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Transient phenomena and secularity of linear interchange instabilities
with shear flows in homogeneous magnetic field plasmas
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Transient and secular behaviors of interchange fluctuations are analyzed in an ambient shear flow by
invoking Kelvin’'s method of shearing modes. Because of its non-Hermitian property, complex
transient phenomena can occur in a shear flow system. The combined effect of shear flow mixing
and Alfven wave propagation overcomes the instability driving force at sufficiently large time, and
damps all fluctuations of the magnetic flux. On the other hand, electrostatic perturbations can be
destabilized for sufficiently strong interchange drive. The time asymptotic behavior in each case is
algebraic(nonexponential © 2001 American Institute of Physic§DOI: 10.1063/1.1336532

I. INTRODUCTION interchange instabilities and its non-Hermitian mathematical

o ) ... background, deriving the time asymptotic behavior by means
It is widely accepted that a shear flow yields stabilizing of Kelvin's method.

effects on various fluctuations through convective deforma-
tions of disturbancek? However, rigorous treatment of the
shear flow effects encounters a fatal difficulty arising from

Recently, Kelvin's method has been applied to a variety

of linear shear flow problem$*’ For neutral and magne-

the non-Hermitiar(non-self-adjoirk properties of the prob- tized fluids, many new fascinating phenomena were discov-
ered; exchanges of energy between background flows and

lem. We may not consider well-defined "modes” and corre- perturbation field$? shear flow induced coupling between

sponding “time constants.” The standard normal mode ap'tc,ound waves and internal waves and the excitation of beat

wavel* the asymptotic persistence due to the periodic energy

predictions of evolution even if perturbation fields remain in : . o
) . . . transfer for two-dimensional shear flowsand the emission
the linear regime. The discrepancies between the theory an

. o . of magnetosonic waves by the stationary vortex pertur-
the experiment on the stability limit of neutral fluids are bationst® These results show that the modas. which are in-
reviewed in Ref. 3. The aim of this work is to establish a 2 ons: u W » Wh !

solid foundation for the analysis of shear flow systems. Wedependent for static fluids, are no longer independent and the

apply Kelvin's method of shearing mod&sThis scheme, coupling of these modes induces the observed energy trans-

previously called the nonmodal approach, actually consistger in the presence of the shear flow. The authors have also

in the combination of two methods which have been widelyapp”ed this method to investigate the basic properties of

used in solving wave equations; the modal and the charaé‘-ink'type instabilities in the presence of a background shear
teristics methods flow and obtained the result that the shear flow mixing al-

Much work has been done on instability problems with Ways overcomes the kink driving at sufficiently large tiffe.
shear flows by means of the modal approach. It is implicitly N this paper, we will first revisit Kelvin’s method from
assumed in the application of the modal scheme that th#'® viewpoint of the characteristics methi@ec. ). We will
motion can be decomposed into a set of independent norm&#View the spectral theory focusing on the general math-
modes with certain time constarit#s is well known, this €Mmatical concept of eigenmode in order to gain a better un-
method is effective in solving problems involving Hermitian derstanding of Kelvin's method. In Sec. Ill, we will formu-
operators, however, when applying it to non-Hermitian sys/ate the equations for the interchange instabilities. In Sec. IV,
tems, we may overlook the secular and transient behavioryve Will derive the ordinary differential equatiof©DE) in
On the other hand, the characteristics method has been usBgne for the evolution of the amplitude of the interchange
in the context of rapid distortion theory for analyzing the instabilities by applying the analysis of shearing modes. In
fluid turbulencé and in the eikonal representation of the bal- Sec. V, by drawing the analogy with Newton’'s equation it
looning mode stability. If we can treat the non-Hermitian Will be shown that the solution to the above-mentioned ODE
part of the whole operator as a singular perturbation to 4or the flux function exhibits an asymptotic damped behavior
Hermitian operatof;® we may be able to construct the theory without any threshold of instability drive. We will also con-
in the framework of the perturbation theory for the sider the electrostatic perturbations in Sec. VI. The solution
operatort® But, unfortunately, the convergence of the pertur-of the derived ODE for the stream function shows the
bative series seems to be very ambiguous in case of the shezgymptotic growth or decay of algebraic type depending on
flows due to the secularity of their time evolutions. Thus, athe magnitude of instability drive. We will summarize the
thorough mathematical treatment of the non-Hermitian propesult in Sec. VII. Moreover in the Appendix, we will also
erties of shear flow systems has not been accomplished show the difficulties encountered by including the magnetic
far. In this paper, we have analyzed the shear flow effect oshear in the present formulation.
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II. NON-HERMITIAN PROPERTY OF SHEAR FLOW iors are effectively described. Let us now explain the math-
SYSTEMS ematical foundations of this scheme.
As mentioned in Sec. II, Kelvin's method consists in the

Before formulating the interchange instability equations,combined application of two methods which have been ex-
let us describe a rough sketch of the problem and explain thgnsively used in the analysis of wave equations. Precisely
mathematical tool to analyze the non-Hermitian dynamicsthe “Lagrangian” part of Eq.(1), d;+Vv-V, is solved by
As is well known, the force operator governing the linearmeans of the characteristics method and the “Hermitian”
dynamics of static magnetohydrodynarti¢HD) plasmas in  part 4 by means of the standard spectral resolution.
Hermitian,ls and therefore the perturbation fields can be de- The characteristics method is app||ed to solve the char-
composed into a set of orthogonal eigenmodes which shoycteristic ODE associated to the Lagrangian derivative mov-

purely exponentiaunstablg or purely oscillating(stable  ing along the characteristic curve of the ambient motion,
evolutions. A nontriviality stems from the Alfwéc and  \which is given by

acoustic continuous spectra; the phase mixing damping oc-

curs. This behavior, however, is totally within the framework ax _ _ 2
" v, X(0)=§& 2

of the well-known theory of Hermitian operatd'r. dt

In the case where ambient shear flow exists, howevergy inyerting the modes, which are expressed in Lagrangian

the operator becomes non-Hermitian and resolution in termgg o dinates as(k,&), they will be represented in Eulerian

of orthogonal eigenmodes fails. From a dynamical point of.,rdinates as
view, the system experiences evolutions of a complex type.

In the following sections, we will show examples of such  @(t;k,x)=e(k,&t;x)), 3

kind of “non-Hermitian” dynamics where transient phe- \yhereg(t;x) denotes the inverse aft;£). The existence of
nomena and secular evolutions play a dominant role. Similaghe jnverse mapping(t)— & is guaranteed in the case of

evolutions are found in the case of non-Hermitian operatorg,compressible mean flows. Due to ES), $(t;k,x) satis-
in finite dimensional vector spacéslt has to be stressed fies the characteristic equation

how the application of the traditional modal paradigm to ~ ~

non-Hermitian systems, which assumes exponential evolu- ®(t:K,x)+Vv-V(tk,x)=0. 4
tion of the perturbation fields, hinders the possibility of  The essential condition for the applicability of Kelvin's
catching these rich variety of transient and algebraic phemethod consists in the constraint for the funcfigft; k,x) to
nomena. In this section, we will discuss Kelvin's method andiorm the complete set of eigenfunctions of the operatotf

show its suitability to the analysis of shear flow non-sych a set of eigenfunctions exists, we can decompose the
Hermitian systems. We will revisit it from the viewpoint of perturbation fieldu by means of

the characteristics method showing that it represents a gen-
eralization of the modal approach. u:f G (D) B(t:k,x)dk. (5)
Unlike matrices, clear classification of differential opera- Y

tors becomes extremely difficult due to their infinite dimen-\ye notice that due to Eq3) the eigenvalues aft become

sionality of the spaces they act on, and also to their unboungime dependent. The new eigenvalue problem Aoreads
edness. The linearized dynamics of fluid systems in the

presence of sheared flow is governed by a general equation A®(LK.X) =N (D)@(t;K,x). (6)
of the following type: Plugging Eq(5) into Eq.(1) and exploiting Eqs(4) and
(6), we have
du+v-Vu=Au, (1)

f [<9t0k(t)]“¢(t;k,X)dk=f Ok M (D) @(t;k,x)dk.
where A denotes a Hermitian differential operat@ime-

independentdefined in a Hilbert spac¥, v is the stationary ™
mean flow, andi( e V) denotes a perturbation field. Due to the orthogonality of the mod&g(t;k,x), the evolu-
It is the convective derivativey- V, that introduces the tion of Oy is governed by the equation
non-Hermitian property into problerfl) and prevents the
possibility of representing the dynamics of the systems in &Uk(t)=)\k(t)0k(t). (©)]
terms of the orthogonal and complete set of eigenfunctions.
This is a well-known difficulty in the stability analysis of If @(t;k,x) do not satisfy both conditions given by charac-
neutral fluids, such as Couette or Poiseille flows, where thé¢eristic equation(4) and eigenequatio(6), Eq. (7) will have
predictions obtained by means of the modal methods do natdditional terms which represent the complicated mode cou-
match the experiments. pling and thus the applicability of Kelvin’s method is com-
In the case of a spatially inhomogeneous stationary flowpromised.
v, Eq. (1) becomes non-Hermitian and a straightforward Due to the time dependence present in the eigenvalues
spectral resolution is not effective. However, Kelvin's \(t), the evolution oft(t) will not exhibit a simple expo-
method permits to resolve, for some classes of mean flowsiential dependence as in the Hermitian case, but more com-
the evolution of the systertl) into new types of modes by plicated behaviors, which are characteristic of non-Hermitian
means of which both transient and secular asymptotic behawystems. By analyzing this ODE, the motion of each mode
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can be classified, and the time asymptotic behavior can also The ambient fieldgdenoted by the subscript) Gnust
be shown. The following sections will be devoted to thesatisfy

derivation of ODE(8) and the discussion of the behavior of )

its solution for interchange instabilities in plasmas with shear ~ PoVo" VVo=joXBo=VPo+ pog. (14

flow. If we consider a parallel stationary shear flow of the form

Vo=(0poy(X),0), straight homogeneous magnetic fidlg
Ill. FORMULATION OF INTERCHANGE INSTABILITIES =(0,8,,B,), and gravitational force acting in the positixe
(girection, the convective derivative gives no contribution to

Interchange instabilities have been analyzed for stati ) X
the stationary state and E@.4) is reduced to

plasmas by many authof$:23In the case of stati¢station-

ary ambient floowy=0) plasmas, the ideal MHD equations VDo= 15
. . - . . Po=pog. (15
can be reduced into a simple partial differential equation of
the form'® The above equation denotes that the pressure gradient is bal-
2 anced by the gravitational force in thalirection. This is the
dr&=TF§&, 9

same condition which holds for static neutral fluids.

whereé is the displacement vector afdis the force opera- The perturbed magnetic and velocity fields are assumed
tor which is Hermitian(self-adjoin} when the plasma is sur- to be two dimensional in th&—y plane, and thus we can
rounded by an ideal conducting wall. In order to analyze thentroduce the poloidal flux function and stream function,
stability of the system, we can apply the spectral method and

represent the dynamics in terms of a superposition of har- B1.=V¥X&, Vi =V@Xxe, (16)

monic oscillations of modes. Another method of analyzingwhere the subscript 1 denotes the perturbed quantities,

the stability of the static plasmas is to apply the energy,,, eqses the direction perpendicular to the dominant mag-

principle?! which is a variational approach based on the Her-

o netic field directed along the axis, ande, denotes the unit
mitian property of the force operatdf. These methods Show yector in thez direction. Using these representations, we can

that the interchange modes have spatially localized structurg§iminate the pressure from governing equations

near the mezzz’rginal stabilit§ except wherp’ =0 on the ratio- Taking the curl of the equation of motion and projecting
nal su-rfac ' oo ) i it alonge,, we obtain

It is remarkably difficult to estimate the exact linear sta-
bility of the system in the presence of a stationary shear floWopol (94+v0ydy) VE =00, dy ]
since, as seen in the preceding sections, the dynamics be- 5
come non-Hermitian and both the spectral and the variational = Bo* V(VL#)+ 1odyp19, (17)
mgthods lose their mthematlcaI found.atlo.ns. Dispersion r& here Vf=02/5x2+¢92/ay2. In deriving Eq.(17) we have
lations have been studied in many publicatiéni§ however, ; L ) el

. : ’ " used the Boussinesq approximation which consists in the ne-
as discussed in Sec. |, the evolution of a hon-Hermitian sys- . h . o

. . glect of the spatial variation of the stationary state density in

tem cannot be reconstructed from the formal dispersion relay "~ " . . : .
) . he inertial term of the equation of motion, but not in the
tion, because we do not have a spectral theory. Since the

: . . . o continuity equation since it is the driving term for the inter-
proper asymptotic behavior of interchange instabilities are v eq 9

not clearly shown vet, we will first analyze simplified sys- cthange instability. Physically it is valid provided that the

. ", variability in the density is due to variations in the tempera-
tems focusing on the non-Hermitian property of the system
. . . . . ; ture of only moderate amount$The component of the flow
In this section, we will derive the equations for stationary

flowing plasmas. Specifically we will investigate the effect perpendicular to the ambient magnetic field can be consid-

. . ered consistently coming from thex B drift, taking into
of shear flows on interchange instabilities of plasma under . , . .

. e account the ideal Ohm’s law. It is noted that, if we neglect
the influence of homogeneous magnetic field.

o . he eff f the magnetic field, we recover the Rayleigh’
In the presence of gravitational force, the ideal MHDt € e'ect oft € mag etic ed., € recove the Rayleigh's
, equation for Kelvin—Helmholtz instabilit§?
equations read as : .
The density fluctuation can be expressed as

dv

pa:JXB—Vp+pg, (10 (ﬁt+U0y&y)pl:_péay¢v (18)

dp where the prime denotes the derivative with respeck.to

a-l—pV-V:O, (11 Now p/( is considered as a constant which introduces a de-
stabilizing force. The induction equation is the same as in the
ordinary reduced MHD equatioffsand under the above as-

7~ VX(vxB)=0, (12)  sumptions on the stationary fields reads as

V.-v=0, (13 (dy+voydy) =By V ¢. (19

wherep, B, andg are the density, magnetic field, and gravi- Equations(17)—(19) constitute a closed system of equa-

tational constant vector, amtidt=d;+v-V denotes the La- tions. We can see that the static systarg, (0) governed
grangian derivative. Here we assume the incompressibility oby these equations shows Hermitian property, and the con-
the velocity fieldv, instead of using the equation of state. vective derivative ¢,,#0) brings the non-Hermitian prop-
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erty into our system. We will investigate the effect of the 5 dir
shear flow on the interchange instabilities in the following& (ky(t)%+ ki)a
sections.
F2 - ~ 2P09~
== —(k(O?+ KD I kg—— 1), (26
IV. DERIVATION OF ORDINARY DIFFERENTIAL MoPo Po
EQUATION where F=k-By=k,Bo,+k,Bg,, and we have dropped the

In this section, we derive the ODE for the amplitude of subscriptk for simplicity. Wg notice that .in thel absence_of
Kelvin's modes, given in Eq(8), in the case of interchange shear flow ¢-=0) the usual interchange instability equation

instabilities of plasmas. Let us first consider the electromagfor Static equilibrium can be obtained.

netic case wheré,- V0. From Egs.(18) and (19), we Our procedure can be readily shown to coincide with the
have traditional formulation of Kelvin's method consisting in the
coordinate transformt(x,y,z)—(T,&, ,{) defined by

¢:_&;1p6_1(8t+00y‘9y)P1:(BO'V)_1(3t+UOy‘9y)¢-(20) T=t, &=x, n=y-otx, {=z (27)
Since we have assumed the mean velogify=u,(x) and and the Fourier transform with respect to the new coordi-
the homogeneous ambient fiedd= (0B, ,B,), the operator nates

dr+voydy commutes with bothy, * and Bo-V) L Thus 0(Kg K, k3 T)

acting on both sides of Eq(20) with the operator &,
+vgydy) ! gives

:f f f +wu(an.g:T)ei<kf‘f+kv’7+kzé”)olgdndg. (29

p1="—pody(Bo- V) tip. (21) )
From Eq.(19), Normalizing the timet_by the pqloid_al Alfym time 7,
=avuopo/F, we can rewrite Eq(26) in dimensionless form
Vi¢=V2(By- V) H(ditvoydy) . (22 as
Substituting Egs(20) and(22) into Eq.(17), and acting with al _ dfp 5 A 7’/2« .
Bo- V on both sides, we obtain gl (D24 KD) | = = (O KD PG o, (29)
G
2
(9t voydy) Vilditvoydy) ¥ where the wave vectors are normalized by the characteristic
(Bo-V)? ) pog ) length scalea and réz—polp[)g. Further we can rewrite
=——Viy——— 23 Eg. (29 in the f
Lopo y oo v (23 g. (29 in the form
- -
Since the operator on the right-hand side is Hermitian, ~d°¥ dy .
we can decompose the flux functigrby means of the shear- dt? ) dt FLL=SO]¥=0, (30
ing eigenmodes where
w(x,t)=f I(DB(t:k,x)dk, (24) © 20k ky(t) S0 koG
I-L = _’_‘—l = ’_‘—1
where each eigenmode can be expressed by the sinusoidal k(1) + kS k(1) + k5
function in our simplified case and G=3/75. Drawing an analogy with Newton's equa-
B(t;k,x)=exd ikx+iky (y—vo,t) +ik,z] tion, w(t) represents the frictional term arg(t) the inter-
. _ _ change drive term. Equatid0) is the correspondent of Eqg.
=exg ik, (t)x+ikyy+ik,z]. (25  (8). As we have mentioned in Sec. Il, the time evolution for

Here the mean flow is assumed to bg,(x)=ox and the amplitude of each eigenmode is no longer a simple ex-
y . . . ~ . . .
T(X(t):kx—kyat. It is explicitly shown that the wave num- ponential function. The behavior af will be discussed in

ber in the flow shear direction is linearly increasing with the following sections.
time due to the distorting effect of the mean flow. Since
continuous variation ok,(t) prevents from imposing the V- ASYMPTOTIC AND TRANSIENT BEHAVIOR OF

boundary condition in the bounded domain, we will concen-FACH MODE

trate on the analysis of localized perturbations by consider-  |n the absence of a density gradient or shear flagt)

ing the infinite domain. Note that are the eigenfunctions of =g5(t)=0 in Eq.(30) and we have a pure oscillation repre-

the right-hand side of Eq23), and also satisfy the charac- senting the Alfva wave. If we include the density gradient,

teristic equation(4). It should be noted that the presence ofthen S(t)+#0 and we obtain the interchange instability for

the Laplacian operator on the left-hand side of ) does  negativep;. Since a homogeneous magnetic field is as-
not hinder the application of Kelvin's method since the sumed in this paper, we have no stabilizing effect of the

modesgp are as well eigenfunctions of the Laplacin[.A magnetic shear. The operator is Hermitian in these two cases,
Thus, the time evolution equation for the amplitudle  therefore we have the simple exponential evolution with time
can be written as constants for each mode.
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When we include the shear flow, we hauét) #0 and 0.35 . -
we can draw an analogy with the dynamics of a damped 0.3+
oscillator with time dependent frictional coefficiept(t). 0.25
When time goes,u(t) becomes always positive, which 02}
means a formal dissipation, and therefore the oscillation en—::< 0.15 | ]
ergy of the Alfven wave[ (dJ//dt)?+ J2]/2 decreases mono- o 0.1 | |
tonically. In the following sections we will describe both the § 0.05 | n j
asymptotic and transient behaviors of the amplitu&es 2 0 AVAV/\V/\UI\U(\ ﬂ’\Un\jﬂuﬁvnvMVV\/VW\N\’VWWVWWW"W"W‘”
= oos| | UUU ]
A. Asymptotic behavior 0.1}t
In order to study the time asymptotic behavior, we as- -0.15 ¢
sumet>k,/oky,1/o. In this time asymptotic limit we obtain -0.2 ' : ' : )
the following ODE: 0 50 100 150 200 250 300
Transformed time
dZAJFZdAJrl Glo? -0 a1 30 : : : .
eVttt —=|¢=0 (3D
20
where G= r3/75 denotes the magnitude of the instability _
drive term. In the absence of the instability dri@ethe time 5 10
asymptotic behavior of the solution of E@1) is expressed §
as g 0 A
o
~ 1 o
¢x~?smt, (32 > -10
m
which coincides with the result of Kopgélwhich consid- 20
ered a time dependent nonperturbative state. Since3y.
is the spherical Bessel equation, its general solutionGor -30 - : : : .
#0 is expressed by 0 50 100 150 200 250 300
Transformed time
~ 1
=—=(C1J, (1) +C,Y, (1)), (33 FIG. 1. Direct numerical integration of E¢30) for each mode. The param-
\/f eters are as followsk,=10,k,=1,k,=0, 0=0.2,G=1, and initial pertur-

where J, and Y, denote the Bessel functions, ang Pationsy=0anddy/dt=10 att=0.

=(G/o?+ 1/4)Y2. Therefore the time asymptotic behavior of
the mode is expressed generally as

P g y Fig. 1. It should be noted that the instability driGeasymp-
~ } il t— ﬂ+ s totically has the only effect to shift the phase of the oscilla-
4 tsm tions as can be seen in Eq84) and (35), and it does not

2
. ... affect the principal time dependence. The combined effect of
where § denotes a constant phase depending on the mmz{te Alfvénpwaveppropagatign and shear flow mixing always

values. Therefore the mode oscillates with amplitydee-  ,yercomes the interchange drive and the oscillations of the
caying with the inverse power of time. While thecompo-  magnetic flux asymptotically decay with proportion to the
nent of the perturbation magnetic fieltd is proportional to  inverse power of time.

¢, they componentb, is proportional tok,(t)#. Thusb,

tends to the pure oscillatory behavior

; (39

B. Transient behavior
vy

t_7+5

by~sin

, (35 In this section, we analyze the transient behavior of each

mode. Since an analytic expression is not available, we dis-
ask,(t) increases with proportion to timesee Fig. 1 It ~ cuss the transients by qualitatively analyzing the OB8.
should be noted that there is no threshold value for the std the absence of the instability drive, we have

bilization of the interchange instability, since we obtain the dl{d 2 di 2
same spherical Bessel equati@i) for all modes. All modes — =] + 4P| =—u(t) —) , (36)
evolve as in Eq(31) independently of the values of wave de | dt dt
numbersk. where

The final amplitude of each mode depends sensitively on _
the parameters. As the shear parameter increases, the final 20kyK,(t)

i H ; pnt)y=—-—"—"—"—",

amplitude ofb, tends to be larger as is also shown by Chage- K (24K
lishvili et al,'? while the mixing damping effect ob, in- Y
creases. The numerical integration of Eg0) is shown in ~lix(t):kx—akyt.
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Therefore, the frictional coefficient(t) acts as a damping d2. 4d. 2-a.

force for u>0. Since the sign of the denominator itt) is el Tt = =0 (40)
always positive, the behavior will be determined by that of

the numerator. The numerator can be expressedodk22 ~ Where a=yg/o? denotes the ratio of the strength of the
— 20k k, and according to its initial value we can single out interchange destabilizing effect and flow shear stabilizing

two classes of the transients. one. Note that this ODE is not dependent on the wave num-
When the producirk,k, is negative, the frictional coef- bersk. The solution of Eq(40) reads
ficient u(t) is always positive from the beginning, therefore &=C1tm++C2tm*, (41)

the shear flow acts as a damping force at any time and the
mode shows simple damped behavior. On the other hand, Where
the productok, k, is positive, the frictional coefficient(t) . T
is initially negyative and changes its sign at the instgnt m+:ﬂ_ (42)
=k, /ok,. Therefore the mode experiences an initial ampli- 2
fication lasting until the time,, , which is even faster than it The time asymptotic behavior is therefore determined by the
would be in the presence of the only interchange drive. Thisarger indexm. . Thus we can state the condition for the
transient behavior can also be seen in Fig. 1, where the initiglg;ndedness 0% as
amplification lasts until the turning poit =50 followed by
the asymptotic decaying phase. =2 — } P'L9<02 43)
We have observed by numerical integration that the am- B 2 po
plitude can be amplified to values of #Gimes larger than . A .
The condition for the boundedness ¢fhas been improved

the initial one. From a physical point of view, such huge " : e
P ; ; with respect to the static cas@y=0) due to the mixing
amplifications may break down the linearity of the perturba- s :
fect of the shear flow. The electrostatic perturbation can be

tions and may lead to a nonlinear stage. This case is beyori ) ) ,
the scope of the linear theory and no sure conclusion can Hitearly unstable while the electromagnetic one is completely

drawn from Kelvin's method. Such huge amplifications areStabilized. The direct numerical integration of the OL#B)
experienced by modes with large and G. is |Ilustrate_d in I_:lg. 2. The transient beha_vlor can be ob-
served until the timé, =5, and the asymptotic behavior fol-
lows. The asymptotic behavior is shown to be algebraic with
the powerm, as pointed out by means of the analytic treat-
When the wave vector is perpendicular to the ambienmment.
magnetic field, the formulation for the flux functiof23) We notice that the stability condition is not well defined
fails. For this “electrostatic limit,” we discuss the evolution here. In fact by imposing the boundedness}sziEX(t)<}s
of the stream functiorp. The governing equations are Egs. ~t1*™+  the same conditiopy,=0 as the static case is ob-
(17) and(18), since the flux freezing equation can be decou-tained. If we consider the other fields which are represented
pled due to the fact th&,- V=0. In the case of electrostatic by higher derivatives, e.g., the vortex perturbations, more
perturbations, drift wave may be destabilized, however, westrict conditions for their boundedness will be recovered.
have dropped the drift wave branch here in order to concersince the mixing effect of the shear flow distorts the struc-
trate our attention on the single fluid MHD model. Applying ture of the perturbations into smaller scales, the fields char-
di+vydy to both sides of Eq(17) and substituting it into  acterized by the higher derivatives will have stronger secu-

VI. ELECTROSTATIC INSTABILITY

Eq. (18), we have larities. Unlike the static case where the evolution of the
plg fields can be expressed in a common exponential form, they
(i v0ydy) V2 p=——= i, (37)  exhibit different evolutions with respect to each other in
Po shear flow systems. This effect could be a pathological prob-
for a linear shear flow. We represapiin terms of the shear- lem of describing the stability condition for shear flow sys-
ing modes given in Eq25), tems.
¢(X,t):J (1) p(t:k,x)dk. (38 Vil SUMMARY
By substituting Eq(38) into Eq. (37), the following ODE is Kelvin's method of shearing modes is interpreted as a
obtained: combination of modal and characteristic methods for the
42 analysis of a non-Hermitian system. A shear flow distorts
W[(T(x(t)2+ ki);ﬁ]:kiyé(},, (399 each Fqurier mode, resulting in a change of the wave num-
ber, which represents the stretching effect of the shear flow.
where yé:_pég/po(:Téz) denotes the characteristic By means of this method, we have first analyzed the

growth rate of the interchange instability. Here again weincompressible electromagnetic perturbations in the presence
have dropped the subscriftfor the sake of simplicity. In  Of an interchange drive and obtained the ordinary differential
order to investigate the time asymptotic behavior of eactequation(30) for the amplitude of the modeg, . All modes
mode, we assume>Kk, /kyo andt>1/o, then Eq.(39) be-  show asymptotic decay proportional to the inverse power of
comes time (nonexponential without any threshold value. This
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500 type modesEq. (32) in Ref. 17] are mathematically equiva-

'alpha=6.5 M lent. Of course these two modes may have spatially different
450 | alpha=2 ] structures, at least this is the case for static equilibria. But
S 400 ¢ 1 this fact means that they have no difference in time evolu-
= 350 1 . tion, and we can say that these terms have the same effect in
= 300 r 1 the sense that they enlarge the spectrum to unstable eigen-
L 250 1 values. This equivalence stems from the assumption of a
g 200 | 1 spatially homogeneous magnetic field. The possibility of in-
L 150 } ] cluding the magnetic field inhomogeneity is investigated in
D 100 | ] the Appendix.
50 | ’/ R ] We have also investigated the time evolution for electro-
0 Fooo g static (K-Bp=0) perturbations, which do not excite the
0 5 10 15 20 25 30 35 40 45 50 Alfvén wave, since they do not bend the magnetic field line
. ) during their growth. The flow shear has been shown to have
Time a stabilizing effect also on electrostatic disturbances, how-
7000 e ever, the phase mixing effect alone cannot completely stabi-
alpha=3.3 —— lize the interchange instabilities. The condition for the
c 6000 | boundedness of the mode amplitudgscan be expressed in
S 5000 . Eq. (43) by means of a ratio of instability strength to shear
§ parameter of the mean flow. We have shown that the time
2 4000 + ] evolution of these unstable modes is again of algebraic type.
£ 3000 ] Notice that the conditions for the boundedness of different
s observatives do not coincide. The discrepancies originate
% 2000 from the fact that, in shear flow systems, different fields ex-
1000 | perience algebraic evolutions characterized by different pow-
ers of time, while the evolutions for any fields are expressed
0 in a common exponential form for static systems.

0 5 10 15 20 25 30 35 40 45 50
Time ¢
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away at sufficiently large time due to the combined effect of

the Alfven wave propagation and distortion of modes by
means of the background shear flow; i.e., phase mixing ef-
fect. However, the transient behavior is not common for alAPPENDIX: INHOMOGENEOUS MAGNETIC FIELD
modes. Depending on the initial wave number, some of them
shovl\:jtrgn&en:hampl|f|cat|ons V]:’htfh arel evetn faﬁter tha(rj\ theﬁs consider the three-dimensional MHD equation for the
wou € in the presence of the only Interchange drve,, | tion of the perturbation fields, which can be written in
These amplifications are so conspicuous that they may le ag

artesian coordinates as
to the break down of the linearity of the perturbation fields.

In order to consider the effect of the magnetic shear, let

It should be noted that, since our treatment considers the | gy, o\ By Vb Bo-b
case of parallel linear shear flow, Kelvin—Helmholtz insta-Po 7+V0 Vvi+vg—— ax ) o - (Po o |’
bilities, which originate from the second-order spatial deriva- (A1)
tive of the background shear fl&t#?° are beyond the scope
of the present theory. From a mathematical point of view, weyb Vg
stress that the Kelvin—Helmholtz instability is a problem in-; *Vor VO=Bo Vv +b,— - (A2)

volving purely non-Hermitian operators in the sense that the
operator. A of Eg. (1) itself becomes non-Hermitian and where b denotes the perturbation magnetic field awng
therefore the method developed in Sec. Il cannot be applied= (0,0%,0). Assuming By=(0,Boy(X),Bo,(X)), we can
This is a well-known instability in fluid dynamics whose transform the coordinate as,f/,z)— (X, 7,{) with { along
rigorous mathematical treatment presents highly nontriviathe local ambient magnetic field line angperpendicular to
difficulties. x and {. In this coordinate, we have the stationary flow ex-
We note that the ODE which gives the evolution of thepressed as (0g,(x),vo,(x)). Here, the spatial dependence
amplitudes of the interchange mod@®) and that of kink-  of the velocity components are
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1 1 Cartesian coordinates. This fact shows that the introduction

Boz0X, UogZB—OBOyUX- (A3)  of the magnetic shear is essentially equivalent to that of the
nonlinear shear flow profile.
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