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Destabilizing effect of plane Couette flow
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In contrast to its well-known stabilization of the low-frequency plasma motions, a shear flow may
equally effectively destabilize a class of plasma modes. The latter quality of the flow is illustrated
by studying an incompressible ideal plasma with a simple velocity pr@iteiette flow in a finite
interval; it is found that interchange modes are driven more unstable through their interactions with
the shear flow. In the presence of the flow shear, the growth rate of the perturbation increases due
to the coupling of the Alfva wave with a Rayleigh—Taylor-type instability drive. Marginally stable
modes in the flowless equilibrium achieve their maximum growth rate when the maximum flow
velocity becomes comparable to the Alfveelocity. At larger shear flow velocities, however, the
stabilizing “stretching” effect becomes dominant and the instability is quenched.

© 2003 American Institute of Physic§DOI: 10.1063/1.1573211

I. INTRODUCTION netic modes with finiték, . As long as the local flow velocity
is everywhere smaller than the Alfwevelocity, the Alfvan
Shear flow induced suppression of turbulence is argueg,aye may propagate backwards and set up a standing mode.
to come about through the scale-reduction of the fluctuationgpe stretching effect, however, will overcome the ability of
caused by the stretching of modes in a shear flow. This aine flyctuations to establish eigenmodes when the local speed
gument for stability, however, ignores the fact the availableyf the flow is sufficiently large.
free energy associated with a shear flow may be a potent |, sec. |1, we formulate the model. We review the static
source for the destabilization of some other class of ﬂUCtU&equilibrium in Sec. Il followed by general remarks on the
tions. The Kelvin—HelmholtZKH) instability, for instance, spectra of plane Couette flow system in Sec. IV. Detailed
is a well-known example of an instabilityhat feeds on the  cajculations of the unstable eigenvalue are given in Secs.
ambient flow-energy. The effect of shear flows on plasmay,_v|: Section V is devoted to a perturbative treatment for
stability is quite complicatedl;* and has to be handled case small flow shear. We show that the growth rate of unstable
by case. eigenmodes increases with the increasing strength of the
As a general rule, the initial turning on of the shear flowfo\w shear. The second ordéwith respect to flow shear
is destabilizing. As the strength of the shear flow mountscorrection of the eigenvalue contains destabilizing term pro-
i.e., the maximum velocity crosses a certain critical Va|UeportionaI tokf, which suggests that the destabilizing effect
the role is reversed and the flow exerts a stabilizing influences shear flow is caused by the Affuewave. A variational
leading to complete stability eventuallgs far as exponential method(Ritz approximatiopis used to evaluate the approxi-
instabilities are concerngdFor a perturbation to grow pre- mate dispersion relation in Sec. VI. We show that the growth
serving the mode structure, it must stay stationary against thgyte reaches its maximutwith respect to flow sheawhen
stretching effect of the ambient flow. When local flow veloc- ihe maximum local flow velocity is comparable to the phase
ity considerably exceeds any possible phase velocity of gejocity of the Alfven wave. Numerical analyses of the ei-
wave in the medium, no mode can withstand the flow, a”(benvalue problem are given in Sec. VII. In Sec. VIII, we
the flow destroys the entire spectrum accessible to the flowgjscyss the physical mechanism for destabilization, and sum-
less system. This explains the process of shear-flow stabiliarize our results.
zation within the framework of linear theory. If the shear
flow is weak so that it merely affects but does not overwhelmII MODEL
the mode, an appropriate distribution of fluctuations could
absorb net positive energy from the ambient flow causing an We consider a one-dimensional slab plasma in a finite
instability or enhancing the instability growth rate. domain[ —a,a] which obeys ideal incompressible magneto-
In this paper, we investigate the destabilizing/stabilizinghydrodynamicdMHD) equations with ambient fields consist-
effect of a shear flow for a simple model of an incompress-ing of a Couette floww,=(0,V,(x),0) and a straight homo-
ible magnetized ideal plasma. For electrostatic mode devoigeneous magnetic fiel@®,=(0,B,,B,). Representing the
of Alfven perturbations K,=0; Kk, is the wave number par- interchanggRayleigh—Tayloy drive by an effective gravity
allel to the ambient magnetic fieldne expects a decrease in g (constank in the direction ofVx (see Fig. 1, the linear
the growth rate because the mode is easily stretched by adynamics of ideal incompressible plasma of variable density
vection. The situation is more complicated in electromag-s governed b¥*
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whereL ,= — p,/p, denotes the characteristic scale length of
the density gradientincluding sign$, (1)—(3) take the di-
v mensionless fornfomitting ~ to simplify the notatio,

] ‘ (3+Vyd))Ad—Vid,6=B-VAy+gdyp, 6)

1
-a 5] a (&t-l—Vyé’y)p: L—é’yqb, (7)

p
R ’ (0+Vydy) p=B-V . (8

FIG. 1. Slab geometry with gravity. We note that the systelri®)—(8) is equivalent to the linear-
ized version of highd reduced MHD equations describing
tokamak plasmdswith the replacemeng=2/R, (R, is the

B,V major radius of the toroidal devigeTheVy term Ofé(g) is the
. g source of the KH instability of the neutral fluids;in the
O+ Vyd)Ad=Vydyd=""~ HoPo Ay p_&ypl' @ following analysis limited to linear profiles of the shear flow
(Vy=0), the standard KH drive will not appear. We also
(9 +Vydy)p1=—pody o, (2)  assume that , is a finite constant and the Alfmevelocity is
homogeneous Although the model system is considerably
(9 +Vydy) h=By-V b, (3)  simplified, it will capture essentials of the mechanism of in-

. . teraction between fluctuations and the ambient shear flow.
wherep,, ¢ and ¢ are, respectively, the mass density, the

stream function ¢=V¢Xxe,) and the flux function i
=V X e,) for the perturbed field3 Subscript 0 denotes the
equilibrium field, the prime thex-derivative, andA=(9)2( IIl. INTERCHANGE MODE FOR STATIC PLASMA
+(9§ is the two-dimensional Laplacian operator. Note that the
velocity field is chosen to be solenoidaV (v=0). The
boundary conditions are,(*a,y,t)=0 and b,(*a,y,t)
=0, implying fixed conducting walls at=*+a.

It may be appropriate to start with a brief review of the
flowless (Vo= 0) limit. WhenB- V=0, the system reduces to
an equivalent neutral fluid model. Wit3- V #0, (4) reads

AssumingB,- V #0, we may combingl)—(3) to obtain FAY=(B-V)2Ay+Gay, 9)
" hereG:=g/L, (= —a®p,g/vap, in physical units denotes
A+ V) A0+ Vydy) —VIay (3 + Vo W p 09/vapo
(0+Vydy) A(d¢+Vydy) h—Vyay (0 +Vydy) the strength of the interchang@ayleigh—Tayloy drive (G is
(Bo-V)? PoY a constant
- 1oPo A _an'p' (4) The transformatiod,— —iw andV—ik, converts9) to

the ordinary differential equatioODE),
For the flowless equilibrium\{,=0), the first term on the

2
right-hand side expresses the stabilizing effect of the mag- _‘p_kZ 1+ )1//=0, (10)
netic field line bending, while the second represents the de-  dx? 22

stabilizing interchange drive fqs;<O0.

WhenBy,=0 and p,>0, the system reduces to the one
studied in Ref. 6 showing a secul@gebraig¢ instability of
vorticity fluctuation for a piece-wise linear velocity profile.
The choicepy=0 and By#0 yields a set with a similar
physical structure: the coupling of the shear flow effecin- kf— G<w?. (11)
vection and excitationwith a wave of some description-
(plasma oscillation, gravity wave, or Alfmewave. The only
difference for the latter is the existence of the Laplacian op-
erator on the right-hand side 6f).

wherek,=k-B/|B| is the wave number parallel to the ambi-
ent magnetic fieldboth are constantsThe stream function
obeys the same ODE. For the eigenfunctions to satisfy the
boundary conditions, we need

Since k?>0, the Alfven wave acts to stabilize interchange
modes. If(11) is satisfied, we obtain even and odd eigen-
modes,

Using the Alfven velocity va=By/Vuopo as the mea- _ | cognmx/2)  forn:odd,
sure for the flow velocity and along with the following nor- y= sinnmx/2) for n: even, (12)
malizations, ) . . .
respectively. The eigenmodes contair 1 nodes(zeros in
a. . . ). The dispersion relation is
t=—t, x=ax, Vy=uvaVy,
VA k2G
w?=k?— 2y— (13
R Ui,\ R k + n2772/4
Bo=BgB, =—g, L,=alL,, 5
o -0 9= 39 s p © showing thatw® decreases monotonically | increases.

A A A The bound ofw? is k?, which is the accumulation point of
y=aBoh, P=avad, p1=pop, w? asn—ox; ie.,
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kﬁT G - o ]Iel? (02 _k”_kygg w$—kH+ky0', (24)

ki—kyososk +ko. (25

accumulation point
We note that this continuum is due to the spatially inhomo-
geneous Doppler broadening of the Alfivérequency. This
spectrum yields a regular singularity whén+k is a simple
) s 2 pole, and the corresponding eigenfunction includes logarith-

ki —G<w"<Kkj. (14 mic singularity that is similar to the standard Alfvevaves
The distribution of the eigenvalues is illustrated in Fig. 2,in an inhomogeneous magnetic fi¢fdFor k<2k,o, the
which represents a typical spectral structure of the discreto Alfvén continua overlap with the flow continuum in the

FIG. 2. Distribution of eigenvalues in? space.

part of the shear Alfe branch'° vicinity of w~ *k;/2. Moreover, wherk,<k,o, all three
If k? is larger than the driveS, there is no instability ~Ccontinua overlap in the vicinity oi~O0. .
even if G>0. The instability condition is given by In addition to the Alfver continua(24)—(25), the disper-

sion relation(23) may produce the point spectra whén
#0. By multiplying the complex conjugate of flux function
() on both sides of23) and integrating it over the domain,
we obtain

2

G>k? (15

+ —
K
ky

IV. DISPERSION RELATION WITH FLOW duy|2

1
2_ 1,2 2 2_ 1,2 2 —
We now introduce a linear shear flow (is a real con- f_l(Q k) dx dx+ f_lky(ﬂ ki+G)[¢|*dx=0.
stan} (26)

Vy(x)=ox (16 writing w=w,+iw; (o, w;cR), the imaginary part 0f26)
for which the conventional KH instability is absent becausereads
vg=o (see Sec. )l The modal transforms @B)—(8) read as

dy|?
QAp=—-kA¢y—k,gp, (17) f [wr—kyVy( ( +k32/|‘r/’|2 dx=0. (27)
Qp=— ﬁ(ﬁ' (18 We find that the factof w, —k,V,(x)] must change its sign
in the domain if unstabled;# 0) solution exists. Then, the
Qy=—ko (19) corresponding real path, must satisfy
where Q=w—k,V,(x) is the Doppler shifted local fre- —kyo<w,<kyo. (28)
guency. Simple algebra leads to the spectral ODE governing Once an unstable eigenvalue appears, there are always
4 three others. Suppose, is an eigenvalue of23) and i¢(x)
d dy is the corresponding eigenfunction,
Q(d—x[(ﬂz—kz)d—x —K(02-kf+G)y|=0. (20
2
Here, we implicitly assume#, # 0. ax | [(we™ kyVy(X))Z_kH]W
Equation(20) contains, in addition to other modes, the 5 ) 2
fully decoupled flow-induced continuous specfda=0. For — k[ (we—kyVy(x))“—ki+G]e=0. (29)

this continuous spectra, By taking the complex conjugate of both sides, we find that

w=kyoxs [Vxse(=1,1)], (21) 4, is also an eigenvalue anf, is the corresponding eigen-
and the corresponding eigenfunctions are determined by fulncyon Since the assumed flow profi¢6) satisfies the
relation
d 2 2 dl’/, 2 2 2 —
d_X (Q _kH)d_X —ky(Q —k”'f'G)lﬂ— S(x—xg). (22 Vy(_X)Z—Vy(X), (30)

As far as Qz—queo is satisfied for allxe[—1,1], the transformingx= —X in (29 yields
eigenfunctions corresponding to the flow continuufl (

=0) do not contain nonintegrable componentyin Due to ~ 2 12 die( —X)

the contribution of thes-function on the right-hand side of & [(wetkyVy(x)) =K T

(22), dy/dx may contain finite jump, however; does not

diverge atx=xg, ' — K[ (et Ky Vy(x))2 =k + Gl —x)=0. (31)
The standard branches of spectra are given by .
d dy We thus find that- we (— w¢) is also an eigenvalue, and that
& (Q%- kf)d k(02K +G)y=0. (23)  the corresponding eigenfunction jg(—x) (e(—X)).

We end this section by deriving the spectral ODE for the
This dispersion relation yields Alfvecontinuous spectra, stream functiong. For this derivatiork, may be zerdnote
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that (23) assumek;# 0] but Q=0 is not allowed. By solv-
ing (18)—(19) with respect top and ¢, respectively, and
substituting them int@17), we obtain

d? 2k, ok? d k3G
I P i (k SR e B
& T 0%02-k) | dx/ 02—k’
(32
If Vi#0, an additional ternk,Vy#/Q would have ap-

peared on the left-hand sideHS) of (32) [see(16) of Ref.
12]. In the absence of both the magnetic field=€0) and

the interchange driveG=0), the only source for a possible

instability (KH mode will be this flow curvature term—
Rayleigh’s inflection point theorefi’ then, shows thav!

must change its sign for instability. In the present mode
0), however, the complicated denominators and the

(Vy=
dg/dx term in (32) are the causal of instabilities.

V. PERTURBATIVE ANALYSIS

Here, we will represent a perturbative analysis for theky .

spectral ODE(32) by assumingr<1.1® We expand eigen-
functions and eigenvalues as

b= ot P1+ ot -, (33

where |op|/|wo|~ | dnll| o] ~O(a") for he N. Then, the
first order correction on the eigenvalue giwes=0. To the
second order, we obtaifsee the Appendix for detajls

w=wogtw;+w,+---,

k2o 16
2(1)0(1)22_ G l+4P4+B+ P4+A
2.2 16
Tkyo| — P4+ A+3B], (34)
a
where
*© 2
A= ———=4.219 581, 35
m2=1 2—1/4)° (
1 2
B=5——=0.130691, (36)
3 2
2 ?
4+ =Ky + 7 (37
For the parameters
ki=k,=0.5, G=2.72, (39
the second order eigenvalue comes out to be
w,=4.02i02, (39

which shows destabilization due to flow sheaee Fig. 3.
The perturbative analysis is applicable as fatag <|wg|,
which translates, in terms af, as

0<0.0602. (40)
On the other hand,¢4|<| ¢y demands
Su
Id‘ﬁ1|< 2 |qml <1 0<0.0764. (41)

suf ol
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o

FIG. 3. Comparison of the growth rate between analytic and numerical

Isolutions for the paramet€88). Numerical results are explained in Sec. VII.

When w, describes instability(pure imaginary with
Im wy>0), the first term on the RHS @84) is destabilizing,
while the second is stabilizing. The destabilizing term con-
tains bothk, and G, while the stabilizing one contains only
It is remarkable thak? works to increase the growth
rate, andG, decreases it, which is opposite to the conven-
tional understandings for flowless equilibrium. A0 (or
for a neutral fluid, this destabilizing effect does not work.
There is a threshold in the ratio & and G, where the
coefficient of o changes its sign. The destabilizing condi-
tion is

16
| —5PaiA+3B
—_> . 42)
16 (
1+4P4+B+ SPa A

Figure 4 shows the threshold as a functiorkpf The thresh-
old of k /G approaches unity as,—. We may conclude,
then, that destabilization may occur for any valu&g# O if
ky is sufficiently small, and for any value & if kﬁ/G is
sufficiently large.

VI. VARIATIONAL CALCULATION

The perturbative method is valid only for rather small
values of the shear parameter)( In this section, therefore,
we develop a variational principle approach and explore the
effect of largero. The spectral ODE for the flux function
[see(23)],

Destabilization

Y6

k

Stabilization

FIG. 4. Parameter regime of flow shear stabilization and destabilization.
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d 2 2 dlﬂ 2 2 2 03 ’ ) ) i " numerical ——

ax (Q°=Kk; )& —ky(Q°=ki+G)y=0 (43 025 variational ~———-
may be derived by the variation of the Lagrangian, 02|

_ 2zd’»”222 2412 @ 015}
L={(Q°—k;) i Ty | ) +(kyGy7), (44)
0.1
where the angular bracket denotes the integral covering the
domain[—1,1]. To find the dispersion relation we may 005}
choose a trial function with a variational parameter and find 0 T S
the stationery values of the Lagrangian with respect to the 0 02 04 06 08 1 12 14 16 18
variational parameter. We assume the trial function o
T FIG. 5. The growth as a function of the shear parametéG=2.72 and
Y= COS(EX +iasin(mx), (45) k,=k;=0.5). Numerical results will be derived in Sec. VII.

wherea (€ R) is the unknown parameter to be determined.
Note that this trial function is dESigned as the combination Ofto Zero aso becomes |arge_ Let us estimate the “critical

the most unstable zero-order eigenfunctigff’ and the  shear parameter” that gives the maximum growth rate. We
dominant first order function simf) derived in the perturba-  do it for a relatively smalk, allowing us to omitk, in P, .

tive analysigsee(A3) and (A12)]. We also assume that the mode is marginally stable=H#0
Evaluation ofZ, by taking
L=—P; (0?+C)a?—2iJEP,P,, 0« P, K2
G 55
+P4y (024 D), (46) kZ %

and imposingC=0 andd,L=0 gives usa and the approxi- Under these conditions we may approximate
mate dispersion relatioafter eliminatinga)

C+D—-E=QKo?+RK, (56)
0*+(C+D-E)w?+CD=0, (47
CD=SKo*+Tk’kio?, (57
where
) with numerical coefficients
, o1 1 P} , KG
C=Kio? z—— 5—|—ki+ , (48 Q=0.109, R=-0.750, S=0.206, T=—0.402.
3 272 P1s Pt (58)
» o[l 2 Py ) ki@ The critical shear will be determined by the conditignw?
D=kjo’| s — 5| kit5—, (49 =0, which translates to
3 72 Pas Pas
—S(Q?-4S)kjo*+2S(2T— QR)kPk] o2
S4* (p _1p )2 (50 )k (59
= 2+ " gF2-] +T(T-QR)k, =0, 59
7P Py T . H_
) and is solved to find
T
Poe=kjx—. (51) Ki
n azi1.02><k—. (60)

In the limit =0, we may neglecE in (47), and then,
we have two different solutions,

®?+C=0, and w?+D=0. (52 05

The branchw?=—D is of interest C<D) to us; with E
back in the game, it modifies to

04

w?=—3(C+D-E)- 3/(C+D—-E)>-4CD. (53 031
;
The parametet is determined by 0.2t

VEP, P, o | %
a=— |#, (54) 0.1 "’.'.-. "-X‘
Pl+((1) +C) 0 £ '._'L %
wherew is pure imaginary. 0 05 1 15 2 25
In Fig. 5, we plot the approximate growth raf) as a o

function Qf Fhe flow sheas. The growth rate, after aninitial Fig, 6. Flow shear dependence of the growth rate for the parameter
monotonic increase, reaches a maximum and then decreas@s,B,)=(1,0) andk,=k,=0.5.
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FIG. 7. Mode structures fo=2.72 corresponding to Fig. 6.

A direct consequence @60) is that the local maximum flow (41)]. In Fig. 5 we present a similar comparison of the nu-

velocity V.= o becomes merical results with those of the variational approximation,
Koa on and find that the theory reproduces the general shape of the
ma T (61)  curve very well; we also find excellent quantitative agree-

y y

ment up toor=1.3. The comparison is very helpful in show-
when the growth rate achieves the maximum valug (S ing that the maximum growth rate can be confidently evalu-
the Alfven frequency. Beyond this critical velocityor o), ated from the approximate analytic dispersion relatf®.
the grqwth rate turns to diminish, implying the onset of the In Fig. 6, we display the mode growth rate as a function
stretching effect of the shear flow. of o for different values ofs. WhenG=2.72, the shear flow
enhances the growth rate in the range 1 just as was pre-
VIIl. NUMERICAL CALCULATION dicted in the previous sections. In this region, the mode
In this section, we present results of the numerical analystructure is bell-shaped and becomes flatter &sincreased
sis of the eigenvalue proble(@3) [or equivalently(32)]. We  (Fig. 7). Beyond the critical shearo=1), the growth rate
use a shooting method with fourth order Runge—Kutta for-diminishes, and the mode undergoes a strong distortion de-
mula and a qualified stepper. veloping symmetric spiky peakaway from the center; see
In our first example, we takk,=k;=0.5 for which the  Fig. 8. When =1.78, the mode is completely stabilized
system can be unstable for=0. We takeG=2.72 which is  and “disappears.” We can also observe in Fig. 6 that there is
slightly larger than the lower bound5). In this case, only g shear induced destabilizing f&=5.04; the growth rate
n=1 mode becomes unstable o0 and its growth rate is  monotonically decreases wiih. This agrees with the ana-
estimated by(13) (see Fig. 3, lytical estimate[see(42)]. We further find that even stable
w=* 0.0155i. (62 modes forec=0 (G=2 andG=1) are destabilized by the

When we increase the flow shear parameterthe growth Couette flow. In all regions shown in Fig. 6, the eigenvalues

rate of this mode increases. In order to show the relevance &€ Pure imaginary. _ o

the analytic calculations, we have superimposed the numeri- Near the upper marginal stability limit of, the corre-

cal results on the earlier pictures. In Fig. 3 we see a comsSPonding mode structure have sharp peaks—the location of
parison between the numerical results and previous resuR€aks depend o8 ando (see Fig. 9. These singularities are
from the perturbative analysis. We observe that theoreticaelated to that of the zero frequency madé—kZ=0 [flow
growth rates agree well with the numerical ones in the regiorstretched Alfva continuum; se¢24)—(25)]. ForG=2.72, 2,
where the perturbative expansion is applicdilsiee(40) and  and 1, the threshold values are=1.78, 1.53, and 1.14,

ol 2

FIG. 8. Mode structures fos=2.72 corresponding to Fig. 6.
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FIG. 9. Upper marginal mode structures. FIG. 11. Maximum growth rate for modes which are almost marginal in
case ofo=0.

respectively. For these values@fand o, the singular points

in the eigenfunctions appear at rather weak arounl,~0 (dashed line foG=0=1). For a

weaker drive(dotted line forG=0.8), we find that,=0.5

K, mode is the most unstable. The maximum growth rate coin-
Ixd= ky_g_0'56’ 0.65, and 0.87, (63) cides very well with(64). This is due to the fact that tHe
. . . =0 mode will be uniformly stabilized by the flow shear,
respectively. Since the two Alfweconpnua(24)—_(25) OVer  while nonzerok, mode is deystabilized. Ev)én after tke=0
lap aroundw~0 for o>1, the solution contains multiple mode is completely stabilized, the mode which satisfe
singularities. On the other hand, the mode structure near[hay still remain unstable '
lower marginal stability does not have any singularity, be- '

cause the Alfva continua does not extend &~ 0 (see Fig.

10). VIlI. SUMMARY AND DISCUSSION
For various wave numbers and drives, the maximum  \e have investigated the effect of the linear shear flow
growth rate occurs when (Couette flow on interchange type of instabilities. For small
wa flow speedgcompared to the Alfue velocity), a perturbative
Vinac= 1= (64 analysis shows that the shear flow increases the growth rate
y of the instability if the parallel wave number is finite. Based

is satisfied, if the mode is almost marginally stable ér on the knowledge of the perturbed eigenfunction, we then
=0. Numerical results of the survey of maximum growth derived an approximate dispersion relation valid for arbitrary
rate (in the o-wave number spageare shown in Fig. 11 flow speeds by constructing a variational principle. Approxi-
along with the analytic estimatés0). mate dispersion relation shows the growth rate has a maxi-
Continuing our study of the parametric dependence, wenum with respect to the flow shear. The analytical estimates
plot the growth rate as a function @ for a fixed o and  are found to be in good agreement with numerical solution of
BZ/By:O.l (see Fig. 12 We find thatk,=0 mode is stabi- the eigenvalue problem.
lized for a higherG than k;=0.5 mode. We also plot the Shear flows may stabilize instabilities when they stretch
growth rate as a function & by varyingk, for fixed G, o, the fluctuation. However, we have seen the stabilization oc-
andk,=0.5 (see Fig. 18 When the flow is absent, the  curs only if the local velocity exceeds the phase velocity of
=0 mode is the most unstablsolid line). As we increaser,  the Alfven wave. When the flow shear is weak to moderate,
however, the dependence of the growth ratekpibecomes the modes are generally destabilized; the growth rate
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0.15 f
|l @ 0.02 [
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01 F
0.05 [ 00
0 . . . .
-1 -0.5 0 05 1 0 0.2 0.4
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FIG. 10. Lower marginal mode structures. FIG. 12. TheG dependence of the growth rate fer=1 andB,/B,=0.1.
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FIG. 13. Thek, dependence of the growth rate f8;/B,=0.1 andk,
=0.5. The zero ok, corresponds td,= —5.

Destabilizing effect of plane Couette flow 2285

the complex conjugate eigenvalyéamped modehas the
opposite structure—the streamlines are distorted in the direc-
tion of the flow. Aso becomes rather large, the ambient flow
begins to distort the mode in the direction of flow, and finally
stabilizes it.

Our simple model contains only the Alfwevave, while
plasmas are endowed with many other possible waves. How
these different waves behave in response to shear flows will
make a fascinating study.
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linear shear flow. For such a model, the maximum velocity isAPPENDIX: DETAILS OF PERTURBATIVE ANALYSIS

unbounded, and hence, we see only the stabilization of From theO(1) terms of(32), we obtain

instabilities®

To understand the destabilization of interchange mode
for a weak flow shear let us examine the energy balance i
the perturbed fields,

dJl , 1 g
— | Zpou?+ =—b%+ —pidr
dt 2.00 21“’0 2p6pl

!

’ Vy
= J —poVyvxvy+ %bxby dr, (65

wherev?=vZ+v andb?=b?+bJ [see(1)~(3), and below.

In the flowless equilibriumV,=0), the eigenfunctions de-
termined by(10) are real. Then, we obtain mirror symmetric
streamlines which leads to an exact cancellation ofvths,
term when integrated. However, an ambient shear fIV\@/ (
#0) yields a complex valued eigenfuncti@nfor which the
integral ofv,v term remains finite because of the breakdown
of symmetry. Figure 14 shows the streamlines of the eigen
function for the cases=0.7 and 1.5 of Fig. 7. We observe
that the producv,v, is negative in most of the domain if
o=0.7. SinceVy = o is a positive constant, this ter(repre-
senting the work done by the shear flogives a positive
contribution to the right-hand side ¢65). It is remarkable

s ey
n dX2
which has been already solved in Sec. lll. Eigenvalues and
eigenfunctions are

el 1y -8 $o=0 (A1)
AR A

k3G
(My2—p2_ Y~ A2
0) L)
(@o?) : k§+n27r2/4 (A2)

and
cognmx/2) forn: odd,
M=y (A3)
sin(nwx/2) for n: even,

respectively. We study the effect of the shear flow for the
moden=1, that is the most unstabl@shenV,=0).
The terms ofO(o) yield

d2¢l_k2<l+ )¢1_ 2kykfo  ddo
a® Y\ wi-k? wo(wi—k?) dx
2(,()0k)2,G
+m(ml—kyUX)¢o=o. (A4)

that the stream line contour is inclined in the opposite direcMultiplying ¢gl> on both sides of(A4) and integrating it
tion to the ambient shear flow. The mode corresponding t@ver the domain, we find

111 ‘.i-.—| il .‘.I-.-'I
oHhApOMROD®
e

y FIG. 14. Streamlines of the typical eigenfunction. The
parameters ard8,=0, G=2.72, k,;=k,=0.5, ando
=0.7, and 1.5see Figs. 6 and)7
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w,=0. (A5) The next order ODE is
The next order equation, thus, describes the effect of the, 2
flow shear on the eigenvalue. Since the &¢§"} gives a d P2 K3 1+ L ”— M %
complete orthogonal basis of the function space, we can exdx Y wg—k? wo(wj—k?) dx
pand ¢, as
e 200560 2KK(305-K)o? ddg
1= 2, {picod (I - ) mx]+q sin(l mx)}. (A6) (02— k)2 ' wi(wi-kDE O
Substituting(A6) into (A4) yields, using(A5), kyG(3witki)o?
- 0
*° 1 2 1 ((1)2_ k2)3
> {_(I_E) 2P co{(l—z)wx —127%q, sin(lwx)] o
=t 2k2Gwg 2k2Kk2 0 l A13)
+ wy— 0= Y,
(0g=kD? " wg(wg—kf)

_ks(l—i_wé%kf)él [p, cos{(l—%)wx

which may be used to estimate,. Making the quadratic

_ ko [ form, we obtain
+q sin(l mx) | + ————=-sin EX
wo(wy— ki) 2kkfo & m(—1)m
2kyowok§G T wo m=1 m?-1/4 m
—2—22X co EX =0. (A?)
(05— kj) 200k3Go &, 2m (—1)"
Multiplying cos(m—1/2)7x and integratingA7), we ob- * w3—k? =1 (m2—1/4)%72 Gm
tain
102, . kikF(Bwi—k)o®  kjG(3wh+ kf)(rz(}_i
m— > T +ky 1+ m Pn=0 (A8) wé(wé_kﬁ) (wg—kf)z 3 g2
We thus find 2k2Gwg 2kZk? o
5 W >—=0. (Al4)
Pm=0(Vm#1). (A9) wo— K wo
We note thatp, does not need to be evaluated, because the Using's
corresponding mode is identical t;ﬁf)l); we absorb it in the
0-order term and sqi; =0. o m2 2
Multiplying sin(max) and integrating both sides 6A7) 2 e 77_, (A15)
leads to m=1 (m’—1/4°% 4
| m2a2 k2 1+ — 2) ]qm_ kazkfffz ZT(—l)m we finally obtain the second order dispersion relaiid4).
wi— K| wo(wo—Ki) (Mm*—1/4) 7

2 _a\m
2kya'wokyG 2m( D (AlO) H. Helmholtz, Philos. Mag36, 337 (1868; W. Thomson(Lord Kelvin),
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