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Self-guiding electromagnetic beams in relativistic electron–positron plasmas
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Abstract

Nonlinear interaction of an intense electromagnetic (EM) beam with relativistically hot electron–positron plasma is investigated by invoking the
variational principle and numerical simulation, resting on the model of generalized nonlinear Schrödinger equation with saturating nonlinearity.
The present analysis shows the dynamical properties including the possibilities of trapping and wave-breaking of EM beams. These properties of
EM beams may give a significant clue for the gamma-ray burst.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of electromagnetic (EM) wave propagation and
related phenomena in relativistic plasma have attracted consid-
erable attention in the recent past. Relativistic electron–positron
(e–p) dominated plasmas are created in a variety of astrophys-
ical situations. Electron–positron pair production cascades are
believed to occur in pulsar magnetospheres [1]. The e–p plas-
mas are also likely to be found in the bipolar outflows (Jets) in
active galactic nuclei (AGN) [2], and at the center of our own
Galaxy [3]. In AGNs, the observations of superluminal mo-
tions are commonly attributed to the expansion of relativistic
e–p beams in a pervading subrelativistic medium. This model
implies copious pair production via γ –γ interactions creating
an e–p atmosphere around the source. The actual production of
e–p pairs due to photon–photon interactions occurs in the coro-
nas of AGN accretion disks, which upscatter the soft photons
emitted by the accretion disks by inverse Compton scattering.
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The presence of e–p plasma is also argued in the MeV epoch
of the early Universe [4]. On the other hand the contempo-
rary progress in the development of super-strong laser sources
with intensities I = 1021–23 W/cm2 has also made it possible
to create relativistic e–p plasmas in the laboratory by a variety
of experimental techniques [5]. Elucidation of the electromag-
netic wave dynamics in a relativistic e–p plasmas will, perhaps,
be an essential determinant of the radiation properties of astro-
physical objects as well as of the medium exposed to the field
of super-strong laser radiation.

Wave self-modulation and soliton-formation is, perhaps, one
of the most interesting and significant features of the overall
plasma dynamics. The existence of stable localized envelope
solitons of EM radiation has been suggested as a potential
mechanism for the production of micro-pulses in AGN and pul-
sars [6–8]. In the early Universe localized solitons are strong
candidates to explain the observed inhomogeneities of the vis-
ible Universe [9,10], and vortex soliton can be considered to
play a significant role for the formation of the observed struc-
ture of the Universe [11]. The gamma-ray bursts (GRBs) and
their afterglows are likely to be the result of energy dissipa-
tion from a relativistically expanding outflow [12]. A pointing-
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flux driven outflow from a magnetized rotator is a promising
paradigm for GRB engines and there have been various im-
plementations of this concept [13–17]. Recently Lyutikov and
Blackman suggested that gamma-rays are emitted at the point
where MHD breaks down due to the overturn instability of large
amplitude electromagnetic wave [18].

In the present Letter we explore the mechanism for the local-
ization of multi-dimensional intense EM radiation in pure e–p
plasmas. Assuming the plasma to be transparent to the beam,
and applying a fully relativistic hydrodynamical model, we
demonstrate the possibility of beam self-trapping leading to the
formation of stable 2D solitonic structures. The high-frequency
pressure force of the EM field (tending to completely expel the
pairs radially from the region of localization) is overwhelmed
by the thermal pressure force which opposes the radial expan-
sion of the plasma creating conditions for the formation of the
stationary self-guiding regime of beam propagation.

2. Basic equations

In this section we apply our general formulation to the prob-
lem of self-trapping of EM beams in pure e–p plasmas with
relativistic temperatures. We assume that the equilibrium state
of the plasma is characterized by an overall charge neutrality
n−∞ = n+∞ ≡ n∞, where n−∞ and n+∞ are the unperturbed num-
ber densities of the electrons and positrons in the far region of
the EM beam localization. In most mechanisms for creating e–p
plasmas, the pairs appear simultaneously and due to the symme-
try of the problem it is natural to assume that T −∞ = T +∞ ≡ T∞,
where T −∞ and T +∞ are the respective equilibrium temperatures.

We shall assume that for the radiation field of interest,
the plasma is underdense and transparent, i.e., ε = ωe/ω � 1,
where ω is the mean frequency of EM radiation and ωe =
(4πe2n∞/m0e)

1/2 is the plasma frequency. Following Ref. [19]
we introduce a temperature dependent momentum �± =
G±p± and relativistic factor Γ ± = G±γ ±, where G = K3(z)/

K2(z) is the temperature dependent factor with Kn the nth order
modified Bessel function of the second kind (z = m0ec

2/T ),
p± and γ ± = √

1 + (p±/mec)2 are respectively momentum
and relativistic factor of e–p particles. Introducing the di-
mensionless quantities t̃ = ωt , r̃ = (ω/c)r, T̃ ± = T ±/m0ec

2,

Ã = eA/(m0ec
2), φ̃ = eφ/m0ec

2, �̃
± = �±/(m0ec), and

ñ± = n±/n∞, we arrive at the dimensionless equations [19],

(1)
∂�±

∂t
+ ∇Γ ± = ∓∂A

∂t
∓ ∇φ,

(2)
n±

Γ ±f (T ±)
= const,

(3)
∂n±

∂t
+ ∇ · J± = 0,

(4)	φ = ε2(n− − n+)
,

(5)
∂2A
∂t2

− 	A + ∂

∂t
∇φ − ε2(J+ − J−) = 0,

where

(6)f
(
T ±) = K2(1/T ±)T ±

± ± exp
[
G±(

T ±)
/T ±]

,

G (T )
with J± = n±�±/Γ ± and Γ ± =
√

(G±)2 + (�±)2. Here A
and φ are the vector and scalar potentials (∇ · A = 0). The tilde
is suppressed for convenience.

Of various techniques that could be invoked to investigate
Eqs. (1)–(6) to study the self-trapping of high-frequency EM
radiation propagating along the z-axis, we choose the method
presented in the excellent paper by Sun et al. [20]. The method
is based on the multiple scale expansion of the equations in the
small parameter ε. Assuming that all variations are slow com-
pared to the variation in ξ = z − at , we expand all quantities
Q = (A, φ,�±, n±, . . .) as

(7)Q = Q0(ξ, x1, y1, z2) + εQ1(ξ, x1, y1, z2),

where (x1, y1, z2) = (εx, εy, ε2z) denote the directions of slow
change, and a1 = (a2 − 1)/ε2 ∼ 1. We further assume that the
high-frequency EM field is circularly polarized,

(8)A0⊥ = 1

2
(x̂ + iŷ)A exp(iξ/a) + c.c.,

where A is the slowly varying envelope of the EM beam, x̂ and
ŷ denote unit vectors, and c.c. is the complex conjugate.

We now give a short summary of the steps in the standard
multiple-scale methodology (Ref. [20]). In the lowest order
in ε, the transverse (to the direction of EM wave propagation z)
component of Eq. (1) reduces to

(9)�±
0⊥ = ∓A0⊥.

To the next order (in ε), the transverse component of Eq. (1)
reads:

(10)−a
∂�±

1

∂ξ
+ ∇⊥Γ ±

0 = ±a
∂A1

∂ξ
∓ ∇⊥φ0.

Averaging Eq. (10) over the fast variable ξ we obtain ∇⊥Γ ±
0 =

∓∇⊥φ0. Using these relations, we obtain ∇⊥φ0 = 0 and

(11)Γ0 ≡ Γ ±
0 = const.

Note that from the lowest order of Eqs. (2) and (4), we conclude
that n+

0 = n−
0 ≡ n0 and T +

0 = T −
0 ≡ T0. The relation between

EM field and temperature can be found by invoking Eq. (11).
Using Eqs. (8) and (9) and determining integration constant
such that A → 0 and T0 → T∞, we obtain

(12)G2(T0) = G2(T∞) − |A|2.
The equation for slowly varying envelope A of EM beam can
be obtained from Eq. (5). To the lowest order we find

(13)a1
∂2A0⊥
∂ξ2

− ∇2⊥A0⊥ − 2
∂2A0⊥
∂ξ∂z2

+ 2
n0(T0)

G(T∞)
A0⊥ = 0.

In deriving this equation, we have used the relation

(14)Γ0 =
√

G2(T0) + |A|2 = G(T∞).

While from Eq. (2), we have

(15)n0(T0) = f (T0)

f (T∞)
.
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Substituting Eq. (8) into Eq. (13) we find

(16)2i
∂A

∂z
+ ∇2⊥A + 2

G(T∞)

[
1 − n(T0)

]
A = 0,

where subscripts for variables (x1, y1, z2) are dropped for sim-
plicity. We also assumed without loss of generality that (a2 −
1)/ε2a2 = 2/G(T∞), which in dimensional units (provided
that a = ω/kc) coincides with the linear dispersion relation of
the EM wave in an e–p plasma:

(17)ω2 = k2c2 + 2ω2
e

G(T∞)
.

Thus, the dynamics of EM beams in hot relativistic e–p plasma
has become accessible within the context of a generalized non-
linear Schrödinger equation (16).

We first seek the localized 2D soliton solutions of Eq. (16),
and analyze the stability of such solutions. Making the self-
evident renormalization of variables z → zG(T∞), r⊥ →
r⊥

√
G(T∞)/2, Eq. (16) can be written as

(18)i
∂A

∂z
+ ∇2⊥A + Ψ A = 0,

where Ψ = 1 − n0(T0) represents the generalized nonlinearity.
The companion equation (15) can be viewed as a transcendental
algebraic relation between T0 and |A|2, i.e. Ψ is an implicit
function of |A|2 [Ψ = Ψ (|A|2)]. We note that Eq. (18) can be
written in the Hamiltonian form i∂zA = δH/δA∗, where the
Hamiltonian is

(19)H =
∫

dr⊥
[|∇⊥A|2 − F

(|A|2)],
and F(t) = ∫ t

0 Ψ (t ′) dt ′. This implies that Eq. (18) conserves
the Hamiltonian H in addition to the power (photon number)
N = ∫

dr⊥ |A|2.
To find a stationary, nondiffracting axisymmetric solu-

tion, we use the representation of vector potential A/Ac =
U(r) exp(iλz), where Ac = [G(T∞)2 − 1]1/2, r = (x2 + y2)1/2

and λ is the nonlinear wave-vector shift. The radially dependent
envelope U(r) obeys a nonlinear ordinary differential equation:

(20)
d2U

dr2
+ 1

r

dU

dr
− λU + Ψ

(
U2)U = 0.

The profiles of the field U(r), the plasma density n0(r), and
the temperature T0(r) of the stationary solution can be found
in Fig. 3 of Ref. [19] for λ = 0.1; The plasma temperature and
density is reduced in the region of field localization. Similar
plots could be obtained for all allowed values of λ. When λ →
λc, where λc is the upper bound of the propagation constant,
the plasma cavitation takes place, i.e. the plasma density and
temperature tends down to zero at r = 0. Appearance of zero
temperature is not surprising since the corresponding region is
the “plasma vacuum”; all particles are gone away.

The stability of obtained soliton solutions can be investi-
gated using the stability criterion of Vakhitov and Kolokolov
[21]. According to this criterion the soliton is stable against
small arbitrary perturbations if

(21)
dN

> 0,

dλ
Fig. 1. The beam power N versus λ (T∞ = 1).

where N is the photon number or more precisely the power of
the trapped mode. In our case, the dependence of N on λ is
shown in Fig. 1. One can see that dN/dλ > 0 everywhere and
consequently the corresponding solution is stable for 0 < λ <

λc.

3. Nonlinear dynamics based on variational approach

The complex dynamics of a beam governed by Eq. (18) can
be analyzed by the variational approach [22]. This approach
determines the relations between the characteristic parameters
of the localized solution approximated by a trial function. The
variational method gives qualitatively good results, provided
the beam does not undergo structural changes during its evo-
lution. The first standard step is to construct the Lagrangian

(22)L = 1

2

(
A∗ ∂A

∂z
− c.c.

)
−H,

where H is the Hamiltonian density [H = ∫
dr⊥H, see

Eq. (19)]. In the optimization procedure, the first variation of
the variational function must vanish on a suitably chosen trial
function. As a trial function, we will use the Gaussian-shaped
beam,

(23)A = Λ(z) exp

[
− r2

2a(z)2
+ ir2b(z) + iφ(z)

]
,

with the amplitude Λ, the beam radius a, the wave front curva-
ture b and the phase φ as the unknown functions of the propaga-
tion coordinate z respectively, which will be furthermore used
in order to make the variational functional an extremum. Sub-
stituting expression (23) into Eq. (22) and demanding that the
variation of the spatially averaged Lagrangian with respect to
each of these parameters is zero, we obtain the corresponding
set of Euler–Lagrange equations,

(24)
d

dz

(
Λ2a2) = 0,

(25)
d2a

dz2
= 4

a3
− 2

a

[
K ′(Λ2) − K(Λ2)

Λ2

]
,

(26)b = 1

4a

da

dz
,
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to be solved for the three functions Λ, a, and b, where the func-
tion K(u) is defined as

(27)K(u) = 4

∞∫
0

dp pF
(
ue−p2)

.

Eq. (24) is nothing but a statement of the fact that during the
EM beam evolution its power is conserved,

(28)N = πΛ2a2 = πΛ2
0a

2
0,

where Λ0 and a0 are respectively the initial amplitude and the
initial “radius” of the EM beam at z = 0.

Using Eq. (24), the integration of Eq. (25) leads to

(29)
1

2

(
da

dz

)2

+ V (a) = H = V (a0),

where

(30)V (a) = 2

a2
− 2a2

a2
0Λ2

0

K

(
Λ2

0a
2
0

a2

)

plays the role of an effective potential for the evolution of the ra-
dius a. We have assumed that the initial beam have a plane front
(or zero curvature) [da/dz|z=0 = 0 = b(0)]. Using the analogy
with a particle in a potential well, we can acquire a deeper phys-
ical understanding of light beam dynamics. Choosing the initial
beam radius a0 to be equal to the equilibrium radius ae, a sta-
tionary solution of Eq. (29) is obtained if ∂V/∂a|a=ae = 0. Note
that −∂V/∂a is equal to the right-hand side of Eq. (25). The
equilibrium radius of the beam is readily found to be

(31)a2
e = 2

[
K ′(Λ2

0

) − K(Λ2
0)

Λ2
0

]−1

.

In the subsequent analysis we will consider the small tem-
perature case T∞ � 1, and the case of moderately high tem-
perature T∞ ∼ 1. We do not consider here the ultrarelativistic
temperature case (T∞  1) because applied model equations
fail to adequately describe the plasma dynamics due to the ne-
glect of heavy particle production.

In the small temperature case the nonlinear term in Eq. (18)
reduces to a simple analytic expression

(32)Ψ
(|A|2) = 1 − (

1 − |A|2)3/2
,

which gives the function F(u) as

(33)F(u) = u + 2

5
(1 − u)5/2 − 2

5
.

We will apply the established general formalism to the saturat-
ing nonlinearity given by Eq. (32). The function K becomes
[see Eq. (27)]

K(u) = 2u + 4

5

[
(1 − u)1/2

(
46

15
− 22u

15
+ 2u2

5

)]

(34)

− 8

5
arctan(1 − u)1/2 − 4

5
logu − 4

5

(
46

15
− log 4

)
.

Fig. 2. Potential profile of V (a) versus a in the case of N = 8.79 and N = 9.74.

Fig. 3. The parameter regime where solitary wave can be trapped for T∞ � 1.

Note that normalized strength of the field A (= A/Ac) is
restricted from above |A| � 1. Above this value the wave-
breaking of the field takes place. Substituting Eq. (34) into
Eq. (25), we can investigate the nonlinear dynamics of the beam
for different initial conditions.

Using Eq. (34) we can find the effective potential V (a) [see
Eq. (30)]. The shape of effective potentials in the case of N =
8.79 and N = 9.74 are illustrated in Fig. 2. From the shape of
the potential we conclude that the “effective particle” (i.e. the
beam) can be trapped in the potential well. The endpoints of
these lines (for small a) correspond to the occurrence of zero
density. As a decreases the beam amplitude Λ increases and
approaches the unity at endpoints. Note that the potential at the
endpoint is negative for N = 9.74. Thus, the cavitation can take
place when the initial radius a0 is large enough. It is obvious
that a(z) is an oscillating function provided that a0 is in the
trapping region.

The beam never diffracts if H < 0 which coincides with
the general criterion established by Zakharov et al. [23]. Fig. 3
shows the parameter regime where the solitary wave could be
trapped. The central line denotes the equilibrium curve, and
the shaded region between two dashed curves denotes a region
where EM beam is trapped. The lower dashed line corresponds
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to the zero Hamiltonian. Thus, below this line, the electromag-
netic beam with any parameters will diffract. Above the upper
dashed line, the electromagnetic beam amplitude will grow up
to wave-breaking limit. Therefore, the beam will be trapped in
oscillatory regime provided that its parameters are situated in
shaded region in Fig. 3.

4. Numerical simulation

In the preceding analysis, we applied a variational approach
involving a Gaussian trial function. The main limitation of this
approach is that it is valid only in the aberration-less approx-
imation, i.e. the approach is unable to account for structural
changes in the beam shape. Such aspects of the beam dynam-
ics are better delineated by numerical simulations. The detailed
dynamics of arbitrary field distribution must be studied by di-
rect simulations of Eq. (18). The guidelines for simulation are
still provided by approximative analytical approaches.

The initial profile of the beam is taken to be Gaussian A =
Λ0 exp(−r2/2a2

0). In the case of small temperature T∞ = 0.01
the initial parameters are taken in the trapping region shown in
Fig. 3. The initial focusing or defocussing before reaching the
equilibrium, can be seen in Fig. 4, where the z-propagations of
the beam fields |A(r = 0, z)| with same initial power N = 9.5
but with different amplitudes Λ0 = 0.37 and Λ0 = 0.95 are si-
multaneously drawn. Corresponding initial states of the beams
are respectively situated on the left and right side of equilib-
rium curve in Fig. 3. Fig. 4 shows that the beams parame-
ters are oscillating around the equilibrium with initial focusing
(Λ0 = 0.37) or defocussing (Λ0 = 0.95) in agreement with the
prediction of variational approach.

Fig. 5 shows the field distribution versus radius r and the
propagating coordinate z for Λ0 = 0.37. Note, however, that
due to the appearance of the radiation spectrum the amplitudes
of the field oscillations are monotonically decreasing with in-
creasing z. For larger z the formation of a ground solitonic state
may take place due to the damp-out of the oscillations. If the ini-
tial profile of the beam is close to the equilibrium one, then the
beam quickly reaches the profile of ground-state equilibrium,

Fig. 4. The beams parameters are oscillating around the equilibrium with initial
focusing (Λ0 = 0.37) or defocussing (Λ0 = 0.95).
and propagates for a long distance without much distortion of
its shape. Since variational approach is unable to account the
structural changes in the beam shape and corresponding forma-
tion of radiation spectra we can expect that the trapping region
in (N,Λ0) plane obtained by numerical simulations will be
different from the one shown in Fig. 3. The result of these sim-
ulations is presented in Fig. 6. The curve ‘e’ corresponds to
the equilibrium state, the curve ‘h’ the zero Hamiltonian, and
the curve ‘t’ the trapping boundary, respectively. The Gaussian
beam with initial parameters (i.e. N and Λ0) in the region be-
low line h has a positive Hamiltonian and will be diffracted. The
trapping region of the beam is the area between lines h and t.
The beam with the parameters in this region will be trapped in
self-guiding regime of propagation and will either focus or de-
focus to the ground state, exhibiting damped oscillations around
it. The initial focusing (defocussing) takes place if the parame-
ters are in the region between lines t and e (between e and h).
Note that the area of the trapping region shown in Fig. 6 is larger
than it follows from variational approach (see Fig. 3). This en-
largement of the trapping area is related to the radiation losses
during the beam convergence to the equilibrium state.

The beam with parameters in region above trapping line t
will focus until wave-breaking and plasma cavitation takes

Fig. 5. The field distribution versus r and z for Λ0 = 0.37.

Fig. 6. The trapping region in (N,Λ0) plane obtained by numerical simulations
for T∞ � 1. The curve ‘e’ corresponds to the equilibrium state, the curve ‘h’
the zero Hamiltonian, and the curve ‘t’ the trapping boundary, respectively.
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Fig. 7. The field |A(r = 0)| versus z for the cases when the beams parameters
are in below (the curve 1) and above (the curve 2) the line t.

Fig. 8. The trapping region in (N,Λ0) plane for T∞ = 0.3 (the notations are
same as in Fig. 6).

place. Fig. 7 shows the plot |A(r = 0)| versus z for the cases
when the beams parameters are in the regions below (the
curve 1) and above (the curve 2) the line t. One can see that
in the first case the beam trapping takes place while, in the sec-
ond case the beam amplitude increases up to the wave-breaking
limit (A = 1).

For relativistic high temperature case the EM beam dynam-
ics is similar to what we observed in the low temperature case.
Fig. 8 shows the trapping region for T∞ = 0.3 (the notations are
same as in Fig. 6). Quantitative difference stems from the fact
that in the high temperature case the mass of the e–p pairs are
modified by the temperature dependent G-factor. It is interest-
ing to mention that in this case in the region of field localization
the plasma temperature can be decreased considerably. In Fig. 9
we demonstrate T (r) versus z during the trapped beam evolu-
tion toward the stable equilibrium.

It is thus confirmed by numerical simulations that the beam
trapping is robust especially for low background temperature
regime. The beam can achieve the equilibrium state from a wide
range of parameters, even far from the equilibrium, as it is pre-
dicted by our analytic approach. However, the area of trapping
region reduces as temperature increases.
Fig. 9. The plasma temperature T (r) versus z during the trapped beam evolution
toward the stable equilibrium.

5. Summary

We have investigated the nonlinear propagation of strong 2D
EM radiation in a relativistic, unmagnetized electron–positron
plasma. The treatment is fully relativistic—in the thermal mo-
tion as well as in the coherent motion of the plasma particles.
The fact that relativistically hot e–p plasmas are capable of sus-
taining high amplitude localized structures of high amplitude
electromagnetic fields should be important to understand the
complex radiative properties of different astrophysical objects
where such plasmas are considered to exist.

By applying a variational technique with a Gaussian trial
function, we have demonstrated the possibility of different
regimes of EM beam propagation. In particular, the trapped
beam exhibits an oscillatory behavior around the stationary so-
lution. However, since the system contains an upper bound of
the field amplitude, the parameter regime is restricted for these
oscillations. If the initial beam intensity is large enough, the
ponderomotive force acts strongly leading to the beam over-
focusing, and eventually the EM field gives rise to the plasma
cavitation and wave-breaking.

The region in parameter space where the beam can be regu-
larly trapped and oscillate is found. We have also performed the
numerical simulations and demonstrated the parameter regime
where beam trapping takes place. Comparing the results of vari-
ational approach and the results of numerical simulations we
have confirmed that analytical estimate gives a qualitatively
good prediction for nonlinear wave dynamics. Due to the ra-
diation and self-deformation of the beam, however, it is shown
that the beam may be more robust than it follows from varia-
tional method.

In our consideration effects related to the temporal reshaping
of the radiation have been ignored. However, we can easily gen-
eralize our results by allowing a temporal variation of the field.
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If we assume that A weakly depends on τ = t − z/a, Eq. (18)
acquires an additional term related to the wave group velocity
dispersion [∼ (ω2

e/ω
2)∂2A/∂τ 2]. In transparent plasma case

this term can affect the long time dynamics of self-guiding
channel. In particular due to weak modulation instability [24]
the self-trapped beam eventually will break into a train of spa-
tiotemporal solitons, i.e. the light bullets. Since general dy-
namical properties of the light bullet formation should not be
sensitive to the type of saturating nonlinearity [25,26], we ex-
pect similar behavior of the EM beams in our case as well.

We may apply the present results to verify variety of GRB
models. The obtained results could be useful to understand the
radiative properties of astrophysical objects like the AGN, the
pulsars and extragalactic electron–positron Jets.
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