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Destabilizing effect of plane Couette flow
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In contrast to its well-known stabilization of the low-frequency plasma motions, a shear flow may
equally effectively destabilize a class of plasma modes. The latter quality of the flow is illustrated
by studying an incompressible ideal plasma with a simple velocity profile~Couette flow in a finite
interval!; it is found that interchange modes are driven more unstable through their interactions with
the shear flow. In the presence of the flow shear, the growth rate of the perturbation increases due
to the coupling of the Alfve´n wave with a Rayleigh–Taylor-type instability drive. Marginally stable
modes in the flowless equilibrium achieve their maximum growth rate when the maximum flow
velocity becomes comparable to the Alfve´n velocity. At larger shear flow velocities, however, the
stabilizing ‘‘stretching’’ effect becomes dominant and the instability is quenched.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1573211#
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I. INTRODUCTION

Shear flow induced suppression of turbulence is arg
to come about through the scale-reduction of the fluctuati
caused by the stretching of modes in a shear flow. This
gument for stability, however, ignores the fact the availa
free energy associated with a shear flow may be a po
source for the destabilization of some other class of fluct
tions. The Kelvin–Helmholtz~KH! instability, for instance,
is a well-known example of an instability1 that feeds on the
ambient flow-energy. The effect of shear flows on plas
stability is quite complicated,2–4 and has to be handled cas
by case.

As a general rule, the initial turning on of the shear flo
is destabilizing. As the strength of the shear flow moun
i.e., the maximum velocity crosses a certain critical val
the role is reversed and the flow exerts a stabilizing influe
leading to complete stability eventually~as far as exponentia
instabilities are concerned!. For a perturbation to grow pre
serving the mode structure, it must stay stationary agains
stretching effect of the ambient flow. When local flow velo
ity considerably exceeds any possible phase velocity o
wave in the medium, no mode can withstand the flow, a
the flow destroys the entire spectrum accessible to the fl
less system. This explains the process of shear-flow sta
zation within the framework of linear theory. If the she
flow is weak so that it merely affects but does not overwhe
the mode, an appropriate distribution of fluctuations co
absorb net positive energy from the ambient flow causing
instability or enhancing the instability growth rate.

In this paper, we investigate the destabilizing/stabilizi
effect of a shear flow for a simple model of an incompre
ible magnetized ideal plasma. For electrostatic mode dev
of Alfvén perturbations (ki50; ki is the wave number par
allel to the ambient magnetic field! one expects a decrease
the growth rate because the mode is easily stretched by
vection. The situation is more complicated in electroma
2271070-664X/2003/10(6)/2278/9/$20.00
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netic modes with finiteki . As long as the local flow velocity
is everywhere smaller than the Alfve´n velocity, the Alfvén
wave may propagate backwards and set up a standing m
The stretching effect, however, will overcome the ability
the fluctuations to establish eigenmodes when the local sp
of the flow is sufficiently large.

In Sec. II, we formulate the model. We review the sta
equilibrium in Sec. III followed by general remarks on th
spectra of plane Couette flow system in Sec. IV. Detai
calculations of the unstable eigenvalue are given in Se
V–VII: Section V is devoted to a perturbative treatment f
small flow shear. We show that the growth rate of unsta
eigenmodes increases with the increasing strength of
flow shear. The second order~with respect to flow shear!
correction of the eigenvalue contains destabilizing term p
portional toki

2 , which suggests that the destabilizing effe
of shear flow is caused by the Alfve´n wave. A variational
method~Ritz approximation! is used to evaluate the approx
mate dispersion relation in Sec. VI. We show that the grow
rate reaches its maximum~with respect to flow shear! when
the maximum local flow velocity is comparable to the pha
velocity of the Alfvén wave. Numerical analyses of the e
genvalue problem are given in Sec. VII. In Sec. VIII, w
discuss the physical mechanism for destabilization, and s
marize our results.

II. MODEL

We consider a one-dimensional slab plasma in a fin
domain@2a,a# which obeys ideal incompressible magnet
hydrodynamic~MHD! equations with ambient fields consis
ing of a Couette flowV05(0,Vy(x),0) and a straight homo
geneous magnetic fieldB05(0,By ,Bz). Representing the
interchange~Rayleigh–Taylor! drive by an effective gravity
g ~constant! in the direction of¹x ~see Fig. 1!, the linear
dynamics of ideal incompressible plasma of variable den
is governed by14
8 © 2003 American Institute of Physics
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~] t1Vy]y!Df2Vy9]yf5
B0•¹

m0r0
Dc1

g

r0
]yr1 , ~1!

~] t1Vy]y!r152r08]yf, ~2!

~] t1Vy]y!c5B0•¹f, ~3!

wherer1 , f and c are, respectively, the mass density, t
stream function (v5¹f3ez) and the flux function (b
5¹c3ez) for the perturbed fields.5 Subscript 0 denotes th
equilibrium field, the prime thex-derivative, andD5]x

2

1]y
2 is the two-dimensional Laplacian operator. Note that

velocity field is chosen to be solenoidal (¹•v50). The
boundary conditions arevx(6a,y,t)50 and bx(6a,y,t)
50, implying fixed conducting walls atx56a.

AssumingB0•¹Þ0, we may combine~1!–~3! to obtain

~] t1Vy]y!D~] t1Vy]y!c2Vy9]y~] t1Vy]y!c

5
~B0•¹!2

m0r0
Dc2

r08g

r0
]y

2c. ~4!

For the flowless equilibrium (Vy50), the first term on the
right-hand side expresses the stabilizing effect of the m
netic field line bending, while the second represents the
stabilizing interchange drive forr08,0.

When B050 and r08.0, the system reduces to the on
studied in Ref. 6 showing a secular~algebraic! instability of
vorticity fluctuation for a piece-wise linear velocity profile
The choicer0850 and B0Þ0 yields a set with a similar
physical structure: the coupling of the shear flow effect~con-
vection and excitation! with a wave of some description
~plasma oscillation, gravity wave, or Alfve´n wave!. The only
difference for the latter is the existence of the Laplacian
erator on the right-hand side of~1!.

Using the Alfvén velocity vA5B0 /Am0r0 as the mea-
sure for the flow velocity and along with the following no
malizations,

t5
a

vA
t̂ , x5ax̂, Vy5vAV̂y ,

B05B0B̂, g5
vA

2

a
ĝ, Lr5aL̂r , ~5!

c5aB0ĉ, f5avAf̂, r15r0r̂,

FIG. 1. Slab geometry with gravity.
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whereLr52r0 /r08 denotes the characteristic scale length
the density gradient~including signs!, ~1!–~3! take the di-
mensionless form~omitting ˆ to simplify the notation!,

~] t1Vy]y!Df2Vy9]yf5B•¹Dc1g]yr, ~6!

~] t1Vy]y!r5
1

Lr
]yf, ~7!

~] t1Vy]y!c5B•¹f. ~8!

We note that the system~6!–~8! is equivalent to the linear-
ized version of high-b reduced MHD equations describin
tokamak plasmas7 with the replacementg52/R0 (R0 is the
major radius of the toroidal device!. TheVy9 term of~6! is the
source of the KH instability of the neutral fluids;8,9 in the
following analysis limited to linear profiles of the shear flo
(Vy950), the standard KH drive will not appear. We als
assume thatLr is a finite constant and the Alfve´n velocity is
homogeneous. Although the model system is considera
simplified, it will capture essentials of the mechanism of
teraction between fluctuations and the ambient shear flo

III. INTERCHANGE MODE FOR STATIC PLASMA

It may be appropriate to start with a brief review of th
flowless (V050) limit. WhenB•¹50, the system reduces t
an equivalent neutral fluid model. WithB•¹Þ0, ~4! reads

] t
2Dc5~B•¹!2Dc1G]y

2c, ~9!

whereGªg/Lr ~52a2r08g/vA
2r0 in physical units! denotes

the strength of the interchange~Rayleigh–Taylor! drive (G is
a constant!.

The transformation] t→2 iv and¹→ ik, converts~9! to
the ordinary differential equation~ODE!,

d2c

dx2
2ky

2S 11
G

v22ki
2D c50, ~10!

whereki5k•B/uBu is the wave number parallel to the amb
ent magnetic field~both are constants!. The stream function
obeys the same ODE. For the eigenfunctions to satisfy
boundary conditions, we need

ki
22G,v2. ~11!

Since ki
2.0, the Alfvén wave acts to stabilize interchang

modes. If ~11! is satisfied, we obtain even and odd eige
modes,

c5H cos~npx/2! for n: odd,

sin~npx/2! for n: even,
~12!

respectively. The eigenmodes containn21 nodes~zeros in
c). The dispersion relation is

v25ki
22

ky
2G

ky
21n2p2/4

, ~13!

showing thatv2 decreases monotonically asukyu increases.
The bound ofv2 is ki

2 , which is the accumulation point o
vn

2 asn→`; i.e.,
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ki
22G,v2,ki

2 . ~14!

The distribution of the eigenvalues is illustrated in Fig.
which represents a typical spectral structure of the disc
part of the shear Alfve´n branch.10

If ki
2 is larger than the driveG, there is no instability

even if G.0. The instability condition is given by

G.ki
2S 11

p2

4ky
2D . ~15!

IV. DISPERSION RELATION WITH FLOW

We now introduce a linear shear flow (s is a real con-
stant!

Vy~x!5sx ~16!

for which the conventional KH instability is absent becau
Vy950 ~see Sec. II!. The modal transforms of~6!–~8! read as

VDf52kiDc2kygr, ~17!

Vr52
ky

Lr
f, ~18!

Vc52kif, ~19!

where V5v2kyVy(x) is the Doppler shifted local fre
quency. Simple algebra leads to the spectral ODE govern
c,

VS d

dx F ~V22ki
2!

dc

dx G2ky
2~V22ki

21G!c D50. ~20!

Here, we implicitly assumedkiÞ0.
Equation~20! contains, in addition to other modes, th

fully decoupled flow-induced continuous spectraV50. For
this continuous spectra,

v5kysxs @;xsP~21,1!#, ~21!

and the corresponding eigenfunctions are determined by

d

dx F ~V22ki
2!

dc

dx G2ky
2~V22ki

21G!c5d~x2xs!. ~22!

As far as V22ki
2Þ0 is satisfied for allxP@21,1#, the

eigenfunctions corresponding to the flow continuum (V
50) do not contain nonintegrable component inc. Due to
the contribution of thed-function on the right-hand side o
~22!, dc/dx may contain finite jump, however,c does not
diverge atx5xs,

The standard branches of spectra are given by

d

dx F ~V22ki
2!

dc

dx G2ky
2~V22ki

21G!c50. ~23!

This dispersion relation yields Alfve´n continuous spectra,

FIG. 2. Distribution of eigenvalues inv2 space.
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2ki2kys<v<2ki1kys, ~24!

ki2kys<v<ki1kys. ~25!

We note that this continuum is due to the spatially inhom
geneous Doppler broadening of the Alfve´n frequency. This
spectrum yields a regular singularity whenV6ki is a simple
pole, and the corresponding eigenfunction includes logar
mic singularity that is similar to the standard Alfve´n waves
in an inhomogeneous magnetic field.11 For ki,2kys, the
two Alfvén continua overlap with the flow continuum in th
vicinity of v;6ki /2. Moreover, whenki,kys, all three
continua overlap in the vicinity ofv;0.

In addition to the Alfvén continua~24!–~25!, the disper-
sion relation~23! may produce the point spectra whenG
Þ0. By multiplying the complex conjugate of flux functio
(c̄) on both sides of~23! and integrating it over the domain
we obtain

E
21

1

~V22ki
2!Udc

dxU
2

dx1E
21

1

ky
2~V22ki

21G! ucu2 dx50.

~26!

Writing v5v r1 iv i (v r , v iPR), the imaginary part of~26!
reads

v iE
21

1

@v r2kyVy~x!#S Udc

dxU
2

1ky
2 ucu2D dx50. ~27!

We find that the factor@v r2kyVy(x)# must change its sign
in the domain if unstable (v iÞ0) solution exists. Then, the
corresponding real partv r must satisfy

2kys,v r,kys. ~28!

Once an unstable eigenvalue appears, there are alw
three others. Supposeve is an eigenvalue of~23! andce(x)
is the corresponding eigenfunction,

d

dx H @~ve2kyVy~x!!22ki
2#

dce

dx J
2ky

2@~ve2kyVy~x!!22ki
21G#ce50. ~29!

By taking the complex conjugate of both sides, we find th
v̄e is also an eigenvalue andc̄e is the corresponding eigen
function. Since the assumed flow profile~16! satisfies the
relation

Vy~2x!52Vy~x!, ~30!

transformingx52 x̃ in ~29! yields

d

dx̃
H @~ve1kyVy~ x̃!!22ki

2#
dce~2 x̃!

dx̃
J

2ky
2@~ve1kyVy~ x̃!!22ki

21G#ce~2 x̃!50. ~31!

We thus find that2ve (2v̄e) is also an eigenvalue, and tha
the corresponding eigenfunction isce(2x) (c̄e(2x)).

We end this section by deriving the spectral ODE for t
stream functionf. For this derivationki may be zero@note
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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that ~23! assumeskiÞ0] but V50 is not allowed. By solv-
ing ~18!–~19! with respect tor and c, respectively, and
substituting them into~17!, we obtain

d2f

dx2
2ky

2f2
2kyski

2

V2~V22ki
2!

S kysf1V
df

dx D2
ky

2G

V22ki
2
f50.

~32!

If Vy9Þ0, an additional termkyVy9f/V would have ap-
peared on the left-hand side~LHS! of ~32! @see~16! of Ref.
12#. In the absence of both the magnetic field (ki50) and
the interchange drive (G50), the only source for a possibl
instability ~KH mode! will be this flow curvature term—
Rayleigh’s inflection point theorem,8,9 then, shows thatVy9
must change its sign for instability. In the present mo
(Vy950), however, the complicated denominators and
df/dx term in ~32! are the causal of instabilities.

V. PERTURBATIVE ANALYSIS

Here, we will represent a perturbative analysis for t
spectral ODE~32! by assumings!1.13 We expand eigen-
functions and eigenvalues as

f5f01f11f21•••, v5v01v11v21•••, ~33!

where uvhu/uv0u;ufhu/uf0u;O(sh) for hPN. Then, the
first order correction on the eigenvalue givesv150. To the
second order, we obtain~see the Appendix for details!

2v0v252
ki

2s2

G S 114P41B1
16

p2
P41

2 AD
1ky

2s2S 16

p6
P41A13BD , ~34!

where

A5 (
m51

`
m2

~m221/4!5
.4.219 581, ~35!

B5
1

3
2

2

p2
.0.130 691, ~36!

P415ky
21

p2

4
. ~37!

For the parameters

ki5ky50.5, G52.72, ~38!

the second order eigenvalue comes out to be

v254.02is2, ~39!

which shows destabilization due to flow shear~see Fig. 3!.
The perturbative analysis is applicable as far asuv2u!uv0u,
which translates, in terms ofs, as

s!0.0602. ~40!

On the other hand,uf1u!uf0u demands

supuf1u
supuf0u

, (
m51

`

uqmu!1⇔s!0.0764. ~41!
Downloaded 19 May 2003 to 133.11.199.16. Redistribution subject to A
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When v0 describes instability~pure imaginary with
Im v0.0), the first term on the RHS of~34! is destabilizing,
while the second is stabilizing. The destabilizing term co
tains bothki andG, while the stabilizing one contains onl
ky . It is remarkable thatki

2 works to increase the growth
rate, andG, decreases it, which is opposite to the conve
tional understandings for flowless equilibrium. Forki50 ~or
for a neutral fluid!, this destabilizing effect does not work
There is a threshold in the ratio ofki

2 and G, where the
coefficient ofs2 changes its sign. The destabilizing cond
tion is

ki
2

G
.

ky
2S 16

p6
P41A13BD

114P41B1
16

p6
P41

2 A

. ~42!

Figure 4 shows the threshold as a function ofky . The thresh-
old of ki

2/G approaches unity asky→`. We may conclude,
then, that destabilization may occur for any value ofkiÞ0 if
ky is sufficiently small, and for any value ofky if ki

2/G is
sufficiently large.

VI. VARIATIONAL CALCULATION

The perturbative method is valid only for rather sm
values of the shear parameter (s). In this section, therefore
we develop a variational principle approach and explore
effect of largers. The spectral ODE for the flux function
@see~23!#,

FIG. 3. Comparison of the growth rate between analytic and numer
solutions for the parameter~38!. Numerical results are explained in Sec. VI

FIG. 4. Parameter regime of flow shear stabilization and destabilizatio
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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d

dx F ~V22ki
2!

dc

dx G2ky
2~V22ki

21G!c50 ~43!

may be derived by the variation of the Lagrangian,

L5 K ~V22ki
2!F S dc

dx D 2

1ky
2c2G L 1^ky

2Gc2&, ~44!

where the angular bracket denotes the integral covering
domain @21,1#. To find the dispersion relation we ma
choose a trial function with a variational parameter and fi
the stationery values of the Lagrangian with respect to
variational parameter. We assume the trial function

c5cosS p

2
xD1 ia sin~px!, ~45!

wherea ~PR) is the unknown parameter to be determine
Note that this trial function is designed as the combination
the most unstable zero-order eigenfunctionc0

(0) and the
dominant first order function sin(px) derived in the perturba
tive analysis@see~A3! and ~A12!#.

Evaluation ofL,

L52P11~v21C!a222iAEP11P41va

1P41~v21D !, ~46!

and imposingL50 and]aL50 gives usa and the approxi-
mate dispersion relation~after eliminatinga)

v41~C1D2E!v21CD50, ~47!

where

C5ky
2s2S 1

3
2

1

2p2

P12

P11
D 2ki

21
ky

2G

P11
, ~48!

D5ky
2s2S 1

3
2

2

p2

P42

P41
D 2ki

21
ky

2G

P41
, ~49!

E5
64ky

2s2

p4P11P41

S P212
1

9
P22D 2

, ~50!

Pn65ky
26

p2

n
. ~51!

In the limit s.0, we may neglectE in ~47!, and then,
we have two different solutions,

v21C50, and v21D50. ~52!

The branchv252D is of interest (C,D) to us; with E
back in the game, it modifies to

v252 1
2 ~C1D2E!2 1

2A~C1D2E!224CD. ~53!

The parametera is determined by

a52 i
AEP11P41v

P11~v21C!
, ~54!

wherev is pure imaginary.
In Fig. 5, we plot the approximate growth rate~53! as a

function of the flow shears. The growth rate, after an initia
monotonic increase, reaches a maximum and then decre
Downloaded 19 May 2003 to 133.11.199.16. Redistribution subject to A
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to zero ass becomes large. Let us estimate the ‘‘critic
shear parameter’’ that gives the maximum growth rate.
do it for a relatively smallky allowing us to omitky in Pn6 .
We also assume that the mode is marginally stable ifs50
by taking

G5
P41ki

2

ky
2

. ~55!

Under these conditions we may approximate

C1D2E.Qky
2s21Rki

2 , ~56!

CD.Sky
4s41Tki

2ky
2s2, ~57!

with numerical coefficients

Q.0.109, R.20.750, S.0.206, T.20.402.
~58!

The critical shear will be determined by the condition]sv2

50, which translates to

2S~Q224S!ky
4s412S~2T2QR!ki

2ky
2s2

1T~T2QR!ki
450, ~59!

and is solved to find

s.61.023
ki

ky
. ~60!

FIG. 5. The growth as a function of the shear parameters (G52.72 and
ky5ki50.5). Numerical results will be derived in Sec. VII.

FIG. 6. Flow shear dependence of the growth rate for the param
(By ,Bz)5(1,0) andky5ki50.5.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 7. Mode structures forG52.72 corresponding to Fig. 6.
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A direct consequence of~60! is that the local maximum flow
velocity Vmax5s becomes

Vmax;
kivA

ky
5

vA

ky
, ~61!

when the growth rate achieves the maximum value (vA is
the Alfvén frequency!. Beyond this critical velocity~or s),
the growth rate turns to diminish, implying the onset of t
stretching effect of the shear flow.

VII. NUMERICAL CALCULATION

In this section, we present results of the numerical ana
sis of the eigenvalue problem~23! @or equivalently,~32!#. We
use a shooting method with fourth order Runge–Kutta f
mula and a qualified stepper.

In our first example, we takeky5ki50.5 for which the
system can be unstable fors50. We takeG52.72 which is
slightly larger than the lower bound~15!. In this case, only
n51 mode becomes unstable fors50 and its growth rate is
estimated by~13! ~see Fig. 3!,

v56 0.0155i. ~62!

When we increase the flow shear parameters, the growth
rate of this mode increases. In order to show the relevanc
the analytic calculations, we have superimposed the num
cal results on the earlier pictures. In Fig. 3 we see a co
parison between the numerical results and previous re
from the perturbative analysis. We observe that theoret
growth rates agree well with the numerical ones in the reg
where the perturbative expansion is applicable@see~40! and
Downloaded 19 May 2003 to 133.11.199.16. Redistribution subject to A
-

-

of
ri-
-

ult
al
n

~41!#. In Fig. 5 we present a similar comparison of the n
merical results with those of the variational approximatio
and find that the theory reproduces the general shape o
curve very well; we also find excellent quantitative agre
ment up tos&1.3. The comparison is very helpful in show
ing that the maximum growth rate can be confidently eva
ated from the approximate analytic dispersion relation~53!.

In Fig. 6, we display the mode growth rate as a functi
of s for different values ofG. WhenG52.72, the shear flow
enhances the growth rate in the ranges&1 just as was pre-
dicted in the previous sections. In this region, the mo
structure is bell-shaped and becomes flatter ass is increased
~Fig. 7!. Beyond the critical shear (s*1), the growth rate
diminishes, and the mode undergoes a strong distortion
veloping symmetric spiky peaks~away from the center; se
Fig. 8!. When s*1.78, the mode is completely stabilize
and ‘‘disappears.’’ We can also observe in Fig. 6 that ther
no shear induced destabilizing forG*5.04; the growth rate
monotonically decreases withs. This agrees with the ana
lytical estimate@see~42!#. We further find that even stabl
modes fors50 (G52 andG51) are destabilized by the
Couette flow. In all regions shown in Fig. 6, the eigenvalu
are pure imaginary.

Near the upper marginal stability limit ofs, the corre-
sponding mode structure have sharp peaks—the locatio
peaks depend onG ands ~see Fig. 9!. These singularities are
related to that of the zero frequency modeV22ki

250 @flow
stretched Alfve´n continuum; see~24!–~25!#. For G52.72, 2,
and 1, the threshold values ares.1.78, 1.53, and 1.14,
FIG. 8. Mode structures forG52.72 corresponding to Fig. 6.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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respectively. For these values ofG ands, the singular points
in the eigenfunctions appear at

uxsu5
ki

kys
50.56, 0.65, and 0.87, ~63!

respectively. Since the two Alfve´n continua~24!–~25! over-
lap aroundv;0 for s.1, the solution contains multiple
singularities. On the other hand, the mode structure n
lower marginal stability does not have any singularity, b
cause the Alfve´n continua does not extend tov;0 ~see Fig.
10!.

For various wave numbers and drives, the maxim
growth rate occurs when

Vmax.
vA

ky
~64!

is satisfied, if the mode is almost marginally stable fors
50. Numerical results of the survey of maximum grow
rate ~in the s-wave number space! are shown in Fig. 11
along with the analytic estimates~60!.

Continuing our study of the parametric dependence,
plot the growth rate as a function ofG for a fixed s and
Bz /By50.1 ~see Fig. 12!. We find thatki50 mode is stabi-
lized for a higherG than ki50.5 mode. We also plot the
growth rate as a function ofki by varyingkz for fixed G, s,
and ky50.5 ~see Fig. 13!. When the flow is absent, theki

50 mode is the most unstable~solid line!. As we increases,
however, the dependence of the growth rate onki becomes

FIG. 9. Upper marginal mode structures.

FIG. 10. Lower marginal mode structures.
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e

rather weak aroundki;0 ~dashed line forG5s51). For a
weaker drive~dotted line forG50.8), we find thatki.0.5
mode is the most unstable. The maximum growth rate co
cides very well with~64!. This is due to the fact that theki

50 mode will be uniformly stabilized by the flow shea
while nonzeroki mode is destabilized. Even after theki50
mode is completely stabilized, the mode which satisfies~64!
may still remain unstable.

VIII. SUMMARY AND DISCUSSION

We have investigated the effect of the linear shear fl
~Couette flow! on interchange type of instabilities. For sma
flow speeds~compared to the Alfve´n velocity!, a perturbative
analysis shows that the shear flow increases the growth
of the instability if the parallel wave number is finite. Base
on the knowledge of the perturbed eigenfunction, we th
derived an approximate dispersion relation valid for arbitra
flow speeds by constructing a variational principle. Appro
mate dispersion relation shows the growth rate has a m
mum with respect to the flow shear. The analytical estima
are found to be in good agreement with numerical solution
the eigenvalue problem.

Shear flows may stabilize instabilities when they stre
the fluctuation. However, we have seen the stabilization
curs only if the local velocity exceeds the phase velocity
the Alfvén wave. When the flow shear is weak to modera
the modes are generally destabilized; the growth r

FIG. 11. Maximum growth rate for modes which are almost marginal
case ofs50.

FIG. 12. TheG dependence of the growth rate fors51 andBz /By50.1.
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achieves its maximum value when the maximum flow vel
ity is near the Alfvén velocity @see ~61!#. For larger flow
speeds, the growth rate is suppressed due to the stretc
effect which overcomes the Alfve´nic phase propagation
against the flow. We note that the situation is very differe
when we consider a mathematical model of infinite-dom
linear shear flow. For such a model, the maximum velocity
unbounded, and hence, we see only the stabilization
instabilities.5

To understand the destabilization of interchange mo
for a weak flow shear let us examine the energy balanc
the perturbed fields,

d

dtE 1

2
r0v21

1

2m0
b21

g

2r08
r1

2 dr

5E 2r0Vy8vxvy1
Vy8

m0
bxby dr , ~65!

wherev25vx
21vy

2 andb25bx
21by

2 @see~1!–~3!, and below#.
In the flowless equilibrium (Vy50), the eigenfunctions de
termined by~10! are real. Then, we obtain mirror symmetr
streamlines which leads to an exact cancellation of thevxvy

term when integrated. However, an ambient shear flowVy8
Þ0) yields a complex valued eigenfunctionf for which the
integral ofvxvyterm remains finite because of the breakdo
of symmetry. Figure 14 shows the streamlines of the eig
function for the casess50.7 and 1.5 of Fig. 7. We observ
that the productvxvy is negative in most of the domain
s50.7. SinceVy85s is a positive constant, this term~repre-
senting the work done by the shear flow! gives a positive
contribution to the right-hand side of~65!. It is remarkable
that the stream line contour is inclined in the opposite dir
tion to the ambient shear flow. The mode corresponding

FIG. 13. Theki dependence of the growth rate forBz /By50.1 andky

50.5. The zero ofki corresponds tokz525.
Downloaded 19 May 2003 to 133.11.199.16. Redistribution subject to A
-

ing

t
n
s
of

s
in

n-

-
to

the complex conjugate eigenvalue~damped mode! has the
opposite structure—the streamlines are distorted in the di
tion of the flow. Ass becomes rather large, the ambient flo
begins to distort the mode in the direction of flow, and fina
stabilizes it.

Our simple model contains only the Alfve´n wave, while
plasmas are endowed with many other possible waves. H
these different waves behave in response to shear flows
make a fascinating study.
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APPENDIX: DETAILS OF PERTURBATIVE ANALYSIS

From theO(1) terms of~32!, we obtain

d2f0

dx2
2ky

2S 11
G

v0
22ki

2D f050, ~A1!

which has been already solved in Sec. III. Eigenvalues
eigenfunctions are

~v0
(n)!25ki

22
ky

2G

ky
21n2p2/4

, ~A2!

and

f0
(n)5H cos~npx/2! for n: odd,

sin~npx/2! for n: even,
~A3!

respectively. We study the effect of the shear flow for t
moden51, that is the most unstable~whenV050).

The terms ofO(s) yield

d2f1

dx2
2ky

2S 11
G

v0
22ki

2D f12
2kyki

2s

v0~v0
22ki

2!

df0

dx

1
2v0ky

2G

~v0
22ki

2!2
~v12kysx!f050. ~A4!

Multiplying f0
(1) on both sides of~A4! and integrating it

over the domain, we find
e
FIG. 14. Streamlines of the typical eigenfunction. Th
parameters areBz50, G52.72, ki5ky50.5, ands
50.7, and 1.5~see Figs. 6 and 7!.
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v150. ~A5!

The next order equation, thus, describes the effect of
flow shear on the eigenvalue. Since the set$f0

(n)% gives a
complete orthogonal basis of the function space, we can
pandf1 as

f15(
l 51

`

$pl cos@~ l 2 1
2!px#1ql sin~ lpx!%. ~A6!

Substituting~A6! into ~A4! yields, using~A5!,

(
l 51

` H 2S l 2
1

2D 2

p2pl cosF S l 2
1

2DpxG2 l 2p2ql sin~ lpx!J
2ky

2S 11
G

v0
22ki

2D (l 51

` H pl cosF S l 2
1

2DpxG
1ql sin~ lpx!J 1

pkyki
2s

v0~v0
22ki

2!
sinS p

2
xD

2
2kysv0ky

2G

~v0
22ki

2!2
x cosS p

2
xD50. ~A7!

Multiplying cos(m21/2)px and integrating~A7!, we ob-
tain

F S m2
1

2D 2

p21ky
2S 11

G

v0
22ki

2D Gpm50. ~A8!

We thus find

pm50~;mÞ1!. ~A9!

We note thatp1 does not need to be evaluated, because
corresponding mode is identical tof0

(1) ; we absorb it in the
0-order term and setp150.

Multiplying sin(mpx) and integrating both sides of~A7!
leads to

2Fm2p21ky
2S 11

G

v0
22ki

2D Gqm2
pkyki

2s

v0~v0
22ki

2!

2m~21!m

~m221/4!p

1
2kysv0ky

2G

~v0
22ki

2!2

2m~21!m

~m221/4!2p2
50, ~A10!

which yields

qm5
2s

p2kyGv0
S ky

21
p2

4 D m~21!m

~m221/4!2

3F ki
21S ky

21
p2

4 D 2v0
2

~m221/4!p2G . ~A11!

The first-order correction to the eigenfunction is

f15 (
m51

`

qm sin~mpx!. ~A12!

Sincev0 is a pure imaginary~supposed to be unstable; s
Sec. II!, the first-order correction~due to a flow! adds an odd
pure imaginary functionf1 on a real and even zero-orde
eigenfunction.
Downloaded 19 May 2003 to 133.11.199.16. Redistribution subject to A
e

x-

e

The next order ODE is

d2f2

dx2
2ky

2S 11
G

v0
22ki

2D f22
2kyki

2s

v0~v0
22ki

2!

df1

dx

2
2v0ky

3Gs

~v0
22ki

2!2
xf12

2ky
2ki

2~3v0
22ki

2!s2

v0
2~v0

22ki
2!2

x
df0

dx

2
ky

4G~3v0
21ki

2!s2

~v0
22ki

2!3
x2f0

1F 2ky
2Gv0

~v0
22ki

2!2
v22

2ky
2ki

2s2

v0
2~v0

22ki
2!

Gf050, ~A13!

which may be used to estimatev2 . Making the quadratic
form, we obtain

2kyki
2s

v0
(

m51

`
m ~21!m

m221/4
qm

1
2v0ky

3Gs

v0
22ki

2 (
m51

`
2m ~21!m

~m221/4!2p2
qm

1
ky

2ki
2~3v0

22ki
2!s2

v0
2~v0

22ki
2!

2
ky

4G~3v0
21ki

2!s2

~v0
22ki

2!2 S 1

3
2

2

p2D
1

2ky
2Gv0

v0
22ki

2
v22

2ky
2ki

2s2

v0
2

50. ~A14!

Using15

(
m51

`
m2

~m221/4!3
5

p2

4
, ~A15!

we finally obtain the second order dispersion relation~34!.
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