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In magnetized plasmas, a turbulent cascade occurs in phase space at scales smaller than the thermal

Larmor radius (“sub-Larmor scales”) [Tatsuno et al., Phys. Rev. Lett. 103, 015003 (2009)]. When the

turbulence is restricted to two spatial dimensions perpendicular to the background magnetic field,

two independent cascades may take place simultaneously because of the presence of two collisionless

invariants. In the present work, freely decaying turbulence of two-dimensional electrostatic

gyrokinetics is investigated by means of phenomenological theory and direct numerical simulations.

A dual cascade (forward and inverse cascades) is observed in velocity space as well as in position

space, which we diagnose by means of nonlinear transfer functions for the collisionless invariants.

We find that the turbulence tends to a time-asymptotic state, dominated by a single scale that grows

in time. A theory of this asymptotic state is derived in the form of decay laws. Each case that we

study falls into one of three regimes (weakly collisional, marginal, and strongly collisional),

determined by a dimensionless number D�, a quantity analogous to the Reynolds number. The

marginal state is marked by a critical number D� ¼ D0 that is preserved in time. Turbulence

initialized above this value become increasingly inertial in time, evolving toward larger and larger

D�; turbulence initialized below D0 become more and more collisional, decaying to progressively

smaller D�.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769029]

I. INTRODUCTION

Plasma turbulence plays important roles in fusion devi-

ces and various space and astrophysical situations, where it

is an essential phenomenon underlying transport of mean

quantities and particle heating.1–11 For these collisionless or

weakly collisional plasmas, such turbulence requires a ki-

netic description in phase space, especially at small scales

where dissipation takes place.

Turbulence theory in kinetic phase space is more than a

simple extension of Navier-Stokes turbulence into higher

dimensions as velocity space is not exactly equivalent to

position space: For instance, there is no translational symme-

try (i.e., small velocities are not equivalent to large veloc-

ities), and there is always some large-scale velocity

dependence imposed by the background distribution function

(e.g., on the scale of the thermal velocity for a Maxwellian

background); see also Ref. 35, Sec. 2.1. However, in some

simplified cases, classical fluid dynamical theories12,13 can

be naturally extended into phase space.11,14–18 In magnetized

plasmas, the gyrokinetic (GK) theory19–22 provides the mini-

mal kinetic description of the low-frequency turbulence.

In electrostatic gyrokinetics, nonlinear interactions

introduce a cascade of perturbed entropy (which is propor-

tional to the perturbed free energy at the sub-Larmor scales)

to smaller scales both in position and velocity space.11,14–18

When the turbulence is restricted to two position-space

dimensions, the system has two collisionless invariants. One

of them is the free energy or entropy which is also an invari-

ant in three dimensions (3D), and another, approximately

related to kinetic energy in the long wave-length limit, is par-

ticular to two dimensions (2D). In this regard, 2D gyroki-

netic turbulence is analogous to 2D fluid turbulence, and

indeed, reduces to it in a particular long wave-length

limit.15,23 These two invariants cannot share the same local-

interaction space in a Kolmogorov-like phenomenology,

which leads to a dual cascade (forward and inverse

cascades).3,13,24–26 As the nonlinear term of 2D gyrokinetics

is identical in form to that of 3D gyrokinetics, the under-

standing of the nonlinear interaction in purely 2D system

will serve as a foundation for understanding general 3D mag-

netized plasmas.18

In this paper, we focus on the freely decaying turbulence

problem for the electrostatic 2D GK system. We first intro-

duce the GK equation briefly and describe its basic nature in

Sec. II. We also review basic characteristics of the nonlinear

phase mixing at sub-Larmor scales that are reported in Refs.

16, 17, and 27. Sections III and IV are the main contents of

the paper. In Sec. III, we describe a phenomenological

theory of the dual cascade in freely decaying turbulence

based on the theory first developed for 2D fluid turbulence.28

There are three regimes for the turbulence: These corresponda)Electronic mail: tomo.tatsuno@uec.ac.jp.
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to weakly collisional, marginal, and strongly collisional

cases. In the strongly collisional case, dissipation acts

strongly and the system decays to become more and more

dissipative. In the marginal case, the collisional dissipation

balances with nonlinear (inertial) turnover and the system is

preserved in this state. For weakly collisional cases, the tur-

bulence is, in a sense, able to escape the effects of dissipa-

tion, becoming less and less collisional in time, and tending

asymptotically to a state of zero electrostatic energy decay.

Section IV presents the results of numerical simulation of

the freely decaying turbulence. We demonstrate the inverse

(forward) transfer of energy (entropy) in the direct numerical

simulation and investigate the time-asymptotic decay laws of

the two collisionless invariants, comparing with the theory

developed in Sec. III. We conclude with a summary of our

results in Sec. V.

II. PHASE-SPACE TURBULENCE

A. Gyrokinetic equations and invariants

We first introduce the GK model briefly.19–22 Since we

are concerned with turbulence in magnetized plasmas, the

dynamics of interest is much slower than particle gyromo-

tion. The gyromotion is thus averaged over, eliminating

gyroangle dependence from the system. The GK system has

3 spatial coordinates (x, y, z), and 2 velocity coordinates

(v?; vk), where ? and k denote perpendicular and parallel

directions to the background magnetic field, respectively.

We assume the background plasma and magnetic field are

uniform in space and time. It is necessary to distinguish

between the particle coordinate r and the gyrocenter coordi-

nate R. These coordinates are connected by the Catto

transform19

R ¼ r þ v� ez
X

; (1)

where ez is the unit vector along the background magnetic

field and X is the gyrofrequency.

We further reduce the GK equation to 2D in position

space, or 4D in phase space,29 by ignoring variation along

the mean field (kk ¼ 0). This not only reduces the dimension

of the system but also removes one of the mechanisms of

creating velocity-space structure—linear parallel phase mix-

ing (Landau damping), a much more familiar and better

understood phenomenon than the nonlinear perpendicular

phase mixing, on which we will concentrate in this paper.

The resulting GK equation (for the ions) is

@g

@t
þ c

B0

huiR; g
� � ¼ hCiR; (2)

where h�iR is the gyroaverage holding the guiding center

position R constant, g ¼ hdf iR is the gyroaverage of the per-

turbed ion distribution function d f , u is the electrostatic

potential, B0 is the background magnetic field (aligned with

the z-axis), and ff ; gg ¼ ez � ðrf �rgÞ. The collision oper-

ator C we use in our simulations describes pitch-angle scat-

tering and energy diffusion with proper conservation

properties30,31 (see also Appendix).

The potential u in Eq. (2) is calculated from the quasi-

neutrality condition: Written in the Fourier space, it is

n0q
2
i

T0i
ð1þ s� C0ÞûðkÞ ¼ qi

ð
J0

k?v?
X

� �
ĝðkÞ dv; (3)

where the hat denotes the Fourier coefficients, J0 is the Bes-
sel function, representing, in Fourier space, the gyroaverage

at fixed particle position, C0 ¼ I0ðbÞe�b, I0 is the modified

Bessel function of the first kind, b ¼ k2?q
2=2, q is the ion

thermal Larmor radius, q is the charge, n0 and T0 are the den-
sity and temperature of the background Maxwellian F0, and i
and e are the species indices. One may use s ¼ �qeT0i=qiT0e
for Boltzmann-response (3D) electrons or s ¼ 0 for no-

response (2D) electrons.15 Hereafter, we use the no-response

electrons as in Refs. 16 and 17 because formally, the elec-

trons cannot contribute to the potential if kk ¼ 0 exactly.27

This choice is not very important as it only introduces minor

differences in various prefactors.

The 2D electrostatic GK system possesses two quadratic

positive-definite collisionless invariants15

W ¼
X
k

ð
T0i ĵgðkÞj2

2F0

dv; (4)

E ¼ n0q
2
i

2T0i

X
k

ð1� C0ÞjûðkÞj2: (5)

There are various ways to choose two independent invariants

in our system. In Refs. 16 and 17, total perturbed entropy (or

free energy), Wtot ¼ W þ E (see Eq. (3.9) of Ref. 15), is used

in order to make the connection to thermodynamics. Here,

we use the quantity W for the sake of simplicity.15 In fact, g2

averaged over R is itself conserved (that is, it is conserved

for each value of v?).15,32 However, it is sufficient for the

purposes of this paper to consider only the integrated quan-

tity W. One can adapt the arguments of Ref. 13 to show that

the presence of conserved quantities W and E implies a dual

cascade (i.e., both forward and inverse cascades).18

B. Nonlinear phase mixing

Due to the neglect of the parallel streaming term, the cre-

ation of velocity space structure originates solely from the

advection of the distribution function by the gyroaveraged

E� B drift [the nonlinear term in Eq. (2)]. For small-scale

electric fields, particles with different gyroradii execute differ-

ent E� B motions because they “see” different effective

potentials; this leads to nonlinear phase mixing and other

novel phenomena.11,14,27,33 As the turbulence cascades

through phase-space, the excitation of fluctuations at spatial

scale ‘ induces velocity structure of scale dv? in the perpen-

dicular velocity space which corresponds to the difference of

the Larmor radii ‘v ¼ dv?=X � ‘ (see Fig. 1 and Refs. 11 and
14–17). In other words, when the spatial decorrelation scale is

‘, two particles with Larmor radii separated by ‘v become

decorrelated, since the gyroaveraged potentials these two par-

ticles feel are different. This nonlinear phase-space mixing

effect was first pointed out by Dorland and Hammett.27
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In Refs. 16 and 17, numerical simulations focused on the

forward cascade of entropy, and showed a simultaneous crea-

tion of structures in position and velocity space in accordance

with the theoretical prediction.11,14,15 Figure 2 shows a nor-

malized, time-averaged spectral density of entropy

^
W
^ ðk?; pÞ ¼

X
jkj¼k?

pj^g^ðk; pÞj2; (6)

in a forward cascade simulation, where the v? structure is

characterized by the Hankel transform15,34

^
g
^ ðk; pÞ ¼

ð
J0ðpv?Þ̂gðk; v?; vkÞ dv; (7)

and ^̂ denotes the Fourier-Hankel coefficients.

In analogy with the Reynolds number in fluid turbu-

lence, we may introduce an amplitude-dependent dimension-

less number D,16 the ratio of collision time to nonlinear

decorrelation time measured at the thermal Larmor radius,

which characterizes the smallest scales created in both posi-

tion and velocity space by D�3=5. Thus, D quantifies both

how “inertial” the turbulence is (in the sense of the Reynolds

number) and how “kinetic” it is, because it measures the

nonlinear turnover at the thermal Larmor radius, which

marks the beginning of the “nonlinear phase-mixing range.”

The degree of freedom, corresponding to computational

problem size, may also be characterized by D, and scales as

D9=5 in three phase-space dimensions, consisting of two

position-space and one velocity-space dimensions.

We note here that the statistical description of our

phase-space turbulence requires a 2D spectral space ðk?; pÞ,
in contrast to isotropic fluid turbulence, which requires only

the scalar wave number. We will refer to this 2D spectrum
^
W
^

in Secs. III–V.

III. THEORYOF FREELY DECAYING TURBULENCE

A. Dual cascade

With the use of the Hankel transform (7) for velocity

space and the conventional Fourier decomposition for posi-

tion space, we may discuss the evolution of Fourier-Hankel

modes of g in ðk?; pÞ space. Figure 3 depicts the simplest

example of the evolution of
^
W
^ ðk?; pÞ in the freely decaying

turbulence.

FIG. 1. Schematic view of the nonlinear phase mixing: when the fluctuation

scale ‘ is comparable to or smaller than the Larmor radius q, the gyroaver-

age of the electric field induces a decorrelation of the distribution function at

the velocity-space scale corresponding to the difference in Larmor radii

‘v ¼ dv?=X � ‘. Reprinted with permission from T. Tatsuno et al., Phys.
Rev. Lett. 103, 015003 (2009). Copyright 2009 American Physical Society.

FIG. 2. Two-dimensional spectral density log10½
^
W
^ ðk?; pÞ=Wtot� from one of

the forward cascade simulation reported in Ref. 17. Kinetic turbulence pro-

ceeds in the position and velocity space simultaneously. Reprinted with per-

mission from T. Tatsuno et al., J. Plasma Fusion Res. 9, 509 (2010); e-print
arXiv:1003.3933. Copyright 2010 Japan Society of Plasma Science and Nu-

clear Fusion Research.

FIG. 3. Schematic view of the freely decaying turbulence in the ðk?; pÞ
space. A diagonal Fourier-Hankel mode (indicated by the red circle) cas-

cades towards small scales in position and velocity space according to the

forward cascade of W (blue dotted arrows). Nonlinear interaction conserves

both W and E, so the forward cascade must be accompanied by the excita-

tion of larger-scale modes on the diagonal (green solid arrow), which corre-

sponds to the inverse cascade of E.
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By applying the definition (7) to Eq. (3), we find that the

Fourier-Hankel modes
^
g
^ ðk; pÞ with k?q 6¼ pvth (purple

shaded regions marked by “no E” in Fig. 3) give no contribu-

tion to ûðkÞ due to the orthogonality of the Bessel functions.

In these regions, therefore, fluctuations associated with this

part of W can in principle cascade to small scales with no

effect on the spectral distribution of E.
On the other hand, the spectrum of E satisfies15

Êðk?Þ :¼ n0q
2
i

2T0i

X
jkj¼k?

jûðkÞj2

¼ T0ivth

2n0ð1� C0Þ2k?q
^
W
^

k?;
k?q
vth

� �
; (8)

where
^
W
^

is given by Eq. (6), i.e., while W is the sum over

the entire ðk?; pÞ-plane, the second invariant E is only com-

posed of the “diagonal” k?q ¼ pvth components (dashed line

in Fig. 3). In the small-scale limit (k?q � 1), we may ap-

proximate C0 � 1=ðk?qÞ, so Eq. (8) implies

Êðk?Þ / 1

k?

^
W
^

k?;
k?q
vth

� �
; (9)

which is indicated for the diagonal components in Fig. 3.

As we will see, the decaying turbulence evolves to a

state of local cascade. As a consequence of Eq. (9), this state

is characterized by an inverse cascade of E and forward cas-

cade ofW, which can be explained as follows.18

The energy of a diagonal Fourier-Hankel mode (indi-

cated by the red circle) cascades towards small scales in

position and velocity space according to the forward cascade

of W (blue dotted arrows). Nonlinear interaction conserves

both W and E, so the forward cascade must be accompanied

by the excitation of larger-scale modes on the diagonal

(green solid arrow), which corresponds to the inverse cas-

cade of E. Simulation results reported in Sec. IV indicate

that this is the universal property of the time-asymptotic state

of freely decaying turbulence. However, there are other

interactions possible in the transient and/or driven cases (for

more details on such processes, see Refs. 18 and 35).

B. Decay laws

In this section, we derive scaling laws for the decay of

collisionless invariants based on some simple phenomeno-

logical arguments.

The underlying assumptions are as follows. First, we

assume that collisionless invariants are dominated by a sin-

gle scale l�, in the same way energy in fluid turbulence is

dominated by the “energy-containing scale.” Then, in terms

of the amplitude at this scale,

W � T0iv6th
n0

g2�; E � n0q
2
i

T0i
u2
�; (10)

where g� and u� are the rms values of the distribution func-

tion and potential associated with the scale l�. Second, we
assume that the evolution of l� is governed by the inverse

cascade along the diagonal k?q � pvth, so defining k�
:¼ 1=l�, we have

W � k�qE: (11)

Both assumptions are found to be valid in the numerical sim-

ulations described in Sec. IV.

Depending on the strength of collisions compared to

that of turbulent dynamics, we may derive several different

scaling laws. In order to quantify the collisionality, we char-

acterize the instantaneous turbulent state via a sub-Larmor

version of the dimensionless number introduced in Ref. 16:

It is the ratio of the collision time to the nonlinear decorrela-

tion time s� at the scale l�36

D� ¼ 1

�k2�q2s�
� XE

�ðn0T0iWÞ1=2
: (12)

We have taken the collisional decay rate to scale as �k2�q
2

because the GK collision operator is second order in velocity

and spatial derivatives30,31 and k?q � pvth. Note that in

going from the second to the third expression in Eq. (12), we

used Eq. (11) and

s�1
� � c

q1=2B0

k3=2� u�; (13)

valid in the k�q � 1 regime from the form of the convective

derivative ðc=B0ÞrhuiR � r. Note that the factor of

ðk�qÞ�1=2
is introduced due to the large argument expansion

of the Bessel function associated with the gyroaverage of u�.
In analogy with the microscopic Reynolds number,28 the ini-

tial value and the time evolution of D� provide a natural way
to classify various physical regimes.

In the following paragraphs, we describe three different

decay laws, classified using Eq. (12). They are the weakly col-

lisional (D� � D0), marginal (D� � D0) and strongly colli-

sional (D� 	 D0) cases. Here, the constant D0 denotes the

value of D� that divides these three regimes, which corre-

sponds to the kinetic version of the “critical Reynolds number”

in Ref. 28. D0 is a universal constant by conjecture, which

applies to the asymptotic state of the freely decaying turbu-

lence as we explain below (see also Sec. IVC and Fig. 8).

1. Weakly collisional case

In the asymptotic limit where collision frequency

becomes negligible (� ! 0), the second invariant E does not

decay at all as it is transferred to larger scale where dissipa-

tion is inactive. On the other hand, the first invariant W is

transferred to smaller scales, and is dissipated by small but

finite collisions there. The decay rate of W is determined by

the rate of its transfer to small scales, thus,

dE

dt
� 0;

dW

dt
� �W

s�
; (14)

where we used s� for the characteristic time of nonlinear

transfer at scale l� [see Eq. (13)]. Then from s� � t and

E / u2
� / t0, we obtain
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E � const:; W / k� / t�2=3; (15)

where we used Eqs. (11) and (13). In this limit, Eq. (12)

implies that D� increases in time as D� / t1=3.

2. Marginal case

As collision frequency becomes large, collisional damp-

ing at scale l� becomes important. When it balances with the

nonlinear transfer, the two terms in

dW

dt
� �W

s�
� �k2�q

2W (16)

become comparable, where we have taken the collisional

decay rate to scale as �k2�q
2. From Eqs. (10), (13), and

s� � t, we obtain the following decay laws of collisionless

invariants

E / k� / t�1=2; W / t�1: (17)

Substitution of Eq. (17) into Eq. (12) immediately leads to a

constant D� which equals the marginal dimensionless num-

ber D0. It is noted that Eq. (16) implies that the second invar-

iant also decays by collisions in a consistent manner

dE

dt
� ��k2�q

2E: (18)

3. Strongly collisional case

In this case, we may regard the turbulence to be fairly

dissipative. We find that W and E do not individually satisfy

decay laws as powers of t. However, Eq. (18) applies, as

does the analogous equation describing the collisional decay

ofW

dW

dt
� ��k2�q

2W: (19)

These equations imply [with the help of Eq. (11)] decay laws

for both k� and the ratio E=W

k� / t�1=2;
E

W
/ t1=2: (20)

In this case, we can deduce that D� decays in time. It is noted

that although Eq. (20) holds for both marginal and strongly

collisional cases, the individual decay laws for W and E may

vary with D� [i.e., Eq. (17) is not satisfied here]; however,

the decay law for the ratio E=W is robust.

IV. SIMULATION RESULTS

In this section, we show the results of numerical simula-

tions performed using the MPI-parallelized nonlinear gyroki-

netic code AstroGK.37 All simulations are made in two

spatial dimensions (x and y) and two velocity dimensions

(energy e ¼ v2 and pitch angle k ¼ v2?=e).
29 The system

size is restricted to Lx ¼ Ly ¼ 2pq, so as to focus on the

sub-Larmor regime. Time is normalized by the initial turn-

over time

sinit ¼ 2pB0

ck20jjhuinitiRjj
; (21)

where jjhuiRjj ¼ ½ð1=n0Þ
Ð Ð jhuiRj2F0 dR dv�1=2, and k0 is the

wave number at which initial spectrum is peaked [see Eqs.

(22) and (24) below]. Our biggest run (run D in Table I) used

9216 processor cores for about 50 wall-clock hours.

A. Initial conditions

In order to investigate the freely decaying turbulence,

we prepared initial conditions peaked at a high wave number

k0 (k0q � 1) and made a series of simulations for varying

initial wave number k0 and collision frequency �. Six runs

were made for two kinds of velocity distribution functions

(described below) and are listed in Table I. The different ini-

tial velocity distributions allow us to vary the initial ratio of

invariants. For each initial velocity distribution, we made

weakly and strongly collisional simulations.

1. Coherent velocity distribution (runs A–D)

The first type of the initial velocity distribution is

Bessel-like, with a Maxwellian envelope F0

ĝðk; v?; vkÞ ¼ g0
k2?
k20

exp � k? � k0
kw

� �2
" #

J0
k?v?
X

� �
F0;

(22)

where the width of the wave-number peak is kwq ¼ 1. From

quasi-neutrality [Eq. (3)], it can be deduced that small-scale ve-

locity oscillation whose period in velocity space is comparable

to vth=ðk0qÞ ¼ X=k0 are needed to produce a finite potential

(see the discussions in Sec. IIIA). Indeed, such oscillatory

structure can be found in the eigenmodes of the entropy

mode,38 which can be unstable at quite large k?q. The Fourier-
Hankel spectral density corresponding to Eq. (22) is concen-

trated at k?q ¼ pvth ¼ k0q as plotted in the left panel of Fig. 4

corresponding to t=sinit ¼ 0, and represented by the red spot in

Fig. 3. For Eq. (22), the initial ratio of the invariants is

Winit

Einit

� k0q; (23)

which we note is the same as what is predicted for the time-

asymptotic state, given by Eq. (11).

TABLE I. Index of the runs described in Sec. IV.

Run �sinit k0q Nx � Ny Ne � 2Nk Init. cond.

A 1:7� 10�3 15 642 482 Eq. (22)

B 4:2� 10�4 25 1282 962 Eq. (22)

C 3:3� 10�4 25 1282 962 Eq. (22)

D 5:2� 10�5 40 2562 1922 Eq. (22)

E 4:2� 10�4 40 2562 1922 Eq. (24)

F 3:8� 10�4 25 2562 1922 Eq. (24)
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2. Random velocity distribution (runs E and F)

The second type is a random velocity distribution that

represents velocity scales dv=vth � 1=ðk0qÞ

ĝðk; v?; vkÞ ¼ g0
k2?
k20

exp � k? � k0
kw

� �2
" #

� 1

N

XN
j¼1

ð2dj � 1Þ ffiffiffiffiffiffiffiffiffi
pjvth

p
J0ðpjv?ÞF0; (24)

where the width of the wave-number peak is kwq ¼ 1,

pjvth ¼ ðk? þ kwÞqgj, gj and dj are homogeneous random

numbers in ð0; 1Þ, and N ¼ 50 is the number of random

modes for each k?. The factor of
ffiffiffiffiffiffiffiffiffi
pjvth

p
is introduced to can-

cel the same factor of the Bessel function in the asymptotic

regime (pjvth � 1). As is shown in the left panel (t=sinit ¼ 0)

of Fig. 5, Eq. (24) corresponds to a high-density band paral-

lel to the p axis in the ðk?; pÞ spectral space. In this case, the

initial ratio of the invariants is

Winit

Einit

� k20q
2: (25)

Note that while Eq. (22) is used to represent the velocity

structure of a coherent mode, the distribution (24) is

designed to mimic the random nature of the velocity space

that develops from forward cascade (see Ref. 16).

B. Spectral evolution

The time evolution of the 2D spectrum
^
W
^ ðk?; pÞ [see

Eq. (6)] for runs D and F (Table I) is shown in Figs. 4 and 5,

respectively.

In Fig. 4, the spectrum is concentrated around k?q ¼
pvth ¼ 40 at t ¼ 0 [see also Eq. (22) and Table I]. The spec-

tral density is transferred diagonally to the lower-left corner

of the ðk?; pÞ space. Since the high-ðk?; pÞ components suf-

fer strong collisional dissipation, the upper-right energy con-

tent damps quickly. The remaining lower-left transfer

dominates after t=sinit � 20, and inverse cascade follows.

Nonlinear transfer of the invariants may be directly

monitored as is done for the forward cascade simulation in

Refs. 17 and 39. Following Ref. 40, we define a shell filtered

function by

uKðrÞ :¼
X
k2K

ûðkÞeik�r; (26)

gKðRÞ :¼
X
k2K

ĝðkÞeik�R; (27)

where K ¼ fk : Kq� 1=2 
 jkjq < Kqþ 1=2g. Then the

evolution of energy in shell K is described as

d

dt

n0q
2
i

2T0i

X
k2K

ð1� C0ÞjûðkÞj2 ¼
X
Q

TðEÞðK;QÞ � collisions;

(28)

where we introduced an energy transfer function

TðEÞðK;QÞ :¼ � cqi
B0V

ðð
huKiR huQiR; g

� �
dR dv; (29)

which measures the rate of energy transferred from shell Q
to shell K. Here, V denotes the spatial volume of the domain.

The entropy transfer function is defined in a similar manner

in Ref. 17 and is recaptured here in the present notation:

FIG. 4. Time evolution of the 2D spec-

tra log10½
^
W
^ ðk?; pÞ=W� for run D [see

Eq. (6) and Table I]. Diagonal compo-

nents (k?q ¼ pvth) are indicated by dot-

ted lines.

FIG. 5. Time evolution of the 2D spectra

log10½
^
W
^ ðk?; pÞ=W� for run F [see Eq. (6)

and Table I]. The diagonal (k?q ¼ pvth)
is indicated by dotted lines.
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TðWÞðK;QÞ :¼ � cqi
B0V

ðð
gKfhuiR; gQg

F0

dR dv: (30)

Note that the shell filtering is performed on u and g in Eqs.

(29) and (30), respectively, so that TðEÞ and TðWÞ both satisfy

antisymmetry under exchange of K and Q.
Snapshots of the normalized energy transfer function

TðEÞðK;QÞ=E and entropy transfer function TðWÞðK;QÞ=W at

t=sinit ¼ 77 are shown for the simulation of coherent initial

condition (run D) in Fig. 6. At this time, the peak of the

wave-number spectra (not shown) is located at k?q ’ 4. Fig-

ure 6(a) shows that the energy transfer is (1) well localized

along the diagonal (meaning local-scale interaction), (2) has

strong positive values at ðKq;QqÞ ¼ ð3; 4Þ, ð2; 4Þ, ð2; 3Þ, (3)
has corresponding negative values at ðKq;QqÞ ¼ ð4; 3Þ,
ð4; 2Þ, ð3; 2Þ, and (4) disappears rather quickly at high wave-

number shells; namely, the energy is transferred from large

wave-number shells (small scales) to small wave-number

shells (large scales) around the spectral peak, showing clear

evidence of the inverse cascade of E. This inverse transfer of
E creates the peaked, high-density region at the diagonal of

ðk?; pÞ space, which propagates along the diagonal toward

the small ðk?; pÞ regime as seen at t=sinit ¼ 19 and 96 of Fig.

4. At an initial transient stage, however, we observe differen-

ces including nonlocal transfer, which is discussed else-

where.18,35 Note that as the contribution to E only comes

from the k?q ¼ pvth component of the distribution function,

the transfer in velocity space proceeds in conjunction with

that of position space, effectively “unwinding” fine structure

in position and velocity space simultaneously. This is a strik-

ing feature of the phase-space cascade.

On the other hand, from Fig. 6(b), the entropy transfer (1)

is well localized along the diagonal (meaning local-scale

interaction), (2) has a positive peak at ðKq;QqÞ ¼ ð5; 4Þ and
corresponding negative peak at ðKq;QqÞ ¼ ð4; 5Þ, (3) extends
to larger wave-number shells contrary to the transfer of TðEÞ;
namely, the entropy is mostly transferred from small wave-

number shells (large scales) to large wave-number shells

(small scales), showing clear evidence of the forward cascade

of W. This forward transfer of W creates the broad off-

diagonal spectra seen at t=sinit ¼ 19 and 96 of Fig. 4, similar

to the forward cascade simulation16,17 (see also Fig. 2). How-

ever, it is interesting to note the reversed coloring around

ðKq;QqÞ ’ ð2; 5Þ of Fig. 6(b), which is located outside of the

closest diagonal grids that show forward cascade of W. This

denotes the inverse transfer of W associated with the strong

inverse cascade of E; however, its magnitude is less than 1=3
of the peak of the forward transfer of W [note also the differ-

ence of the scale on the color bar in Figs. 6(a) and 6(b)].

In the case of random initial condition, the initial ran-

dom velocity distribution (24) is characterized by a vertical

band in ðk?; pÞ space (see Fig. 5), covering pvth � 25 (note

that k0q ¼ 25 as shown in Table I, run F). Most of the energy

in the band is transferred to higher wave number and then

dissipated by strong collisions as it is not associated with E
(recall the discussions in Sec. III A). For larger scales

(k?q < 25), excitation of Fourier-Hankel modes is concen-

trated about the diagonal component (k?q ¼ pvth), as seen at

t=sinit ¼ 13 and 65. As can be expected from the time evolu-

tion of the 2D spectra (compare Figs. 4 and 5), random-ini-

tial-condition cases and the coherent-initial-condition cases

show similar transfer after the transient phase (that is, the

transfer functions resemble those of Fig. 6).

Figure 7 shows several slices of Fig. 5. These slices are

taken at the peak of the 2D spectra at each time. Except at

t=sinit ¼ 65, the diagonal component pvth ’ k?q is excited

spontaneously with a nearly Gaussian form, which is in con-

trast to the initial p-spectrum consisting of a broad band occu-

pying pvth� 25. Thus, we conclude that the peaked excitation

about the diagonal is not merely a reflection of a similarly

peaked initial p-spectrum. Furthermore, the peaking of the

spectrum around pvth ¼ k?q, combined with Eq. (9), justifies

the approximation given in Eq. (11). On the other hand, the

Gaussian peak is surrounded by a fairly broad spectrum of an

order of magnitude smaller amplitude, which is due to the ex-

citation of random velocity fluctuation arising from the small-

amplitude forward cascade [see Fig. 6(b)]. Note that at

t=sinit ¼ 65, the spectrum has a fairly broad peak because the

scale of the peak is approaching the system size (due to a

background Maxwellian with the thermal velocity vth).
In both cases, the spectra share some qualitative features

with the runs reported in Ref. 17 (see also Fig. 2): At large

k? and p, the spectral density is broadly distributed about the

diagonal, which is expected from the forward cascade of

W.17 However, in each case, there is a highly peaked diago-

nal component (whose scale is denoted by l� in Sec. III B)

that tends to be the dominant contribution to the total value

FIG. 6. Snapshot of the (a) energy transfer function TðEÞðK;QÞ=E and

(b) entropy transfer function TðWÞðK;QÞ=W at t=sinit ¼ 77 for run D [see

Eqs. (29) and (30), and Table I].
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of the invariants at the later stage. This is the component

generated by the inverse cascade and is discussed in more

detail in Secs. IVC and IVD.

C. Decay laws

The time evolution of the dimensionless number D� is

shown for each of the runs in Fig. 8. Depending on the long-

time behavior, we may classify the runs into strongly colli-

sional, marginal and weakly collisional cases as described in

Sec. III B. Run B corresponds to the marginal case as D�
approaches a constant (D0 ’ 12) in t=sinit � 30. Runs A and

E are strongly collisional as D� decreases in time and runs C,

D, and F are weakly collisional as D� increases in time. The

evolution of D� differs among weakly collisional runs but

approaches the theoretical limit D� / t1=3 as D� increases.
Figure 9 shows the time evolution of the ratio of two col-

lisionless invariants for strongly collisional (runs A and E)

and marginal (run B) cases. Initially, the ratio is of the order

of 1=ðk0qÞ or 1=ðk20q2Þ depending on the initial velocity dis-

tributions [see Eqs. (23) and (25)]. Coherent cases show an

initial phase of constant ratio (t=sinit� 6 for run A and

t=sinit� 8 for run B), which stems from the fact that the initial

condition (22) is almost monochromatic with high-ðk?; pÞ,
and that both collisionless invariants initially decay at the

same rate due to the collisional damping of the distribution

function at the scale k�1
0 . The decay law (20) seems consistent

with both strongly collisional and marginal cases at the later

stage. The case with the random initial condition tends to take

a longer time to approach the theoretical line as the initial ra-

tio, E=W � 1=ðk20q2Þ [see Eq. (25)], is much smaller than the

asymptotic ratio 1=ðk�qÞ. A slight deviation from the power

law is observed at the last stage of the simulation for runs A

and B, which is due to the fact that the cascade has reached

the largest wave length of the system around E=W� 0:2, due
to the finite size of the simulation box.

The time evolution of individual collisionless invariants

are shown in Fig. 10 for the marginal (run B) and weakly

collisional (run D) cases. The marginal run (B) shows a rea-

sonable agreement with the theoretical expectation (17). The

weakly collisional run shows a significantly slower decay

than the marginal case, but still faster than the asymptotic

(� ! 0) limit (15). Computational resources beyond those

available for this study will be needed to unequivocally con-

firm the asymptotic decay laws (15).

D. Self-similarity of spectra

The self-similarity of the spectrum may be investigated

with the approach of Chasnov for 2D fluid turbulence.28

Chasnov defined an instantaneous length scale of the decay-

ing turbulence in terms of the ratio of the two invariants,

FIG. 7. Slices of the 2D spectra of run F along p axis.

FIG. 8. Time evolution of D� for the runs indexed in Table I. Runs A and E

correspond to the strongly collisional case; B corresponds to the marginal

case; and C, D, and F correspond to the weakly collisional case.

FIG. 9. Time evolution of the ratio of collisionless invariants for the

strongly collisional (runs A and E) and marginal (run B) cases. The decay

law (20) is drawn for comparison.

FIG. 10. Time evolution of the invariants for the marginal (run B) and

weakly collisional (run D) cases. Decay law of each invariant (17) is drawn

for the marginal case, and fitted slopes are drawn for the weakly collisional

case.
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energy hu2i and enstrophy hx2i. This is possible because of

the relationship that hold between them at each scale,

namely, vorticity x is a first-order derivative of velocity u.
Here we may define an instantaneous length scale in terms of

the ratio of the two collisionless invariants W and E, based
on Eq. (9). In general, W and E can be nearly independent

due to the extra degree of freedom arising from the velocity

space; however, the present argument is valid when the spec-

tral density is sufficiently concentrated along the diagonal,

k?q ¼ pvth.
We normalize the spectra in velocity space as well as in

position space. On dimensional grounds, we may define

~Wkð~kÞ ¼ k�Ŵðk?; tÞ
W

; (31)

~Ekð~kÞ ¼ k�Êðk?; tÞ
E

; (32)

~Wpð~pÞ ¼ p�W
^ ðp; tÞ
W

; (33)

where k� and p� are the inverses of the characteristic scale

length in position and velocity space, respectively, deter-

mined by [see Eq. (11)]

k� ¼ W

qE
; p� ¼ W

vthE
; (34)

the wave number k? and velocity wave number p are nor-

malized to k� and p�

~k ¼ k?
k�

; ~p ¼ p

p�
; (35)

and the wave-number and velocity-space spectra are defined

by

Ŵðk?; tÞ ¼
X
jkj¼k?

ð
T0i ĵgðkÞj2

2F0

dv; (36)

W
^ ðp; tÞ ¼

X
k

pj^g^ðk; pÞj2; (37)

and Eq. (8).

When we apply the normalization (31)–(33) to simula-

tion results, one would expect a good coincidence for the

same value of D�. Namely, if the theory is correct, the nor-

malized spectra at different times should collapse in the

time-asymptotic regime of the marginal case (run B, see also

Fig. 8).

We first show the normalized spectra defined by Eqs.

(31)–(33) in Fig. 11 for run B (see Table I). As one can eas-

ily expect from the 2D spectra (Fig. 4) and the ratio (Fig. 9),

the spectral peak moves towards larger scales [to smaller

ðk?; pÞ] and we may expect self-similar spectra in the later

stage of the simulation (From Figs. 8–10, we see that

the asymptotic regime is attained in the range 30� t=sinit
� 150). After the ratio E=W approaches the power-law

behavior (t=sinit � 50, see Fig. 9), wave-number spectra

show promising coincidence which indicates a good self-

similarity of the decaying turbulence. Notice especially the

amazing coincidence of the tail at t=sinit ¼ 61 and 120, both

in the time-asymptotic regime as shown in Figs. 8–10. We

also confirm that the peak of the spectra moves towards large

scales roughly with the scaling k� / t�1=2 in this time re-

gime. The last one (t=sinit ¼ 240) is offset by a small amount

because of the fact that the spectral peak has reached the sys-

tem size. The wave-number spectra at the right of the peak

show slopes somewhat steeper than the theoretical prediction

of the forward cascade.16,17 This agrees with the expectation

from 2D fluid turbulence,28 as the dimensionless number D�
is not asymptotically large in the marginal case.

As D� becomes large, the spectral slope becomes shal-

lower and the forward cascade spectra with the slope �4=3
for Ŵ and �10=3 for Ê (see Ref. 16) is expected to be recov-

ered. Figure 12 shows the normalized spectra for run D.

FIG. 11. Normalized spectra for run B (see Table I).
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Comparison with Fig. 11 clearly indicates that the spectral

slopes in Fig. 12 are indeed closer to the theoretical expecta-

tion of the forward cascade, for both spectra of ~Wk and ~Ek.

Collapse of the spectra is as good as Fig. 11. However, as D�
continues to grow for t=sinit � 30 (see Fig. 8), the spectral

slope does change slightly, gradually approaching the theo-

retical prediction ( ~Wk � ~k
�4=3

and ~Ek � ~k
�10=3

) as shown in

Fig. 12. At t=sinit ¼ 380 the spectral peak has reached the

system size and the spectra become offset.

V. SUMMARY

We presented theoretical and numerical investigations of

electrostatic, freely decaying turbulence of weakly collisional,

magnetized plasmas using the gyrokinetic model in 4D phase

space (two position-space and two velocity-space dimen-

sions). Landau damping was removed from the system by

ignoring variation along the background magnetic field. Non-

linear interactions introduce an amplitude-dependent perpen-

dicular phase mixing of the gyrophase-independent part of the

perturbed distribution function, which creates structure in v?
comparable in size to spatial structure (see Fig. 1).

Since our 2D (in position space) system possesses two

collisionless invariants [entropy, or free energy, see Eq. (4);

and energy, see Eq. (5)], a dual cascade (forward and inverse

cascades) takes place when the initial condition consisted of

small-scale fluctuations in position as well as in velocity

space such as in Eqs. (22) and (24). As the dual cascade pro-

ceeds, the peak of the spectra moves towards large scales in

both position and velocity space as shown in Figs. 4 and 5.

Nonlinear transfer is diagnosed by the direct numerical simu-

lation, which shows a clear evidence of inverse (forward)

transfer of energy (entropy) (see Fig. 6). In the inverse cas-

cade, the velocity space spectrum is highly focused due to

the fact that energy comes from coherent structure in the ve-

locity space [see Eq. (9) and Fig. 7], which is in contrast to

the broad distribution of velocity scales excited at each wave

number in the forward cascade.16,17

Following an example from 2D Navier-Stokes turbu-

lence,28 a phenomenological theory of decay is presented

(Sec. III B) as well as the numerical simulation (Sec. IVC).

Several types of asymptotic decay have been identified in nu-

merical simulation, which match up well with the phenome-

nological theory using a classification based on the kinetic

dimensionless number D� [see Eq. (12)]. When D� takes a

marginal value, decay laws of both invariants are identified

[see Eq. (17), Figs. 8 and 10]. In the weakly collisional re-

gime, the invariants decay more slowly [see Fig. 10]; and in

the asymptotic limit where the collision frequency becomes

negligible (but finite), the entropy (or free energy) decays as

t�2=3 while the energy stays constant [see Eq. (15)].

In this paper, we focused on the time-asymptotic regime

of the freely decaying turbulence. Although there is a range

of behavior depending on the strength of dissipation, the

cases are unified by some common features. The most promi-

nent of these features is the dual cascade, whereby the invari-

ant E cascades inversely to large scales while the invariant

W cascades to small scales. The transient and driven cases,

hosts to a broader range of phenomena, have recently been

explored in other works.18,35
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APPENDIX: COLLISION OPERATOR

The collision operator that we use in our numerical sim-

ulations is a linearized model operator described in Refs. 30

and 31. It consists of pitch-angle scattering and energyFIG. 12. Normalized spectra for run D (see Table I).
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diffusion, augmented by a few correction terms introduced

for conservation of momentum and energy. Symbolically, it

is written as

C ¼ Lþ Dþ UL þ UD þ E; (A1)

where L and D denotes the diffusion-type operator in pitch

angle and energy, respectively, UL and UD are momentum

restoring terms associated with L and D, respectively, and E
is the energy restoring term associated with D.

Specifically,

L ¼ �D
2

@

@n
ð1� n2Þ @

@n

� �
(A2)

and

D ¼ 1

2v2
@

@v
�kv4F0

@

@v

1

F0

� �
; (A3)

where �D and �k are collision frequencies and n ¼ vk=v is

the pitch angle. It is noted that L handles the smoothing in n
space while D does it for energy, so with both of them we

can cover the smoothing in the whole two-dimensional plane

of v? and vk. The detailed expression of collision frequencies

and conservation terms is shown in Refs. 30 and 31.
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