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Damping of Surface Alfvén Wave in a Slab Plasma
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The MHD wave is studied when two steep density gradient regions exist at surfaces of slab
plasma. In such a case, it is shown that the surface Alfvén wave has two branches with nearly the
same damping rates, since the steep density gradients are located closely each other. However,
for the sharp boundary plasma, the surface Alfvén wave does not damp. As the density profile
is relaxed, the damping rates become larger, pass via extremum, and again they become small
when the scale length of the density gradients extremely increases. These damping rates seem
consistent with behavior of magnetic fluctuations observed in the Heliotron-E pellet injection

experiment.
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§1. Introduction

The first rigorous treatment of plasma wave in an in-
homogeneous plasma was presented by Barston.!) He
applied the normal mode analysis to the electrostatic
plasma waves in the inhomogeneous cold plasma for a
plane-pinch. He considered two density profiles; one was
everywhere continuous and nowhere constant, and the
other was piecewise continuous and differentiable. It was
shown that there exists no dispersion relation and the
spectrum of frequency is continuous with real values in
the former case. In the latter case discrete modes ap-
pear with the same number as that of discontinuities
in the density profile. Sedlacek? had studied the same
problem using the Laplace transformation in time and
showed that the normal mode approach is equivalent to
the Laplace transformation approach. It was concluded
that even in the continuous profile case, there exists a dis-
persion relation which Barston did not appreciate, and
both continuous and discrete spectrum of frequency ap-
pear. The dispersion relation is interpreted in the same
way as in the case of Landau damping in hot plasmas,
and the discrete spectrum is considered as the ‘virtual’
eigenmode of the system.

Uberoi®) has pointed out that there exists an interest-
ing similarity of the forms between the equation govern-
ing Alfvén waves in the presence of an inhomogeneous
magnetic field and that governing electrostatic plasma
oscillations in a cold inhomogeneous plasma. By follow-
ing Barston’s analysis, the incompressible Alfvén wave
can be treated in the same way as the electrostatic
plasma oscillation in the cold inhomogeneous plasma.
Tataronis and Grossmann*® also followed Sedlacek to
study the incompressible shear Alfvén wave in the mag-
netized slab plasma. While Tataronis and Grossmann
assumed the incompressibility of plasma, Chen and
Hasegawa® showed that the Alfvén wave damps in the
inhomogeneous plasma without assuming incompress-
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ibility, and they proposed to use the Alfvén wave for
heating the magnetically confined plasma.”

Although these theories have mainly been developed
for the surface waves at the plasma-vacuum interface,
they will be applicable to an inhomogeneous plasma with
a sharp density gradient formed by the injection of hy-
drogen ice pellet. Since the pellet is considered to be ab-
lated in a narrow region, the density has a locally peaked
profile. In the Heliotron-E experiment, magnetic fluctua-
tions are often observed with the magnetic probe located
near the wall of vacuum chamber,®) which are considered
to be induced by the pellet injection. The frequency w,
and damping rate w; are evaluated from experimental
data as w, ~ 2.3 x 10° [s7!] and w; ~ 6.9 x 10* [s71]. If
we assume that this magnetic fluctuation is induced by
Alfvén waves and that this damping is caused by plasma
resistivity, the damping rate will be estimated as 10-10?
[s7!]. Thus we need another mechanism to enhance the
damping. The Alfvén resonance occured in strongly in-
homogeneous plasmas is such a candidate.

In §2, we show the wave equation for the shear Alfvén
wave and discuss its general property. We derive the dis-
persion relation and analytic solution for the slab plasma
with steep density gradient regions at the plasma sur-
face in §3. In §4, we show the numerical solution of the
dispersion relation. Our interest is in the dependence of
damping rate on the scale length of density gradient. We
present an interpretation that the pellet induced mag-
netic fluctuation disappears with a fairly large damping
rate, when the singularity exists in the Alfvén wave equa-
tion at the surface of slab plasma.

§2. Alfvén Wave Equation

Since we are interested in magnetic fluctuations in high
density and high temperature plasmas, we use the ideal
magnetohydrodynamic (MHD) equations for describing
the wave phenomena. We consider a slab configuration
with straight magnetic field lines for simplicity. It is a
rough approximation for an annular high density plasma
produced by the pellet injection into a toroidal plasma.®)
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The equilibrium magnetic field is assumed in the z di-
rection, and to vary only in the z direction; i.e.,

By = (0,0, By(z)), (1)

in the Cartesian coordinate. (In the toroidal plasma,
x, y, and z correspond to radial, poloidal, and toroidal
directions, respectively.) In addition, we assume that the
equilibrium mass density pg and plasma pressure pg also
vary only in the z direction.

The linearized ideal MHD equation is written as

o2
/0055“ ==V(woV-£§+&- Vpo)
;_tl;(v x By) x [V x (€ x By)]

+ ,uio[v x (V x (€ x Bg))] x Bo, (2)

where &, v, and po denote the plasma displacement,
the specific heat ratio, and permeability, respectively.
We use the Fourier transformation in y and z, and the
Laplace transformation in ¢,

E(z ko kyw) = /dt/ dy/ dz€(z,y, 2, 1)

Xel(wt kiy— k//z (3)

for &(z,y,2,t). By applying the Fourier-Laplace trans-

formation to eq. (2), the MHD wave equation is given
6)

as

where
ﬁ2k2 B2
a(z):l+ﬁ+mv (5)
Ble) = L2, ©
e(z) = wpop — k?/BQ- (7)

Here, the subscript zero which denotes equilibrium quan-
tity is omitted, and &, and S'(z,w) denote the Fourier-
Laplace transform of the z component of the plasma
displacement vector, and the source term coming from
initial conditions for the Laplace transform, respectively,
and k; denotes the wavenumber parallel to equilibrium
magnetic field (z direction), k; the wavenumber in the y
direction. The boundary conditions for eq. (2) are given
as & — 0 in = — Fo0, which correspond to the require-
ment that the normal component of the perturbed mag-
netic field vanishes at infinity. Notice that this MHD
wave equation has a regular singularity at e(zg) = 0
where the wave locally satisfies the dispersion relation of
the homogeneous shear Alfvén wave.

To compare the above model with toroidal experi-
ments, we assume that |k, |, corresponding to poloidal
wave number, is much larger than |k |, corresponding to
toroidal wave number, and 8 < 1. Since we consider the
lower frequency wave than the ion cyclotron frequency,
these conditions are equivalent to |aB?k2| >> |e|, and

therefore setting S = —k? S’ leads to
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Fig. 1. Profile of e(z,ky,w) = w?pop(z) — k?/BQ(:r), where €1
and ey are only functions of ky and w. The positions z = +b
correspond to the surfaces of slab plasma.

d =
dc}n [ (z,ky,w )—c%] - k‘ie(x,k//,w)fz = S(z, k1, ky,w).
(8)
In the next section we will solve this equation. It is
noted that this equation also has a regular singularity at
ez =z9)=0.

Comparing eq. (8) with the incompressible plasma
model,>) we notice that the solution of eq. (8) also de-
scribes an incompressible Alfvén wave. Though eq. (4)
contains both shear and compressional Alfvén wave,
eq. (8) only contains the shear Alfvén wave after |k, | >
|ky| and B < 1 are assumed. This means that in large-
aspect-ratio and low-( device, the shear Alfvén wave is
prior to the compressional one.

§3. Dispersion Relation and Its Analytic Solu-
tions

Since the wave equation (8) is inhomogeneous, we can
solve this equation by using a Green function. When
the inverse Laplace transformation is carried out for &,
the contribution from poles of the Green function be-
comes dominant for ¢ — co. For the magnetized plasma
with sharp gradients near the surface regions, we assume
a profile of € which counsists of three spatially constant
regions and two linear ones described as

€1 (l‘< —b)

ér + 7 (=b<z < —a)
e(x,ky,w) =< en (ra<z<a) , (9

-0z +n (a<z<b)

€1 (b<z)

where ¢ = w?uopr — k//B er = wuopr — k B
pin and By are the constant values, and 6(k//,w) =
( €n — 61)/(b - a) (k//, ) (bEI[ - aeI)/(b - a) The
schematic form which is symmetric with respect to z is
illustrated in Fig. 1. This model may be applicable to
an annular high density plasma produced by an injected
ice pellet. The region (—b,b) describes the high density
one and the regions (—oo, —b) and (b, c0) correspond to
the background density ones. The following analysis to
obtain the dispersion relation of shear Alfvén wave is
parallel to that of Sedlacek.?)

There exist non-collective oscillations due to the
branch-point singularities of the Green function, which
damp proportional to inverse power of time. Since the
frequencies of these oscillations, however, depend on po-
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sition, their behavior is not seen from the outer magnetic
probe.?) Since the Green function also has simple poles
in (a,b) and (b, —a), their contribution becomes dom-

D(ky,ky,w) =
x ([To(z3) — I1(23)][Ko(z4) —
+e-4k”'([fo(22)

The derivation of this dispersion relation is described
briefly in Appendix. In eq. (10), z; (: = 1-4) which
depend on k., ky, and w denote the quantity associated
with the scale length of the density gradient,

kJ—(b - a):

(11)
(12)

and I, and K, denote the nth order modified Bessel
function of the first and the second kind, respectively.
Although the discussion of this paper is mainly con-
cerned with density gradient, eq. (10) is applicable to
the case with inhomogeneous magnetic field.

If we assume that the density gradients are steep,
k1 (b — a)] < 1, to obtain the analytic solution, the
dispersion relation (10) has two branches shown as

1 = —24 =
€] — €1

kJ_(b - a),

29 = —23 =
€ — €1

coth(kyia) + 2in log 2—2 =0, (13)
21 1

tanh(kpa) + 24 log ? =0. (14)
2 1

We need to consider Riemannian sheets for the logarith-
mic function with complex argument. Since there exist
no solution on n = 0 Riemannian sheet, we carry out
the analytic continuation into the other sheets and then
calculate the weakest damping solution (or |w,| > |wi]
in w = wy +iw;). Two solutions exist on the n = 1 sheet,
which are expressed as

| B +6B;
=k SO0
Wr1 = &) to(p1 + Bpn)’
ws 1 —2k . a
wi = ‘Zﬂ'ek_]_(b —a)(1 — e 2ksa) (15)
popron(Vir — Viy)
\ (o1 + 6pu)(Bf + 6By)’
0B + B2
o =k I it
“r2 = 5N 0@t + )
Wi —2kja
w; :—Zm(b—a)(l—e Zkia) (16)
w _Hopion(Viy — Viy)
(61 + pn)(6BF + By)’

respectively, which describe the surface Alfvén waves.
Here 6 = tanh(k, a) is the parameter associated with the
width of central constant density region, and V4 denotes
the Alfvén velocity. Subscripts I and Il denote the cen-
tral and outer constant regions in Fig. 1, respectively.
It can be easily shown that the solutions on the other
Riemannian sheets damp faster than those on the n =1
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(Ho(z2) + I (22)][Ko(21) + Ki(21)] =
Ki(z4)] —
— I1(22)][Ko(21) + Ki(21)] —
% ([fo(z4) + [1(24)][Ko(23) — K1(23)] —
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inant for ¢ — oo. The dispersion relation due to these
poles is obtained as

[To(21) — 11(31)][K0() Kl(zz)])

[To(24) + I1(24)][Ko(23) + K1(z3)])

To(z1) — (21)][K0(~2)+K1( 2)])
(22)]) =

[]0(23) +I1(~3)][K0( 0. (10)

sheet by replacing 7 in w;; and w;s with (2n — 1)7.
Both real frequencies w,; and w,9 are proportional to
ky, which is the same as the frequency of shear Alfvén
wave in homogeneous plasmas, however, they include the
parameter 6 dependent on k. The damping rates are
proportional to the scale length of the density gradient,
b—a, and |w;1| and |w;z| are nearly equal to each other.
Therefore, in the sharp boundary limit (b—a — 0), these
modes show undamped oscillations. When the distance
of two density gradient regions, 2a, goes to infinity with
keeping (b—a) constant, both the frequencies and damp-
ing rates of these two branches converge to the same
value, which coincides with Chen and Hasegawa.%

§4. Numerical Solutions of the Dispersion Rela-
tion
In order to evaluate accuracy of the analytic solutions
in egs. (15) and (16), numerical solutions of eq. (10) are
shown for the particular parameters. In the numerical
calculations, it is useful to define the following dimen-
sionless variables:

-9 w-a” 5 By )
W=—=—, p[f=1-
BI /mopr’ ( By
Then the arguments of the modified Bessel functions are
expressed in terms of these variables as

=k (-1 &~k (18)

S RG-n+ kA
025 — k2(1 —

Y il el (19)

The numerical solutions of the dispersion relation (10)
corresponding to wj and wy are shown in Fig. 2. Here
we have used the following values for dimensionless pa-
rameters,

ki=1, ky=001, B=0, p=6, (20)

and we have taken into account of the n = 1 Riemannian
sheet. Though the damping rates are proportional to the
scale length of the density gradient in the sharp bound-
ary limit, they do not continue to increase monotonically
with the scale length. They have extrema at b ~ 1.9
for wy and b ~ 1.4 for wy, and when the scale length of
the density gradient becomes larger than this value, they
turn out to decrease with increase of b. It is considered
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Fig. 2. Dependence of normalized frequency @, and damping rate
@; on the scale length of the density gradient. The upper figure
denotes the frequency and the lower one the damping rate. The
subscripts 1 and 2 denote the solutions of the exact dispersion

relation (10) corresponding to egs. (15) and (16), respectively.

R

that ©; finally go to zero in the limit b — o0. Also, @1
is considered to have a limiting value of 0.01, which is
equivalent to the relation w = k //VAI. On the other hand,
@r2 is considered to have a limiting value of 0.01 x 1/1/6,
which is equivalent to the relation w = k& //VAH. In the
region with b ~ 1, we observe that the analytic solutions
(15) and (16) agree with numerical results. In this region
these two branches have almost the same damping rates,
however, in the region b 2 1.5, the branch w,, which has
a smaller frequency, has weaker damping rate than w;.
Since the density profile approaches to a homogeneous
one at p = p; with increase of the scale length of the
density gradients, b — a, the branch ws remains prior to
the other. We also observed that the maximum points of
the damping rates go to the right with the increase of the
fraction of the density p. They do not move leftward or
rightward due to the change of 3, although the damping
rates themselves’increase.

Figure 3 shows the deviation of the analytic damping
rate from the numerical one. Here the same parameters
as in eq. (20) are used. The analytic solution is valid
only for the case with the steep density gradient b <
1.2. The error of the analytic solution is about 10% at
b=1.2.
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Fig. 3. Comparison between analytic solution and numerical one
of damping rate @;; in Fig. 2. The normalized frequency of the
analytic solution @,; is independent of the scale length of the
density gradient.

§5. Concluding Remarks

It is confirmed that two branches of the surface Alfvén
wave exist for the slab plasma, since there are two sharp
jump regions of density. However, the frequencies and
damping rates of both branches are almost comparable,
when the density jump is substantial. It is interpreted
that the magnetic fluctuations induced by the pellet in-
jection in Heliotron-E are surface Alfvén waves corre-
sponding to eq. (15) or eq. (16). These modes damp
with finite scale length of the density gradient. In the
limit of sharp boundary, (b — a) — 0, egs. (15) and (16)
give undamped oscillations, and so do in the limit of ho-
mogeneous plasma, (b —a) — oo. That is to say, these
two modes exist in the sharp boundary limit, while con-
tinuous spectrum does not appear.

The initial annular density profile produced by the pel-
let may have sharp density gradients satisfying b = 1,
and the analytic treatment is valid to estimate w, and
w; for comparison with experiments. For example, pro-
vided typical plasma parameters for Heliotron-E are as-
sumed as By = By = 1.9 [T], n; = 10*° [m™3], ny = 6ny,
a=10"1[m], b—a = 1072 [m], k. = 10 [m™!], and
ky =2 x 1072 [m™'], we obtain w, ~ 2 x 10° [s71],
and w;; ~ 6 x 10* [s71], which is comparable to the ex-
perimental values expressed in the introduction, and the
frequency w1 is much less than the ion cyclotron fre-
quency we ~ 1.8 % 10%. The damping rate is enhanced
with the decrease of the density gradient by radial par-
ticle transport.

To obtain a physical intuition, we may have to extend
this model. As the wave approaches to the spatial res-
onant point, the wave number increases, and this mode
may be converted into a kinetic Alfvén wave, which is
damped by wave-particle interaction.?) But, we evalu-
ated the damping rate in the framework of MHD by us-
ing equivalent mathematical procedure to avoid such a
complicated calculation.?)
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Appendix: Derivation of the Dispersion Rela-
tion

The dispersion relation (10) is derived from the MHD
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Gz, s ki, ky,w) = {

J_l[é(l)(za kJ_a k//, w) 5(2) (Sa k_L7 k//a LU)]
J_l[g(l)(sa kJ_) k//a w) 5(2)(1:» kJ..a k//, LU)]
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wave equation (8). Since eq. (8) is an inhomogeneous
differential equation of Sturm-Liouville type, the solution
can be expressed in terms of the Green function, which
can be written as

(z < s)
: Al
(s<z) (A1)

Here 5_(1 y and 5_(2) are homogeneous solutions of the differential equation (8) with satisfying the boundary condition
at £ = —oo and x = o0, respectively, J is the conjunct of (1) and §(9),

dg(g)(l',kJ_,k//,W) . dg(l)(waklyk/ﬁw) c

J(k_j_,k//,u)) = 6(x) [g(l)(.’lf7kj_,k//,LU) dz

: A2
dz f(g)(lﬁ,]ﬁ_,k//,(x)) 3 ( )

which can be proved independent of z and s. With the Green function (A-1), the solution for eq. (8) is described as

Eolm by, ky,w) = / G(z,skL,ky,w)S(s, kL, ky,w)ds.

(A-3)

Then the plasma displacement in the real space is expressed by carrying out the inverse Fourier-Laplace transfor-

mation of eq. (A-3),

1 0 o _
§($ay,z,t): —(Ew_):i/(:dw/ dk‘J_/ dk?//g(x,k_L,k//’w)el(kJ.y+k//z—wt)’

where C denotes the integration path in the complex w
plane. When there exist poles of the Green function,
their contribution becomes dominant in the limit ¢t — oo.
Therefore J = 0 gives a dispersion relation. In this pa-
per, J is proportional to the dispersion function, eq. (10),
as

1 .
J(ky, ky,w) = §kJ_e]1zlz4e2"*aD(k_L,k//,w). (A-5)
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