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Abstract. The prediction of the Mercier (Suydam) criterion for localized interchange modes in stel-

larators shows stability in cases in which global modes are unstable. One case is non-resonant pressure

driven instabilities with low mode numbers which become unstable even if the mode resonant surface

does not exist inside the plasma column. The other case is interchange instabilities when the pres-

sure gradient vanishes at the mode resonant surface. If the pressure becomes flat in a narrow region

around the mode resonant surface, high mode number instabilities are suppressed and the beta limit

at the particular resonant surface increases. The radial mode structure at nearly marginal beta also

changes significantly. The properties of the non-resonant mode and the transition from a resonant to

a non-resonant mode are clarified with a cylindrical plasma model for a low shear stellarator with a

magnetic hill.

1. Introduction

Although the Mercier criterion is useful for inves-
tigating pressure driven instabilities in tokamaks
[1] and stellarators [2], it does not predict the
limiting conditions in some cases within the ideal
MHD model. For deriving the Mercier criterion it
is assumed that the unstable mode is radially local-
ized near the mode resonant surface. There is a ten-
dency for the radial mode structure to become nar-
row in the vicinity of the mode resonant surface with
an increase of mode number. Even the interchange
mode with (m = 1, n = 1) has the property that the
radial mode structure becomes highly localized near
the marginal regime [3], where m(n) is the poloidal
(toroidal) mode number. This result explains why
the Mercier limit correlates with the beta limit due
to the interchange instabilities with low mode num-
bers [4, 5]. However, this situation changes substan-
tially when the pressure gradient becomes locally flat
at the mode resonant surface [6]. Details of the effect
of pressure profile on the interchange modes will be
given in this article with the use of a cylindrical
plasma model for a low shear stellarator with a mag-
netic hill.
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In order to destabilize the interchange mode, a
resonant surface is not always necessary. It is reason-
able that in a low shear region, with a steep pressure
gradient, non-resonant modes approximately satis-
fying the resonant condition are destabilized. First,
unstable non-resonant resistive modes were found
for a Heliotron-E plasma with a highly peaked pres-
sure profile [7]. Recently, ideal non-resonant modes
were shown to be unstable in the central region
of Heliotron-E [8], which seems consistent with the
(m = 2, n = 1) mode triggering a sawtooth [9]. It is
noted that non-resonant modes usually have global
mode structures, which requires numerical analysis
to clarify their properties. For studying the details
of ideal non-resonant instabilities we use a cylindri-
cal plasma model which saves computational time
greatly. Since it is hard to excite a non-resonant
mode in a high shear region, our interest is in a low
shear stellarator with a magnetic hill.

It is noted that Fu et al. [5] studied the relation
between Mercier modes and low-n modes with a full
3-D stability code for l = 2 stellarators. They found
that unstable localized low-n modes are correlated
with the Mercier criterion. However, the stability of
global type low-n modes was found to be decorre-
lated from that of Mercier modes for the case with a
fairly large outward magnetic axis shift. It seems that
strong poloidal coupling in the toroidal geometry is
essential for this type of unstable mode, which may
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be a tokamak type ballooning mode. In this article
our interest is in the decorrelation between the low-n
pressure driven modes and the Suydam modes in the
cylindrical model. Thus, both the rotational trans-
form and the pressure profiles are important here.

In Section 2, we derive an eigenmode equation
for studying linear interchange modes in stellara-
tors, which is derived from the reduced MHD equa-
tions [10]. In Section 3, we first solve the eigenmode
equation analytically in the low shear limit, and dis-
cuss the non-resonant mode. Next, we solve the same
eigenvalue equation numerically for the finite shear
case in Section 4. Here we give examples to high-
light various properties for both the resonant and
non-resonant modes. Finally, in Section 5, we sum-
marize the results obtained and give some physical
interpretations for the behaviour of the non-resonant
mode.

2. Eigenmode equations

For analysing pressure driven instabilities in stel-
larators, we use the ideal reduced MHD equations
[10], which are written as

∂ψ

∂t
= B ·∇u (1)

ρ
d∇2
⊥u

dt
= −B ·∇Jz +∇Ω×∇p · ez (2)

dp

dt
= 0 (3)

where

B ·∇ = B0
∂

∂z
+∇ψ × ez ·∇ (4)

d

dt
=

∂

∂t
+∇u× ez ·∇ (5)

Ω =
2r cos θ
R0

+
(∇φ)2

B2
0

(6)

Jz = −∇2
⊥Az (7)

Az = ψ +
1

2B0
∇〈φ〉 ×∇φ · ez. (8)

Here ψ, u and Ω denote the poloidal flux function,
the stream function and the average curvature of the
magnetic field, respectively. The quasi-toroidal co-
ordinates are introduced and the metric is written
as

dl2 = dr2 + r2dθ2 + (R0 + r cos θ)2 dζ2 (9)

where R0 denotes the major radius of the torus, r the
minor radius, and θ and ζ = z/R0 the poloidal and
toroidal angle, respectively. Here a perfectly conduct-
ing wall is placed at the plasma boundary, and the
boundary conditions are given by Br = ∂ψ/∂θ = 0,
vr = ∂φ/∂θ = 0 and p = 0 at r = a.

In the following study, we neglect the toroidal
effect in the reduced MHD equations. We also assume
that the equilibrium quantities do not depend on the
poloidal angle θ. This assumption means that the
flux surfaces have a circular cross-section in the large
aspect ratio limit. Then the rotational transform is
written as

ι(r) ≡ R0

rB0

dψ0

dr
(10)

where the equilibrium poloidal flux function is given
by ψ0(r). Since the correction due to the diamagnetic
current becomes higher order in this formulation, the
rotational transform in this approximation includes
only the vacuum helical field contribution.

For the stability analysis, we use the following nor-
malization for the variables:

ψ → aB0ψ, u→ aR0

τPA
u, t→ τPAt

p→ p0(r = 0)p, r → ar, Jz →
B0

µ0a
Jz

∇2
⊥u→

R0

aτPA
∇2
⊥u, Az → aB0Az (11)

where τPA = R0
√
µ0ρ/B0 denotes the poloidal

Alfvén time and a the minor radius of the plasma
column. Then the linearized reduced MHD equations
can be written as

γ(∇2
⊥u) = − n−mι

γ
∇2
⊥[(n−mι)u]− Ds

γ

m2

r2
u

(12)

where Ds and the averaged helical curvature Ω are
expressed as

Ds = − β0

2ε2
p′Ω′ (13)

Ω = ε2N

(
r2ι+ 2

∫
rι dr

)
. (14)

Here ε ≡ a/R0 denotes the inverse aspect ratio,
β0 ≡ 2µ0p0(r = 0)/B2

0 the central plasma beta
value and N the toroidal period number of the
helical field. In order to derive Eq. (12), all per-
turbed quantities are assumed to be proportional to
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exp[γt− i(mθ+ nζ)]. In Eq. (13), the prime denotes
the derivative with respect to the normalized minor
radius r. The perpendicular Laplacian operator in
Eq. (12) is expressed as

∇2
⊥ =

1
r

d

dr

(
r
d

dr

)
− m2

r2
. (15)

Then the ordinary differential equation (12) for the
stream function u with mode numbers (m,n) is writ-
ten as

d2u

dr2
+
(

1
r
− 2mι′(n−mι)
γ2 + (n−mι)2

)
du

dr

−
{
m2

r2
+

1
γ2 + (n−mι)2

×
[(

mι′

r
+mι′′

)
(n−mι)− Dsm

2

r2

]}
u = 0

(16)

which is an eigenmode equation with eigenvalue γ2.
For solving Eq. (16) the boundary condition at the

plasma surface r = 1 is u = 0 under a fixed boundary
condition. We also impose regularity of the solution
at r = 0. With these boundary conditions, we can
set up an eigenvalue problem for the eigenvalue or
growth rate γ2 and the corresponding eigenfunction
u.

3. Analytic solution of eigenmode

In this section we assume ι′ = 0 for obtaining an
analytic solution, then Eq. (16) is written as

d2u

dr2
+

1
r

du

dr
+
m2

r2

(
Ds

γ2 + (n−mι)2
− 1
)
u = 0.

(17)

For the parabolic pressure profile, p = p0(1−r2), the
analytic solution is readily obtained with the trans-
formation r̃ ≡ {D̃sm

2/[γ2 + (n −mι)2]}1/2r, where
D̃s = 4β0Nι. From the solution u ∝ Jm(r̃) for the
(m,n) mode and the boundary condition u = 0 at
r = 1, the growth rate is written as

γ2 =
D̃sm

2

Z2(m, k)
− (n−mι)2 (18)

where Z(m, k) is the kth zero point of the mth order
Bessel function of the first kind Jm(r̃).

Although the resonant surface does not exist
inside the plasma column, it is seen that the mode
satisfying n ' mι is most unstable and that the

unstable mode has a global structure without local-
ization in the radial direction unlike the resonant
mode. Further we notice that, when there is no mag-
netic shear, the radial mode structure, Jm(Z(m, k)r),
is not affected by the beta value. We notice from
Eq. (18) that the more unstable mode has the smaller
node number, and the eigenvalue is discrete with
respect to k for the specified (m,n). This property is
general and can be also shown even for the case with
the method given by Goedbloed and Sakanaka [11] by
writing the eigenmode equation (16) in the Sturmian
form (Appendix). Since the LHS of Eq. (18) is pro-
portional to γ2 and the RHS is linear with respect to
the plasma beta, the relation (18) gives a parabolic
line in the (β, γ) plane. Thus a small variation in
β0 from marginal equilibrium may cause an abrupt
increase of growth.

The beta limit for stability is obtained by substi-
tuting γ2 = 0 into Eq. (18), which yields

β0c =
Z2(m, k)(n−mι)

4Nιm2
. (19)

In order to examine the beta limit of the higher har-
monic modes with the same helicity, we use the trans-
formation of the variables (m,n) 7→ l(m,n), which
yields

βl0c =
Z2(lm, k)(n−mι)

4Nιm2
. (20)

Since Z(lm, k) > Z(m, k) for l ≥ 2, the beta limit of
the higher harmonic mode, βl0c, is higher than that
for the l = 1 case, β0c. This is different from the
resonant modes with the same helicity, which give the
same beta limit given by the Suydam criterion [3].

4. Numerical solution
of eigenmode equation

4.1. Resonant and non-resonant modes
for standard pressure profiles

We have solved Eq. (16) numerically by the ‘shoot-
ing’ method using the fourth order Runge–Kutta for-
mula. At first we tried the same eigenvalue problem
as that shown in Section 3 in order to validate the
numerical code. The growth rates obtained for the
(m,n) = (2, 1) mode coincide well with the analytic
solution, Eq. (18), and the radial mode structures
described by the Bessel function J2(r̃) seem to be
unchanged by variation of β0.

Next we have investigated the effect of mag-
netic shear on non-resonant modes for the standard
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Figure 1. (a) Dependence of the beta limit on the magnetic shear parameter σ for the non-resonant

(2, 1) mode. (b) Radial mode structures in the cases of σ = 0.05, 0.5 and 2.0 for a parabolic pressure

profile with β0 = 0.03.
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Figure 2. (a) Dependence of the growth rate of the (2, 1) mode on the central beta value β0 for

p = p0(1−r4). Diamonds denote numerical results. The white diamonds correspond to the resonant

case and the black diamonds to the non-resonant case. (b) Radial mode structures corresponding

to the resonant (β0 = 1.35× 10−3) and non-resonant (β0 = 5.97× 10−3) cases. Here the rotational

transform profile is ι(r) = 0.499 + 0.2r2 for the resonant case and ι(r) = 0.501 + 0.2r2 for the

non-resonant case.

parabolic pressure profile. For the assumed rotational
transform profile, ι = 0.51 + σr2, σ is changed from
0.05 to 2.0. The rotational transform profile in the
case of σ = 1.69 is approximately coincident with
that in Heliotron-E [8]. When the beta value is fixed,
the growth rate of the non-resonant (2, 1) mode is
decreased with the increase of the magnetic shear
intensity σ or the beta limit is increased almost lin-
early with the increase of σ, as shown in Fig. 1. The
radial mode structure is shifted to the inner region
when σ is increased (Fig. 1). This result can be inter-
preted in the following way. As σ is increased, there
are two effects. First, the magnetic shear becomes
larger in the outer region compared with the inner

region. Second, the outer region is removed further
away from the resonance than the inner region. These
effects may account for the mode structure becom-
ing more localized towards the magnetic axis. Also
when β0 is decreased, since the destabilizing effect
due to the plasma pressure gradient becomes weak,
the non-resonant mode can be excited only in the
inner region. However, since there is no resonant sur-
face, the radial mode structure is not highly local-
ized and still has a global structure. The behaviour
of the growth rate near the marginal beta value for
the non-resonant mode is different from that for the
resonant mode, as shown in Fig. 2. The growth rate
of the non-resonant mode decreases to zero without
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the tail at β0 ' β0c, where β0c is the beta limit for
the non-resonant (2, 1) mode.

Here we study the transition from the resonant
mode to the non-resonant one. For currentless plas-
mas in Heliotron-E, MHD equilibria show that the
central rotational transform is increased with an
increase of beta value. When the vacuum rotational
transform at the plasma centre is lower than 0.5,
a resonant surface for the (2, 1) mode exists inside
the plasma column. The resonant mode may not
be excited due to the low beta value at the ini-
tial state. Experimental results show that the (2, 1)
mode becomes unstable for β0 & 0.7% in neutral
beam heated plasmas, which leads to the occurrence
of sawtooth [8]. However, when ECRH is applied to
the central region, the pressure profile becomes more
peaked and the (2, 1) mode is stabilized. These data
could be understood with the disappearance of the
ι = 0.5 surface according to the increase of the cen-
tral beta value. Linear stability of the ideal (2, 1)
mode in toroidal geometry shows that a resonant
mode appears first, which then changes to a non-
resonant mode with an increase of β0. Finally, the
non-resonant mode becomes stable, when ι(0) devi-
ates far from 0.5 [8].

In the cylindrical model we simulate the above
situation by changing the central value of the rota-
tional transform artificially. To clarify the proper-
ties of the non-resonant mode, we consider a weak
shear configuration with the resonant surface for
the (2, 1) mode at first. Then we exclude the res-
onant surface of ι = 0.5 by increasing ι(0). Fig-
ure 2 shows numerical results for the pressure pro-
file p = p0(1 − r4). White diamonds correspond
to the growth rates for the equilibria with rota-
tional transform profile ι = 0.499 + 0.2r2, which
has the resonant surface for the (2, 1) mode at the
normalized radius r ' 0.07. Black diamonds cor-
respond to the growth rates for the equilibria with
ι = 0.501 + 0.2r2, which has no resonant surface for
the (2, 1) mode. The beta limit for the resonant
case seems to be 1.14× 10−3 or less, while for the
non-resonant mode it is 5.97× 10−3. The difference
between these beta limits correlates with the radial
mode structure. In the small growth rate regime,
when β0 is decreased, the radial mode structure of
the resonant mode becomes more localized. Thus,
a highly localized mode with an extremely small
growth rate is possible, as shown in Fig. 2. Thus,
in β–γ space the line for the resonant mode case
extends to the lower beta region with small growth
rates. On the contrary, since the non-resonant mode

cannot be localized at a particular surface, the
growth rate decreases to zero without a tail with the
decrease of β0.

We can apply the Suydam criterion to resonant
modes, which can be derived from the indicial equa-
tion of Eq. (16) at the singular point, or the resonant
surface. It is written as

Ds

ι′2r2
s

<
1
4

(21)

for the stability case, where Ds and ι′ are evaluated
at the resonant surface, r = rs, for the correspond-
ing mode. In the case of Fig. 2, the resonant surface
of the (2, 1) mode is rs ' 0.07. Here the beta limit
obtained from the criterion (21) is β0 ' 1.05× 10−3.
Generally it is difficult to obtain the beta limit for
the resonant mode numerically. One reason is the
extension of the growth rate to the low beta side as
mentioned above, and the other is the localization
of the mode structure in the vicinity of the resonant
surface. In Fig. 2, however, the difference between
the analytic evaluation and the numerical result is
less than 10%, and the growth rate at the numer-
ically obtained beta limit is 4.49 × 10−11, which is
normalized by the poloidal Alfvén time.

It is noted that global type modes in toroidal
stellarators are discussed in Ref. [5]. However, these
modes are different from the non-resonant modes dis-
cussed here, since in toroidal geometry the poloidal
coupling is essential to destabilize global type
modes.

4.2. Resonant modes
for locally flattened pressure profiles
at the resonant surface

Here we consider the equilibria with resonant sur-
face at ι = 0.5 for the (2, 1) mode in the plasma
column, but without the pressure gradient on the
resonant surface. In the experimental situation of
Heliotron-E, there may exist small magnetic islands
due to resistive interchange instabilities at the low
order resonant surfaces [12, 13], which may be non-
linearly saturated at low fluctuation levels. In such
a case the equilibrium may not be violated by the
resistive mode; however, the local plasma profile
will change and the pressure gradient becomes small
near the resonant surface [8, 14]. For this situation
the Suydam criterion (21) predicts stability at the
ι = 0.5 surface. Here we will show that low-m modes
can be unstable due to the finite negative pressure
gradient at locations other than the resonant surface.
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For simplicity the pressure profile is assumed to
be

p = 1− r2 + λ(r − rs) exp

[
− 1

2

(
r − rs
W

)2
]

(22)

where rs is the position of the mode resonant surface,
and the choice λ = 2rs makes p′ vanish at r = rs. The
width of the flat region is controlled with the param-
eter W . Several pressure profiles given by Eq. (22)
are shown in Fig. 3. We assume ι = 0.45 + 0.2r2 and
consider the (2, 1) mode again. The resonant surface
exists at rs = 0.5 where the pressure gradient van-
ishes.

For the three cases with W = 0, 0.01 and 0.1
shown in Fig. 3, growth rates of the (2, 1) mode are
shown as a function of β0 in Fig. 4(a). Although the
highly localized mode structure is observed in the
case of W = 0, it is not localized even in the case of
W = 0.01, and the beta limit is increased by a fac-
tor of 2. Furthermore, in Fig. 4(a) the growth rate
decreases to zero without a tail near the beta limit
for W = 0.01, while the growth rate in the higher
beta regime is not affected. The growth rates and
the radial mode structures in the case of W = 0.1
are shown separately in Fig. 5, where both the first
growing mode with the maximum growth rate and
the second growing mode with the next growth rate
are shown. In Figs 4(b) and 5(b) we see that the
radial mode structures are quite different from the
case with W = 0. They are restricted to one side
of the mode resonant surface and change sharply at
the mode resonant surface in the case of W 6= 0.
In order to understand the role of the second grow-
ing mode, it is interesting to study the non-linear
behaviour of the (2, 1) mode for an equilibrium with
a flat pressure region in the neighbourhood of the
resonant surface. It is considered that, since the
average magnetic shear is weak on the inner side
of the resonant surface, the first growing mode is
restricted to the region [0, rs] in the case ofW = 0.01,
whereas in the case of W = 0.1, it is restricted to
the outer region since the average pressure gradient
seems larger on the outer side. It is noted that the
beta limit of the W = 0.01 case, β0c = 1.0 × 10−3,
is lower than that of the W = 0.1 case, β0c =
2.7 × 10−3. In both cases the second growing mode
appears in the opposite region to the first growing
mode.

To investigate why the steep mode structure
appears at the resonant surface, we expand the coef-
ficients in Eq. (16) in the neighbourhood of the
mode resonant surface r = rs. Since the rotational
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Figure 3. Pressure profiles given by Eq. (22) for λ = 1.

The effect of pressure flattening is very small and visible

only at r ' 0.5 for W = 0.01.

transform is expanded as ι(r) ≈ ι(rs) + ι′(rs)(r −
rs) + . . ., the resonant denominator is expressed as

n−mι ≈ −mι′(rs)(r − rs) + . . . . (23)

Since the pressure becomes flat at the mode resonant
surface, p′(rs) becomes zero, but p′(r) is still negative
on both sides of the mode resonant surface. Therefore
p′′ is also zero at r = rs, thus p′ is expanded in the
neighbourhood of the mode resonant surface as

p′ ≈ p′′′(rs)
2

(r − rs)2 + . . . (24)

where p′′′(rs) < 0. Substituting the leading terms of
Eqs (23) and (24) into Eq. (16) yields

d2u

dr2
+
(

1
r

+
2m2ι′2(r − rs)

γ2 +m2ι′2(r − rs)2

)
du

dr

−
[
m2

r2
− mι′(r − rs)
γ2 +m2ι′2(r − rs)2

(
mι′

r
+mι′′

)
+

m2β0Np
′′′(4rsι+ r2

sι
′)

4r2
s [γ2 +m2ι′2(r − rs)2]

(r − rs)2

]
u = 0.

(25)

As seen here, the effect of the pressure near the reso-
nant surface appears in higher order with respect to
r − rs. Thus, the pressure is negligible and does not
affect the steep mode structure.

In order to confirm this situation, we have cal-
culated the radial mode structure of the nearly
marginal mode for the following pressure profiles
numerically. One profile is

p =


1
2

(1− 4r2)2 + 0.5, r < 0.5

1
2

[1− 4(r − 0.5)2]2, r > 0.5
(26)
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Figure 4. (a) Dependence of the growth rate of the (2, 1) mode on the central beta value β0 for

W = 0, 0.01 and 0.1. (b) Radial mode structures for W = 0 (β0 = 5.62 × 10−4) and W = 0.01

(β0 = 1.05 × 10−3). The radial mode structures for W = 0.1 are shown in Fig. 5.
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and the other is

p =



1
2

(
1− 25

4
r2

)2

+ 0.5, r < 0.4

0.5, 0.4 < r < 0.6

1
2

[
1− 25

4
(r − 0.6)2

]2

, r > 0.6.

(27)

The latter pressure profile contains a completely flat
region whose width is noted as δ in [0.4, 0.6] in order
to eliminate the effect of the pressure gradient. Those
profiles are shown in Fig. 6. By assuming the same
rotational transform profile as in the previous case in
Figs 4 and 5, the obtained mode structures are shown
in Fig. 7. The reason why the mode structure of the
first growing mode is restricted to the inner region
is that, since the average pressure gradient is equal

on both sides of r = 0.5, the interchange mode is
considered to be excited in the weaker shear region.
It is interesting that the mode structure with the
sharp decrease at r = rs is observed even though the
pressure is completely flat in a region with a finite
width around the mode resonant surface. This con-
firms our conjecture that the locally steep profile of
the mode structure such as that in Figs 5 and 7 is
caused only by the profile of the magnetic shear, not
any more by the pressure profile. We note that a non-
resonant feature is seen in the radial mode structure
for the second growing mode in Fig. 5(b) and the first
growing mode for the second pressure profile (27) in
Fig. 7(b), i.e. the peak is shifted from the resonant
surface. This clearly shows that the unstable mode is
driven by the negative pressure gradient at locations
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Figure 6. Pressure profiles with locally flat regions

around the mode resonant surface. The solid curve cor-

responds to Eq. (26) and the broken curve to Eq. (27).

elsewhere than the resonant surface. A theoretical
explanation for the appearance of the sharp decrease
to zero at the resonant surface in the radial mode
structure or u(r) is given in the Appendix.

4.3. Behaviour of non-resonant type modes

We will show that a non-resonant type mode is
also excited even if the pressure profiles do not have
exactly zero gradient at the resonant surface. For
small and non-zero values of p′ at r = rs, we dis-
cuss the transition from the resonant mode to the
non-resonant one. We assume p = p0(1−r2)α, where
α is changed from 4 to 14 (Fig. 8). The profile of
the rotational transform is fixed as ι = 0.4 + 0.2r2,
where the resonant surface for the (2, 1) mode exists
at rs =

√
2/2. Figure 8 shows that the mode struc-

ture gradually changes from a resonant one to a
non-resonant type one. Particularly the α = 14 case
shows that the peak of the radial mode structure
exists at a position different from the resonant sur-
face, which is considered as a non-resonant feature. It
does have a step function structure instead of a peak
at the mode resonant surface for the nearly marginal
beta value. In other words, the driving force to the
instability comes from the largest pressure gradient
region different from the resonant surface. From the
sharp decrease of u to zero at the resonant surface in
the α = 14 case, it is considered that the pressure has
almost no effect on the mode structure at the reso-
nant surface, since p′ and p′′ are negligibly small.
In the α = 10 case, the mode structure has maxi-
mum value at the resonant surface; however, there
exists another broad peak on the inner side of the
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Figure 7. (a) Radial mode structures of the (2, 1) mode

for the pressure profiles corresponding to Eq. (26) (δ = 0

curves) and to Eq. (27) (δ = 0.2 curves). Both curves

show the radial mode structure of each first growing

mode. Here all the perturbed functions are shown: (a) ũ,

(b) p̃, (c) ψ̃.

resonant surface. In addition, the growth rate van-
ishes without the tail near the beta limit (Fig. 8(b)).
In the α = 8 case, the situation is more ambiguous.
The mode structure has a maximum value at the res-
onant surface and has no other peak. However, the
dependence of γ on β near the beta limit is different
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Figure 8. (a) Pressure profiles given by p = p0(1− r2)α

for α = 4, 8, 10 and 14. (b) Dependence of the growth

rate on the central beta value β0 for different α. (c) Radial

mode structures near the beta limit for different α. The

height of the mode structure is normalized to its own

maximum value.

from the standard resonant mode. Thus, the proper-
ties of the cases with α = 8 and 10 seem to be inter-
mediate between the resonant and non-resonant type
modes. For the α = 4 case, a clear feature of the res-
onant mode is seen, i.e. the small growth rate regime
is extended to the low beta side in β–γ space, and the

Table 1. Comparison between the marginal beta values

from the Suydam criterion, βS , and the ones shown in

Fig. 8(b), βn. The equilibrium pressure gradient at the

resonant surface is also shown.

(The pressure is normalized by the central value and the

radial variable by the minor radius of the plasma col-

umn.)

α βS βn p′

4 1.91× 10−3 2.07 × 10−3 −0.707

8 1.53× 10−2 5.92 × 10−3 −8.84 × 10−2

10 4.90× 10−2 7.02 × 10−3 −2.76 × 10−2

14 0.560 8.39 × 10−3 −2.41 × 10−3

nearly marginal mode structure is highly localized at
the resonant surface. For comparison, the beta limit
given by the Suydam criterion is calculated for each
equilibrium in Fig. 8. Table 1 shows both the beta
limit obtained from the Suydam criterion (21) at the
resonant surface of the (2, 1) mode, βS , and the one
shown in Fig. 8(b), βn. From Table 1, in the cases
with α ≥ 8, the non-resonant type (2, 1) modes are
unstable even when the central beta value is smaller
than the Suydam limit. The beta limit in the case of
α = 4 almost coincides with the Suydam limit since
the radial mode structure is highly localized around
the resonant surface.

Finally, we considered a reversed shear profile,
which will be realized in the high beta equilibrium of
a toroidal stellarator. Here we assume a cylindrical
plasma with ι′ < 0 in the central region and ι′ > 0 in
the outer region. We also assume the following profile
of the rotational transform:

ι = ι(0) + σr2 − λ exp

[
− 1

2

(
r − rc
W

)2
]

(28)

where σ is the previously defined shear parameter,
rc is the parameter for the minimum point of ι(r)
and W denotes the characteristic width of the non-
monotonic region of ι(r). Here σ = 0.2, rc = 0.5,
W = 0.15 and λ = 0.2 are chosen as an exam-
ple. The pressure profile is again assumed to be
parabolic, p = p0(1 − r2). We have calculated two
cases which are parameterized as follows. One is the
double resonant case, ι(0) = 0.6, in which the radial
positions of the two resonant surfaces for the (2, 1)
mode are at 0.35 and 0.59, where the beta limits pre-
dicted from the Suydam criterion (21) are 6.61×10−3

and 8.25× 10−3, respectively. The other is the non-
resonant case, ι(0) = 0.66, in which the rotational
transform has its minimum value 0.508 at r = 0.478.
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Figure 9. (a) Profiles of the rotational transform for ι(0) = 0.6, σ = 0.2, rc = 0.5, W = 0.15,
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(b) Radial mode structure of the (2, 1) mode near the beta limit; β0 = 7.79 × 10−3 for the double

resonant case, or β0 = 4.87 × 10−4 for the non-resonant case.
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Figure 10. (a) Growth rate as a function of β0. (b) Radial mode structures for β0 = 2.5 × 10−2,

2.0 × 10−2 and 5.3 × 10−3. The beta limit is estimated as 5.27 × 10−3, which is lower than the

Suydam limit at the resonant surface of the (3, 2) mode.

The profiles of both the rotational transform and the
nearly marginal mode structures are shown in Fig. 9.

In the double resonant case the radial mode struc-
ture is localized dominantly at the inner resonant
surface. The reason is that, since the beta limit from
the Suydam criterion is lower at the inner resonant
surface than that at the outer one, the pressure
driven mode is more unstable at the inner resonant
surface. In the non-resonant case the radial mode
structure is restricted near the minimum point of
the rotational transform and the beta limit is much
lower than that in the double resonant case. It can
be interpreted that, since the pressure driven mode
is excited near the minimum point of ι in the non-
resonant case, which is fairly close to ι = 0.5, the
stabilizing magnetic shear is very weak there. On the

other hand, the resonant mode is localized at the res-
onant surface where the magnetic shear is relatively
strong in the double resonant case, thus the beta
limit becomes higher than that in the non-resonant
case.

We have also calculated the (3, 2) mode in the non-
resonant case with the rotational transform shown
by the dashed curve in Fig. 9(a). This mode has one
resonant surface at rs = 0.691, where the beta limit
from the Suydam criterion is βS = 8.28× 10−3. The
numerical results are shown in Fig. 10. Figure 10(a)
shows a transition in the growth rate depending
on β0, which occurs at β0 ∼ 0.02. This transi-
tion is understood from the mode structures shown
in Fig. 10(b). The maximum point of the unstable
mode structure is located at the resonant surface for
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β0 & 0.025. However, it moves to the inner weak
shear region for the non-resonant type mode with
β0 . 0.02. This type of mode structure has a small
peak at rs near the beta limit; however, it does not
decrease to zero at the resonant surface as shown
previously, since the pressure gradient is not small
there.

5. Concluding remarks

We have clarified the properties of the non-
resonant pressure driven instabilities and their rela-
tion to the resonant instabilities in the cylindrical
plasma model. The behaviour of the non-resonant
type mode depends strongly on the profile of both the
pressure and the rotational transform. For some cases
the instability has a mixed character between the res-
onant and non-resonant modes. In addition, a tran-
sition from a resonant mode to a non-resonant type
mode occurs when the pressure gradient is increased
in the central region or the pressure profile becomes
peaked.

First we have solved the eigenmode equation ana-
lytically with respect to the perturbed stream func-
tion for an equilibrium with a constant rotational
transform and a parabolic pressure profile. It is noted
that the non-resonant mode has a global structure,
and the dependence of γ on β is parabolic (Eq. (18)).
In this case, it can be shown that the mode with the
fewest node numbers has the larger growth rate, and
the higher harmonic mode with the same helicity has
the higher beta limit.

With the numerical calculations, it is shown that
the growth rate of the non-resonant mode decreases
to zero without the tail near the beta limit, while
the resonant mode has a fairly wide small growth
rate regime expressed as γ ∝ exp[−const/

√
β0 − βS ]

[3], where βS denotes the central beta value given
by the Suydam criterion. A physical interpretation
is as follows. Although the resonant mode becomes
localized at the resonant surface with the decrease
of beta value, the non-resonant mode does not have
such a surface in the plasma column. Therefore,
the free energy necessary to excite the non-resonant
modes is always finite, since the parallel wavenumber
along the magnetic field lines is also finite. Thus, the
growth rate decreases to zero without the tail near
the beta limit. In the resonant case, since the higher
harmonic modes have larger poloidal and toroidal
wavenumbers than the fundamental mode, they can
be more localized in the radial direction. Thus, the
growth rates at the same beta value are larger than

that of the fundamental mode. However, all modes
can be highly localized at the resonant surface as the
central beta value decreases, the beta limit does not
depend on the mode numbers and agrees with the
Suydam limit. On the contrary, in the non-resonant
case, since the parallel wavenumber of the higher har-
monic mode becomes larger than that of the fun-
damental mode, the higher harmonics need more
energy for excitation in the low beta regime. Thus,
the beta limit of the non-resonant mode with a higher
harmonic mode number is larger than that of the fun-
damental mode.

When the pressure profile becomes locally flat-
tened with a width of W around the resonant sur-
face, the resonant mode shows a non-resonant fea-
ture. The beta limit in this case is increased in the
small flattening region. The marginal mode structure
is quite different from the case with W = 0, i.e. it is
restricted to one side of the resonant surface and the
growth rate decreases to zero without a tail when
β0 approaches the marginal value. It is noted that
this non-resonant feature also appears in case of a
non-zero but small pressure gradient at the resonant
surface.

In Heliotron-E, when the beta value is increased,
the central rotational transform is increased and the
profile becomes non-monotonic. We have studied this
situation by changing the rotational transform arti-
ficially. Even if there is no resonant surface for the
(2, 1) mode, when the minimum of the rotational
transform, ιmin , is close to 0.5, the non-resonant
(2, 1) mode becomes unstable, which is independent
of the Suydam criterion. When ιmin is less than 0.5,
the double resonant mode becomes unstable. In addi-
tion, the non-resonant type (3, 2) mode is unstable
below the Suydam limit at the ι = 2/3 surface. In
this case a radial mode structure is observed in the
central region when ι(0) is sufficiently close to 2/3.

Appendix

Behaviour of eigenfunctions
in a resonant layer with
a negligibly small pressure gradient

By introducing the variable ξ = u/r, the eigen-
mode equation (16) is written in the Sturmian form
as

d

dr

(
p(r)

dξ

dr

)
− q(r)ξ = 0 (29)
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where

p(r) = r3[γ2 + (n−mι)2]

q(r) = r
{

(m2 − 1)[γ2 + (n−mι)2]

+ (3mι′r +mι′′r2)(n−mι)−Dsm
2
}
.

Here we consider a resonant layer satisfying |r−rs| =
|x| ∼ ε. Since our interest is in the small growth rate
limit, γ ∼ ε is also assumed. Under these assump-
tions, if we assume p′ ' 0 in the resonant layer, the
second term in Eq. (29) becomes negligible and

d

dr

(
p(r)

dξ

dr

)
= 0 (30)

decides the behaviour of the eigenfunction ξ(r) in the
resonant layer. It is noted that Eq. (30) is exactly
the same as that given by Rosenbluth, Dagazian and
Rutherford for the m = 1 internal kink mode in a
cylindrical tokamak [15]. They gave the solution

ξ =
1
2
ξa

[
1− 2

π
tan−1

(∣∣∣∣mι′γ
∣∣∣∣x)] (31)

for the boundary conditions ξ → ξa as x→ −∞ and
ξ → 0 as x → ∞. Since mι′/γ ∼ O(ε−1), the eigen-
function ξ has the largest gradient at r = rs and
has a step function structure near the resonant sur-
face. Further, since u ' rsξ in the neighbourhood of
the resonant layer, this type of solution may explain
the behaviour of the sharp decrease to zero of the
eigenfunction with the largest growth rate near the
resonant surface r = rs for γ → 0.
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