
discuss the similarity to the centrifugal force. For the full detail of
the analysis, refer to the original paper (Paris 1987).

B.1 Dispersion relation

When we add a normal in-plane field such as the case of earth’s
magnetotail, the equilibrium has to be sustained by the gravita-
tional force in order to balance the tension force of the magnetic
field. However, when the normal field is weak, to the leading or-
der, the outer region equation can be described by the same second
order ODE without the normal field (Furth et al. 1963).

The effects of the weak normal field and the gravitational force
enter in the resistive layer equation and the proper analysis leads
to the following dispersion relation:

∆′ =
27/2πΩ

1 − (4κ)2
Γ(3/4 + κ)

Γ(1/4 + κ)
H, (B1)

where

H =
1 + 2σλG

Λ3/2

2
41 − 2σλλG

Λ(1 − 4κ)

0
@1 − 1 − c/Λ

3 + 4κ
F̄ (1)

1
A

3
5

(B2)

F̄ (n) = 2F1

„
1

2
, n;

7

4
+ κ;

1 − c/Λ

2

«
. (B3)

Here 2F1 is a hypergeometric function, λG the effect of the gravi-
tational force, σ the effect of the normal field, and

Λ = [1 + λG(2σ − λG)]1/2, (B4)

c = i(λG − σ), (B5)

κ =
λ+ iλG

4Λ
. (B6)

We only give here a minimal set of description for our purpose.
For the full description of the variables refer to the original paper
(Paris 1987).

B.2 Implication of Paris’ dispersion relation

Let us think about the artificial cases with

1. σ �= 0 and λG = 0,
2. λG �= 0 and σ = 0.

It is true that these assumptions break the equilibrium condition,
but they are still helpful in understanding the effect of each term.
In case 1, we obtain

Λ = 1, c = −iσ, κ =
1

4
λ, H = 1, (B7)

which exactly recovers the dispersion relation after Eq.(14) of
Paris. The effect of the normal field has completely diminished
by only making λG = 0.

On the other hand, case 2 leaves out a finite effect of gravity
since

Λ =
q

1 − λ2
G < 1, c = iλG,

κ =
λ+ iλG

4
p

1 − λ2
G

, H = Λ−3/2 > 1. (B8)

Defining the effective ∆′ by

∆′
eff =

∆′
orig

H
< ∆′

orig, (B9)

where ∆′
orig is the value matched with outer solutions, we see that

for a finite λG, (i) the effective ∆′ becomes smaller, and (ii) λ
becomes smaller for a given κ (due to the smaller denominator),
both of which suggest stabilizing influence. It is noted, however,
that the second statement may not exactly apply because the imag-
inary number iλG is also added in the numerator.
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