
PHYSICS OF PLASMAS VOLUME 8, NUMBER 2 FEBRUARY 2001
Transient phenomena and secularity of linear interchange instabilities
with shear flows in homogeneous magnetic field plasmas

T. Tatsuno, F. Volponi, and Z. Yoshida
Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0033, Japan

~Received 14 August 2000; accepted 27 September 2000!

Transient and secular behaviors of interchange fluctuations are analyzed in an ambient shear flow by
invoking Kelvin’s method of shearing modes. Because of its non-Hermitian property, complex
transient phenomena can occur in a shear flow system. The combined effect of shear flow mixing
and Alfvén wave propagation overcomes the instability driving force at sufficiently large time, and
damps all fluctuations of the magnetic flux. On the other hand, electrostatic perturbations can be
destabilized for sufficiently strong interchange drive. The time asymptotic behavior in each case is
algebraic~nonexponential!. © 2001 American Institute of Physics.@DOI: 10.1063/1.1336532#
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I. INTRODUCTION

It is widely accepted that a shear flow yields stabilizi
effects on various fluctuations through convective deform
tions of disturbances.1,2 However, rigorous treatment of th
shear flow effects encounters a fatal difficulty arising fro
the non-Hermitian~non-self-adjoint! properties of the prob-
lem. We may not consider well-defined ‘‘modes’’ and corr
sponding ‘‘time constants.’’ The standard normal mode
proach breaks down, and the theory may fail to give corr
predictions of evolution even if perturbation fields remain
the linear regime. The discrepancies between the theory
the experiment on the stability limit of neutral fluids a
reviewed in Ref. 3. The aim of this work is to establish
solid foundation for the analysis of shear flow systems.
apply Kelvin’s method of shearing modes.4 This scheme,
previously called the nonmodal approach, actually cons
in the combination of two methods which have been wid
used in solving wave equations; the modal and the cha
teristics methods.

Much work has been done on instability problems w
shear flows by means of the modal approach. It is implic
assumed in the application of the modal scheme that
motion can be decomposed into a set of independent no
modes with certain time constants.5 As is well known, this
method is effective in solving problems involving Hermitia
operators, however, when applying it to non-Hermitian s
tems, we may overlook the secular and transient behav
On the other hand, the characteristics method has been
in the context of rapid distortion theory for analyzing th
fluid turbulence6 and in the eikonal representation of the b
looning mode stability.7 If we can treat the non-Hermitian
part of the whole operator as a singular perturbation t
Hermitian operator,8,9 we may be able to construct the theo
in the framework of the perturbation theory for th
operator.10 But, unfortunately, the convergence of the pert
bative series seems to be very ambiguous in case of the s
flows due to the secularity of their time evolutions. Thus
thorough mathematical treatment of the non-Hermitian pr
erties of shear flow systems has not been accomplishe
far. In this paper, we have analyzed the shear flow effec
3991070-664X/2001/8(2)/399/8/$18.00
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interchange instabilities and its non-Hermitian mathemat
background, deriving the time asymptotic behavior by me
of Kelvin’s method.

Recently, Kelvin’s method has been applied to a vari
of linear shear flow problems.11–17 For neutral and magne
tized fluids, many new fascinating phenomena were disc
ered; exchanges of energy between background flows
perturbation fields,13 shear flow induced coupling betwee
sound waves and internal waves and the excitation of b
wave,14 the asymptotic persistence due to the periodic ene
transfer for two-dimensional shear flows,15 and the emission
of magnetosonic waves by the stationary vortex pert
bations.16 These results show that the modes, which are
dependent for static fluids, are no longer independent and
coupling of these modes induces the observed energy tr
fer in the presence of the shear flow. The authors have
applied this method to investigate the basic properties
kink-type instabilities in the presence of a background sh
flow and obtained the result that the shear flow mixing
ways overcomes the kink driving at sufficiently large time17

In this paper, we will first revisit Kelvin’s method from
the viewpoint of the characteristics method~Sec. II!. We will
review the spectral theory focusing on the general ma
ematical concept of eigenmode in order to gain a better
derstanding of Kelvin’s method. In Sec. III, we will formu
late the equations for the interchange instabilities. In Sec.
we will derive the ordinary differential equation~ODE! in
time for the evolution of the amplitude of the interchan
instabilities by applying the analysis of shearing modes.
Sec. V, by drawing the analogy with Newton’s equation
will be shown that the solution to the above-mentioned O
for the flux function exhibits an asymptotic damped behav
without any threshold of instability drive. We will also con
sider the electrostatic perturbations in Sec. VI. The solut
of the derived ODE for the stream function shows t
asymptotic growth or decay of algebraic type depending
the magnitude of instability drive. We will summarize th
result in Sec. VII. Moreover in the Appendix, we will als
show the difficulties encountered by including the magne
shear in the present formulation.
© 2001 American Institute of Physics
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II. NON-HERMITIAN PROPERTY OF SHEAR FLOW
SYSTEMS

Before formulating the interchange instability equation
let us describe a rough sketch of the problem and explain
mathematical tool to analyze the non-Hermitian dynam
As is well known, the force operator governing the line
dynamics of static magnetohydrodynamic~MHD! plasmas in
Hermitian,18 and therefore the perturbation fields can be
composed into a set of orthogonal eigenmodes which s
purely exponential~unstable! or purely oscillating~stable!
evolutions. A nontriviality stems from the Alfve´nic and
acoustic continuous spectra; the phase mixing damping
curs. This behavior, however, is totally within the framewo
of the well-known theory of Hermitian operators.19

In the case where ambient shear flow exists, howe
the operator becomes non-Hermitian and resolution in te
of orthogonal eigenmodes fails. From a dynamical point
view, the system experiences evolutions of a complex ty
In the following sections, we will show examples of su
kind of ‘‘non-Hermitian’’ dynamics where transient phe
nomena and secular evolutions play a dominant role. Sim
evolutions are found in the case of non-Hermitian opera
in finite dimensional vector spaces.20 It has to be stresse
how the application of the traditional modal paradigm
non-Hermitian systems, which assumes exponential ev
tion of the perturbation fields, hinders the possibility
catching these rich variety of transient and algebraic p
nomena. In this section, we will discuss Kelvin’s method a
show its suitability to the analysis of shear flow no
Hermitian systems. We will revisit it from the viewpoint o
the characteristics method showing that it represents a
eralization of the modal approach.

Unlike matrices, clear classification of differential oper
tors becomes extremely difficult due to their infinite dime
sionality of the spaces they act on, and also to their unbou
edness. The linearized dynamics of fluid systems in
presence of sheared flow is governed by a general equa
of the following type:

] tu1v•“u5Au, ~1!

where A denotes a Hermitian differential operator~time-
independent! defined in a Hilbert spaceV, v is the stationary
mean flow, andu(PV) denotes a perturbation field.

It is the convective derivative,v•“, that introduces the
non-Hermitian property into problem~1! and prevents the
possibility of representing the dynamics of the systems
terms of the orthogonal and complete set of eigenfunctio
This is a well-known difficulty in the stability analysis o
neutral fluids, such as Couette or Poiseille flows, where
predictions obtained by means of the modal methods do
match the experiments.3

In the case of a spatially inhomogeneous stationary fl
v, Eq. ~1! becomes non-Hermitian and a straightforwa
spectral resolution is not effective. However, Kelvin
method permits to resolve, for some classes of mean flo
the evolution of the system~1! into new types of modes by
means of which both transient and secular asymptotic be
Downloaded 17 Feb 2001 to 130.69.86.66. Redistribution subject to 
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iors are effectively described. Let us now explain the ma
ematical foundations of this scheme.

As mentioned in Sec. II, Kelvin’s method consists in t
combined application of two methods which have been
tensively used in the analysis of wave equations. Precis
the ‘‘Lagrangian’’ part of Eq.~1!, ] t1v•“, is solved by
means of the characteristics method and the ‘‘Hermitia
part A by means of the standard spectral resolution.

The characteristics method is applied to solve the ch
acteristic ODE associated to the Lagrangian derivative m
ing along the characteristic curve of the ambient motio
which is given by

dx

dt
5v, x~0!5j. ~2!

By inverting the modes, which are expressed in Lagrang
coordinates asw(k,j), they will be represented in Euleria
coordinates as

w̃~ t;k,x!5w~k,j~ t;x!!, ~3!

wherej(t;x) denotes the inverse ofx(t;j). The existence of
the inverse mappingx(t)°j is guaranteed in the case o
incompressible mean flows. Due to Eq.~3!, w̃(t;k,x) satis-
fies the characteristic equation

] tw̃~ t;k,x!1v•“w̃~ t;k,x!50. ~4!

The essential condition for the applicability of Kelvin’
method consists in the constraint for the functionw̃(t;k,x) to
form the complete set of eigenfunctions of the operatorA. If
such a set of eigenfunctions exists, we can decompose
perturbation fieldu by means of

u5E ûk~ t !w̃~ t;k,x!dk. ~5!

We notice that due to Eq.~3! the eigenvalues ofA become
time dependent. The new eigenvalue problem forA reads

Aw̃~ t;k,x!5lk~ t !w̃~ t;k,x!. ~6!

Plugging Eq.~5! into Eq.~1! and exploiting Eqs.~4! and
~6!, we have

E @] tûk~ t !#w̃~ t;k,x!dk5E ûk~ t !lk~ t !w̃~ t;k,x!dk.

~7!

Due to the orthogonality of the modesw̃(t;k,x), the evolu-
tion of ûk is governed by the equation

d

dt
ûk~ t !5lk~ t !ûk~ t !. ~8!

If w̃(t;k,x) do not satisfy both conditions given by chara
teristic equation~4! and eigenequation~6!, Eq. ~7! will have
additional terms which represent the complicated mode c
pling and thus the applicability of Kelvin’s method is com
promised.

Due to the time dependence present in the eigenva
lk(t), the evolution ofûk(t) will not exhibit a simple expo-
nential dependence as in the Hermitian case, but more c
plicated behaviors, which are characteristic of non-Hermit
systems. By analyzing this ODE, the motion of each mo
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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can be classified, and the time asymptotic behavior can
be shown. The following sections will be devoted to t
derivation of ODE~8! and the discussion of the behavior
its solution for interchange instabilities in plasmas with sh
flow.

III. FORMULATION OF INTERCHANGE INSTABILITIES

Interchange instabilities have been analyzed for st
plasmas by many authors.21–23 In the case of static~station-
ary ambient flowv050! plasmas, the ideal MHD equation
can be reduced into a simple partial differential equation
the form18

] t
2j5Fj, ~9!

wherej is the displacement vector andF is the force opera-
tor which is Hermitian~self-adjoint! when the plasma is sur
rounded by an ideal conducting wall. In order to analyze
stability of the system, we can apply the spectral method
represent the dynamics in terms of a superposition of h
monic oscillations of modes. Another method of analyzi
the stability of the static plasmas is to apply the ene
principle21 which is a variational approach based on the H
mitian property of the force operatorF. These methods show
that the interchange modes have spatially localized struct
near the marginal stability22 except whenp8.0 on the ratio-
nal surface.23

It is remarkably difficult to estimate the exact linear s
bility of the system in the presence of a stationary shear fl
since, as seen in the preceding sections, the dynamics
come non-Hermitian and both the spectral and the variatio
methods lose their mathematical foundations. Dispersion
lations have been studied in many publications,1,5,8 however,
as discussed in Sec. I, the evolution of a non-Hermitian s
tem cannot be reconstructed from the formal dispersion r
tion, because we do not have a spectral theory. Since
proper asymptotic behavior of interchange instabilities
not clearly shown yet, we will first analyze simplified sy
tems focusing on the non-Hermitian property of the syste
In this section, we will derive the equations for stationa
flowing plasmas. Specifically we will investigate the effe
of shear flows on interchange instabilities of plasma un
the influence of homogeneous magnetic field.

In the presence of gravitational force, the ideal MH
equations read as

r
dv

dt
5 j3B2“p1rg, ~10!

dr

dt
1r“•v50, ~11!

]B

]t
2“3~v3B!50, ~12!

“•v50, ~13!

wherer, B, andg are the density, magnetic field, and grav
tational constant vector, andd/dt5] t1v•“ denotes the La-
grangian derivative. Here we assume the incompressibilit
the velocity fieldv, instead of using the equation of state.
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The ambient fields~denoted by the subscript 0! must
satisfy

r0v0•“v05 j03B02“p01r0g. ~14!

If we consider a parallel stationary shear flow of the fo
v05(0,v0y(x),0), straight homogeneous magnetic fieldB0

5(0,By ,Bz), and gravitational force acting in the positivex
direction, the convective derivative gives no contribution
the stationary state and Eq.~14! is reduced to

“p05r0g. ~15!

The above equation denotes that the pressure gradient is
anced by the gravitational force in thex direction. This is the
same condition which holds for static neutral fluids.

The perturbed magnetic and velocity fields are assum
to be two dimensional in thex–y plane, and thus we can
introduce the poloidal flux function and stream function,

B1'5“c3ez , v1'5“f3ez , ~16!

where the subscript 1 denotes the perturbed quantities'

expresses the direction perpendicular to the dominant m
netic field directed along thez axis, andez denotes the unit
vector in thez direction. Using these representations, we c
eliminate the pressure from governing equations.

Taking the curl of the equation of motion and projectin
it along ez , we obtain

m0r0@~] t1v0y]y!“'
2 f2v0y9 ]yf#

5B0•“~“'
2 c!1m0]yr1g, ~17!

where“'
2 5]2/]x21]2/]y2. In deriving Eq.~17! we have

used the Boussinesq approximation which consists in the
glect of the spatial variation of the stationary state density
the inertial term of the equation of motion, but not in th
continuity equation since it is the driving term for the inte
change instability. Physically it is valid provided that th
variability in the density is due to variations in the tempe
ture of only moderate amounts.24 The component of the flow
perpendicular to the ambient magnetic field can be con
ered consistently coming from theE3B drift, taking into
account the ideal Ohm’s law. It is noted that, if we negle
the effect of the magnetic field, we recover the Rayleig
equation for Kelvin–Helmholtz instability.25

The density fluctuation can be expressed as

~] t1v0y]y!r152r08]yf, ~18!

where the prime denotes the derivative with respect tox.
Now r08 is considered as a constant which introduces a
stabilizing force. The induction equation is the same as in
ordinary reduced MHD equations26 and under the above as
sumptions on the stationary fields reads as

~] t1v0y]y!c5B0•“f. ~19!

Equations~17!–~19! constitute a closed system of equ
tions. We can see that the static system (v0y50) governed
by these equations shows Hermitian property, and the c
vective derivative (v0yÞ0) brings the non-Hermitian prop
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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erty into our system. We will investigate the effect of th
shear flow on the interchange instabilities in the followi
sections.

IV. DERIVATION OF ORDINARY DIFFERENTIAL
EQUATION

In this section, we derive the ODE for the amplitude
Kelvin’s modes, given in Eq.~8!, in the case of interchang
instabilities of plasmas. Let us first consider the electrom
netic case whereB0•“Þ0. From Eqs.~18! and ~19!, we
have

f52]y
21r08

21~] t1v0y]y!r15~B0•“ !21~] t1v0y]y!c.
~20!

Since we have assumed the mean velocityv0y5v0y(x) and
the homogeneous ambient fieldB05(0,By ,Bz), the operator
] t1v0y]y commutes with both]y

21 and (B0•“)21. Thus
acting on both sides of Eq.~20! with the operator (] t

1v0y]y)
21 gives

r152r08]y~B0•“ !21c. ~21!

From Eq.~19!,

“'
2 f5“'

2 ~B0•“ !21~] t1v0y]y!c. ~22!

Substituting Eqs.~20! and~22! into Eq.~17!, and acting with
B0•“ on both sides, we obtain

~] t1v0y]y!“'
2 ~] t1v0y]y!c

5
~B0•“ !2

m0r0
“'

2 c2
r08g

r0
]y

2c. ~23!

Since the operator on the right-hand side is Hermiti
we can decompose the flux functionc by means of the shear
ing eigenmodes

c~x,t !5E ĉk~ t !w̃~ t;k,x!dk, ~24!

where each eigenmode can be expressed by the sinus
function in our simplified case

w̃~ t;k,x!5exp@ ikxx1 iky~y2v0yt !1 ikzz#

5exp@ i k̃x~ t !x1 ikyy1 ikzz#. ~25!

Here the mean flow is assumed to bev0y(x)5sx and
k̃x(t)5kx2kyst. It is explicitly shown that the wave num
ber in the flow shear direction is linearly increasing w
time due to the distorting effect of the mean flow. Sin
continuous variation ofk̃x(t) prevents from imposing the
boundary condition in the bounded domain, we will conce
trate on the analysis of localized perturbations by consid
ing the infinite domain. Note thatw̃ are the eigenfunctions o
the right-hand side of Eq.~23!, and also satisfy the charac
teristic equation~4!. It should be noted that the presence
the Laplacian operator on the left-hand side of Eq.~23! does
not hinder the application of Kelvin’s method since t
modesw̃ are as well eigenfunctions of the Laplacian“'

2 .
Thus, the time evolution equation for the amplitudeĉk

can be written as
Downloaded 17 Feb 2001 to 130.69.86.66. Redistribution subject to 
f

-

,

dal

-
r-

f

d

dt
F ~ k̃x~ t !21ky

2!
dĉ

dt
G

52
F2

m0r0
~ k̃x~ t !21ky

2!ĉ2ky
2

r08g

r0
ĉ, ~26!

whereF5k•B05kyB0y1kzB0z , and we have dropped th
subscriptk for simplicity. We notice that in the absence o
shear flow (s50) the usual interchange instability equatio
for static equilibrium can be obtained.

Our procedure can be readily shown to coincide with
traditional formulation of Kelvin’s method consisting in th
coordinate transform (t,x,y,z)°(T,j,h,z) defined by

T5t, j5x, h5y2stx, z5z, ~27!

and the Fourier transform with respect to the new coor
nates

û~kj ,kh ,kz ;T!

5E E E
2`

1`

u~j,h,z;T!ei ~kjj1khh1kzz!dj dh dz. ~28!

Normalizing the timet by the poloidal Alfvén time tA

5aAm0r0/F, we can rewrite Eq.~26! in dimensionless form
as

d

dt
F ~ k̃x~ t !21ky

2!
dĉ

dt
G52~ k̃x~ t !21ky

2!ĉ1ky
2

tA
2

tG
2 ĉ, ~29!

where the wave vectors are normalized by the character
length scalea and tG

2 52r0 /r08g. Further we can rewrite
Eq. ~29! in the form

d2ĉ

dt2
1m~ t !

dĉ

dt
1@12S~ t !#ĉ50, ~30!

where

m~ t !52
2skyk̃x~ t !

k̃x~ t !21ky
2

, S~ t !5
ky

2G

k̃x~ t !21ky
2

,

and G5tA
2/tG

2 . Drawing an analogy with Newton’s equa
tion, m(t) represents the frictional term andS(t) the inter-
change drive term. Equation~30! is the correspondent of Eq
~8!. As we have mentioned in Sec. II, the time evolution f
the amplitude of each eigenmode is no longer a simple
ponential function. The behavior ofĉ will be discussed in
the following sections.

V. ASYMPTOTIC AND TRANSIENT BEHAVIOR OF
EACH MODE

In the absence of a density gradient or shear flow,m(t)
5S(t)50 in Eq. ~30! and we have a pure oscillation repr
senting the Alfve´n wave. If we include the density gradien
then S(t)Þ0 and we obtain the interchange instability f
negativer08 . Since a homogeneous magnetic field is a
sumed in this paper, we have no stabilizing effect of t
magnetic shear. The operator is Hermitian in these two ca
therefore we have the simple exponential evolution with ti
constants for each mode.
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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When we include the shear flow, we havem(t)Þ0 and
we can draw an analogy with the dynamics of a damp
oscillator with time dependent frictional coefficientm(t).
When time goes,m(t) becomes always positive, whic
means a formal dissipation, and therefore the oscillation
ergy of the Alfvén wave@(dĉ/dt)21ĉ2#/2 decreases mono
tonically. In the following sections we will describe both th
asymptotic and transient behaviors of the amplitudesĉ.

A. Asymptotic behavior

In order to study the time asymptotic behavior, we a
sumet@kx /sky,1/s. In this time asymptotic limit we obtain
the following ODE:

d2

dt2
ĉ1

2

t

d

dt
ĉ1S 12

G/s2

t2 D ĉ50, ~31!

where G5tA
2/tG

2 denotes the magnitude of the instabili
drive term. In the absence of the instability driveG, the time
asymptotic behavior of the solution of Eq.~31! is expressed
as

ĉ;
1

t
sint, ~32!

which coincides with the result of Koppel27 which consid-
ered a time dependent nonperturbative state. Since Eq.~31!
is the spherical Bessel equation, its general solution foG
Þ0 is expressed by

ĉ5
1

At
~C1Jn~ t !1C2Yn~ t !!, ~33!

where Jn and Yn denote the Bessel functions, andn
5(G/s211/4)1/2. Therefore the time asymptotic behavior
the mode is expressed generally as

ĉ;
1

t
sinS t2

pn

2
1d D , ~34!

where d denotes a constant phase depending on the in
values. Therefore the mode oscillates with amplitudeĉ de-
caying with the inverse power of time. While thex compo-
nent of the perturbation magnetic fieldb̂x is proportional to
c, the y componentb̂y is proportional tok̃x(t)ĉ. Thus b̂y

tends to the pure oscillatory behavior

b̂y;sinS t2
pn

2
1d D , ~35!

as k̃x(t) increases with proportion to time~see Fig. 1!. It
should be noted that there is no threshold value for the
bilization of the interchange instability, since we obtain t
same spherical Bessel equation~31! for all modes. All modes
evolve as in Eq.~31! independently of the values of wav
numbersk.

The final amplitude of each mode depends sensitively
the parameters. As the shear parameter increases, the
amplitude ofb̂y tends to be larger as is also shown by Cha
lishvili et al.,12 while the mixing damping effect onb̂x in-
creases. The numerical integration of Eq.~30! is shown in
Downloaded 17 Feb 2001 to 130.69.86.66. Redistribution subject to 
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Fig. 1. It should be noted that the instability driveG asymp-
totically has the only effect to shift the phase of the oscil
tions as can be seen in Eqs.~34! and ~35!, and it does not
affect the principal time dependence. The combined effec
the Alfvén wave propagation and shear flow mixing alwa
overcomes the interchange drive and the oscillations of
magnetic flux asymptotically decay with proportion to th
inverse power of time.

B. Transient behavior

In this section, we analyze the transient behavior of e
mode. Since an analytic expression is not available, we
cuss the transients by qualitatively analyzing the ODE~30!.
In the absence of the instability drive, we have

d

dt
F S dĉ

dt
D 2

1ĉ2G52m~ t !S dĉ

dt
D 2

, ~36!

where

m~ t !52
2skyk̃x~ t !

k̃x~ t !21ky
2

,

k̃x~ t !5kx2skyt.

FIG. 1. Direct numerical integration of Eq.~30! for each mode. The param
eters are as follows:kx510, ky51, kz50, s50.2,G51, and initial pertur-

bationsĉ50 anddĉ/dt51.0 att50.
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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Therefore, the frictional coefficientm(t) acts as a damping
force form.0. Since the sign of the denominator inm(t) is
always positive, the behavior will be determined by that
the numerator. The numerator can be expressed as 2s2ky

2t
22skykx and according to its initial value we can single o
two classes of the transients.

When the productskykx is negative, the frictional coef
ficient m(t) is always positive from the beginning, therefo
the shear flow acts as a damping force at any time and
mode shows simple damped behavior. On the other han
the productskykx is positive, the frictional coefficientm(t)
is initially negative and changes its sign at the instantt*
5kx /sky . Therefore the mode experiences an initial amp
fication lasting until the timet* , which is even faster than i
would be in the presence of the only interchange drive. T
transient behavior can also be seen in Fig. 1, where the in
amplification lasts until the turning pointt* 550 followed by
the asymptotic decaying phase.

We have observed by numerical integration that the a
plitude can be amplified to values of 1030 times larger than
the initial one. From a physical point of view, such hu
amplifications may break down the linearity of the perturb
tions and may lead to a nonlinear stage. This case is bey
the scope of the linear theory and no sure conclusion ca
drawn from Kelvin’s method. Such huge amplifications a
experienced by modes with larget* andG.

VI. ELECTROSTATIC INSTABILITY

When the wave vector is perpendicular to the ambi
magnetic field, the formulation for the flux function~23!
fails. For this ‘‘electrostatic limit,’’ we discuss the evolutio
of the stream functionf. The governing equations are Eq
~17! and~18!, since the flux freezing equation can be deco
pled due to the fact thatB0•“50. In the case of electrostati
perturbations, drift wave may be destabilized, however,
have dropped the drift wave branch here in order to conc
trate our attention on the single fluid MHD model. Applyin
] t1v0y]y to both sides of Eq.~17! and substituting it into
Eq. ~18!, we have

~] t1v0y]y!2
“'

2 f52
r08g

r0
]y

2f, ~37!

for a linear shear flow. We representf in terms of the shear
ing modes given in Eq.~25!,

f~x,t !5E f̂k~ t !ŵ~ t;k,x!dk. ~38!

By substituting Eq.~38! into Eq. ~37!, the following ODE is
obtained:

d2

dt2
@~ k̃x~ t !21ky

2!f̂#5ky
2gG

2 f̂, ~39!

where gG
2 52r08g/r0(5tG

22) denotes the characterist
growth rate of the interchange instability. Here again
have dropped the subscriptk for the sake of simplicity. In
order to investigate the time asymptotic behavior of ea
mode, we assumet@kx /kys and t@1/s, then Eq.~39! be-
comes
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d2

dt2
f̂1

4

t

d

dt
f̂1

22a

t2 f̂50, ~40!

where a5gG
2 /s2 denotes the ratio of the strength of th

interchange destabilizing effect and flow shear stabiliz
one. Note that this ODE is not dependent on the wave nu
bersk. The solution of Eq.~40! reads

f̂5C1tm11C2tm2, ~41!

where

m65
236A114a

2
. ~42!

The time asymptotic behavior is therefore determined by
larger indexm1 . Thus we can state the condition for th
boundedness off̂ as

a<2⇒2
1

2

r08g

r0
<s2. ~43!

The condition for the boundedness off̂ has been improved
with respect to the static case (r08>0) due to the mixing
effect of the shear flow. The electrostatic perturbation can
linearly unstable while the electromagnetic one is complet
stabilized. The direct numerical integration of the ODE~39!
is illustrated in Fig. 2. The transient behavior can be o
served until the timet* 55, and the asymptotic behavior fo
lows. The asymptotic behavior is shown to be algebraic w
the powerm1 as pointed out by means of the analytic tre
ment.

We notice that the stability condition is not well define
here. In fact by imposing the boundedness ofv̂y5 i k̃x(t)f̂
;t11m1, the same conditionr08>0 as the static case is ob
tained. If we consider the other fields which are represen
by higher derivatives, e.g., the vortex perturbations, m
strict conditions for their boundedness will be recovere
Since the mixing effect of the shear flow distorts the stru
ture of the perturbations into smaller scales, the fields ch
acterized by the higher derivatives will have stronger se
larities. Unlike the static case where the evolution of t
fields can be expressed in a common exponential form, t
exhibit different evolutions with respect to each other
shear flow systems. This effect could be a pathological pr
lem of describing the stability condition for shear flow sy
tems.

VII. SUMMARY

Kelvin’s method of shearing modes is interpreted as
combination of modal and characteristic methods for
analysis of a non-Hermitian system. A shear flow disto
each Fourier mode, resulting in a change of the wave nu
ber, which represents the stretching effect of the shear fl

By means of this method, we have first analyzed
incompressible electromagnetic perturbations in the prese
of an interchange drive and obtained the ordinary differen
equation~30! for the amplitude of the modesĉk . All modes
show asymptotic decay proportional to the inverse powe
time ~nonexponential! without any threshold value. This
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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means that the interchange instabilities are always dam
away at sufficiently large time due to the combined effect
the Alfvén wave propagation and distortion of modes b
means of the background shear flow; i.e., phase mixing
fect. However, the transient behavior is not common for
modes. Depending on the initial wave number, some of th
show transient amplifications which are even faster than th
would be in the presence of the only interchange driv
These amplifications are so conspicuous that they may l
to the break down of the linearity of the perturbation field

It should be noted that, since our treatment considers
case of parallel linear shear flow, Kelvin–Helmholtz inst
bilities, which originate from the second-order spatial deriv
tive of the background shear flow,24,25 are beyond the scope
of the present theory. From a mathematical point of view,
stress that the Kelvin–Helmholtz instability is a problem i
volving purely non-Hermitian operators in the sense that
operatorA of Eq. ~1! itself becomes non-Hermitian and
therefore the method developed in Sec. II cannot be appl
This is a well-known instability in fluid dynamics whos
rigorous mathematical treatment presents highly nontriv
difficulties.

We note that the ODE which gives the evolution of th
amplitudes of the interchange modes~30! and that of kink-

FIG. 2. Direct numerical integration of Eq.~39! for differenta. The param-

eters are as follows:kx510,ky52, s51 and initial perturbationsf̂50 and

df̂/dt51.0 at t50. The amplitude of the stream function in case ofa
53.3 shows the algebraic growth corresponding tom1.0.35.
Downloaded 17 Feb 2001 to 130.69.86.66. Redistribution subject to 
ed
f

f-
ll
m
y
.

ad
.
e

-
-

e

e

d.

l

type modes@Eq. ~32! in Ref. 17# are mathematically equiva
lent. Of course these two modes may have spatially differ
structures, at least this is the case for static equilibria.
this fact means that they have no difference in time evo
tion, and we can say that these terms have the same effe
the sense that they enlarge the spectrum to unstable e
values. This equivalence stems from the assumption o
spatially homogeneous magnetic field. The possibility of
cluding the magnetic field inhomogeneity is investigated
the Appendix.

We have also investigated the time evolution for elect
static (k•B050) perturbations, which do not excite th
Alfvén wave, since they do not bend the magnetic field l
during their growth. The flow shear has been shown to h
a stabilizing effect also on electrostatic disturbances, ho
ever, the phase mixing effect alone cannot completely st
lize the interchange instabilities. The condition for th
boundedness of the mode amplitudesf̂k can be expressed in
Eq. ~43! by means of a ratio of instability strength to she
parameter of the mean flow. We have shown that the t
evolution of these unstable modes is again of algebraic ty
Notice that the conditions for the boundedness of differ
observatives do not coincide. The discrepancies origin
from the fact that, in shear flow systems, different fields e
perience algebraic evolutions characterized by different p
ers of time, while the evolutions for any fields are express
in a common exponential form for static systems.
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APPENDIX: INHOMOGENEOUS MAGNETIC FIELD

In order to consider the effect of the magnetic shear,
us consider the three-dimensional MHD equation for
evolution of the perturbation fields, which can be written
Cartesian coordinates as

r0S ]v1

]t
1v0•“v11v1x

]v0

]x D5
B0•“b

m0
2“S p01

B0•b

m0
D ,

~A1!

]b

]t
1v0•“b5B0•“v11bx

]v0

]x
, ~A2!

where b denotes the perturbation magnetic field andv0

5(0,sx,0). Assuming B05(0,B0y(x),B0z(x)), we can
transform the coordinate as (x,y,z)°(x,h,z) with z along
the local ambient magnetic field line andh perpendicular to
x and z. In this coordinate, we have the stationary flow e
pressed as (0,v0h(x),v0z(x)). Here, the spatial dependenc
of the velocity components are
AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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v0h5
1

B0
B0zsx, v0z5

1

B0
B0ysx. ~A3!

If the magnetic fields are homogeneous, the coordinate tr
form is also spatially homogeneous and these velocity fie
are still linear functions with respect tox. Writing the above
equations by components in the new coordinates, we ha

r~] tu1v0h]hu1v0z]zu!5
B0]zbx

m0
2]xS p1

B0bz

m0
D , ~A4!

rS ] tv1v0h]hv1v0z]zv1
B0z

B0
suD

5
B0]zbh

m0
2]hS p1

B0bz

m0
D , ~A5!

rS ] tw1v0h]hw1v0z]zw1
B0y

B0
suD

5
B0]zbz

m0
2]zS p1

B0bz

m0
D , ~A6!

] tbx1v0h]hbx1v0z]zbx5B0]zu, ~A7!

] tbh1v0h]hbh1v0z]zbh5B0]zv1
B0z

B0
sbx , ~A8!

] tbz1v0h]hbz1v0z]zbz5B0]zw1
B0y

B0
sbx , ~A9!

and we can derive for the evolution of the amplitudeb̂x , the
same equation as previously obtained@Eq. ~30!# for ĉ.

If we include the magnetic shear in the stationary con
tion, the above coordinate transform becomes spatially in
mogeneous. As can be seen from Eqs.~A3!, this transform
introduces a nonlinear spatial dependence of the backgro
shear flow profile even if this is assumed to be linear
Downloaded 17 Feb 2001 to 130.69.86.66. Redistribution subject to 
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Cartesian coordinates. This fact shows that the introduc
of the magnetic shear is essentially equivalent to that of
nonlinear shear flow profile.
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