PHYSICS OF PLASMAS VOLUME 7, NUMBER 6 JUNE 2000

Shear-flow induced stabilization of kinklike modes
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The stabilizing effect of a shear flow on a current-driven instability has been studied by means of
Kelvin's representation of spatially-inhomogeneous Galilean transform. Even though conspicuous
transient growth may occur, the mixing effect of the shear flow overcomes the instability and damps
kinklike modes. ©2000 American Institute of Physid$$1070-664X00)01506-§

I. INTRODUCTION A remarkable finding due to the application of this
scheme was the so-called magnetorotational instability
Shear flows represent a central feature and an open proreakly magnetized accretion disks in astrophysical plasmas.
lem in various physical systems. The importance of the rolerhere are several pioneering theories predicting very tran-
of shear flows stems from a simple fact; a spatially inhomo-sijent (neither exponential nor sinusoididdehavior of plas-
geneous flow can drastically alter the modes of their evolumas driven by shear flows. In these theories, the free energy
tion. In other words, depending on the physical characteristhat drives the dynamics is primarily due to the shear flow. In
tics of the system they are embedded in, sheared flows ca@al laboratory systems, as well as in space plasmas, some
lead to destabilization or stabilization. In the astrophysicabjifferent free energies can stem from spatial and geometrical
context, for example, differential rotation is considered to anhomogeneities of ambient physica| quantities such as mag-
the priming factor of a dynamo process which might accountetic fields. One of the most important neglect committed in
for the presence of strong magnetic fields in planets, starghe simple one-dimensional treatment of the ambient fields
and galaxies. In laboratory plasmas the interest in shegslab model is the curvature of magnetic field lines, which
flows concentrates on their possible stabilizing influence oRjelds the energy to drive the so-called “kink instability.”
unstable modes of fusion plasmas. In spite of their impor- Although there are many phenomenological or approxi-
tance, rigorous treatment of the effect of shear has alwaygate treatments of the kink modes under the influence of a
been deficient. This is primarily due to the formidable diffi- shear flow, the basic relation between the shear flow and the
culties which plagued the analysis of the differential operainstability remains unaddressed on a rigorous basis. The aim
tors associated with shear flows. These operators indeed tugi this paper is to develop a theoretical foundation for the
out to be non-self-adjoint and this fact entails the impossibil-analysis of kinktype instabilities put in a shear flow.
ity of resolving them in terms of orthogonal eigenfunctions. We apply the nonmodal approach for a slab plasma
In recent years, however, the so-called nonmodal apptdach model. As mentioned above, the naive formulation of a slab
is driving important progress in the study of shear flows bothplasma drops the kink-mode driving term. However, invok-
in ordinary hydrodynamics and in magnetohydrodynamic§ng a standard technique of incorporating an equivalent
(MHD). The nonmodal method, which was introduced bymagnetic-field curvature effect, we can introduce an artificial
Lord Kelvin® more than a century ago, consists of two basickink-drive term” into the model. Physical applicability of
methods to solve hyperbolic partial differential equationsthe model is rather limited; only spatially localized behavior
(PDES; the characteristics methbend the Fourier expan- s within the scope. The theory, however, captures the essen-
sion methodmodal metho@l The solution to the character- tja| nature of the competition between the flow shear and the
istic ordinary differential equation®DEs), associated with instability driving effect. We will show that the velocity
a shear flowuy, gives a new coordinate systefspatio-  shear induces a time dependency on the wave vector, and the
tempora) on which the convectivéLagrangian derivative  resultant “phase mixing” finally overcomes the instability
(di+up- V) reduces into a simple temporal derivativi.). drive.
In some special cases, the remaining spatial derivatives in- |n Sec. Il we derive the model equations. The nhonmodal

volved in the PDEs can be converted, by Fourier transformmethod is applied in Sec. lIl. Results are presented and dis-
into multiplications of some coefficien{gvhich may be time  cyssed in Sec. IV.

dependent These two procedures transform a complicated,
spatially inhomogeneous system of PDEs into an easily man-

ageable, temporally inhomogeneous system of ODEs. Il. MODEL OF SHEAR-FLOW MHD

A. ldeal magnetohydrodynamics
dElectronic mail: fvolponi@plasma.q.t.u-tokyo.ac.j . . . .
bElectronic mail: yosﬁidag&asmag.t.u_tok);o.acjﬁ Neglecting viscous and resistive effects the dynamics of
9Electronic mail: tatsuno@plasma.q.t.u-tokyo.ac.jp a plasma is described by ideal MHD equations,
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p(d+u-V)u=jxB—Vp, ) We assume that the equilibrium density is a positive
constant and sepo=1. To model a tokamak plasma, we
9B=VX(uxB), v assumgB, /B, |=e<1, and seBy (representative value of
dp+V-(pu)=0, ©) B) :BOZ' The equilibrium magnetic field is given by
wherep andj are, respectively, the mass and current densi- 0
ties, u is the velocity andB is the magnetic field. The con-
vective derivative §;+u-V) represents the temporal deriva- Bo=| ~€ . (12)
tive in the frame of the fluid motion. Exploiting the relation 1

j =,u,61V>< B (uq is the vacuum permeabilityand assuming

a barotropic relatior p=c2Vp (c is the sound spegadve The shear flowu, is an incompressible flow given by

can eliminatg andp from Eq. (1). 0
We introduce the following set of dimensionless vari- u=| —Ax| (13)
ables: 0

x=Ix, B=B{B, p=pop, t=(l/ca)t, u=cal, (4

] T p. ;.)op (1/ea A whereA represents the strength of the velocity shear.
wherel is a characteristic length scale of the syst&pand By assuming a symmetry{=0) and incompressibility
po are the representing values of the magnetic field and de?V-ﬂzO) we may write

sity, respectively, and,=B1/(uopo) 2 is the Alfven speed.

The dimensionless form afl)—(3) is B=VyxVz+B,Vz, U=V$xVz+U,Vz (14
p(di+U-V)u=(VxB)XB-BVp, (5 A strong toroidal field Bo,) allows us to assum8,=T,
%#B=VXx(UXB), (6) =0 (tokamak ordering Then the perturbations are repre-

sented by two fieldsj (z component of the vector potential
dip+V-(pu)=0, (7)  and¢ (velocity streamfunctionthat give

where=(cs/ca)?. In what follows we will drop thenatin B=VyxVz, U=Ve¢xVz (15

order to simplify the notation. . . .
We decompose the physical quantities into their equilib-Under this assumption, the perturbatioii$) obey a self-

rium and small perturbative components to write consistent system of linear MHD equations, which describes
- - - the shear Alfvaic mode. We note that this mode of pertur-
B=Bo+B, u=uptu, p=potp, (8  bations is decomposed from other compressional modes

where the subscript “0” denotes equilibrium fields, and the (Slow and fast modgsand forms a closed system. A kink

tilde, the perturbations fields. Lineariziri§)—(7), we obtain instability, that is an unstable shear Alfve mode, becomes
most unstable when it is decoupled from compressional

po(di+Ug- V)u+pug- Vug+ pou- Vug modes that have positive energies.

Let us introduce the “kink-drive term” into the model.
As mentioned above, we have to assume an artificial “cur-
vature” of the magnetic field lines, which yields the energy
to drive the kink mode.
dgp=—V-(pou+puy). (11) In the evolution equatioit9), this effect appears as the

term (VX Bg) X B. Although VXB,=0 for the presenB,

;Zr:f[’ fIV(\)I\?v Lrjem_la};]ke t;:lr'lrggr%rtlﬁqnecaer f\J)ICI:[IrI;)etheho()l’mnggﬁ%istﬁggsee(lz)] we may introduce an artificial curvature by calcu-
0 Y ating the curl derivative in the cylindrical coordinates.

up=constant &0). Then, the generator of the dynamics be- .

- : For a general vector field, we have
comes self-adjoint, and this fact allows us to apply the modal
method (spectral analysjs Whenu, is not constant, how-
ever, the system becomes non-self-adjoint, and this intro-  (VXA)r=139pA;~ A,
duces profound difficulties in the spectral analysis of the
ideal MHD operatof.’ (VXA),=3d,A,—d,A,,

=[(VXB)XBy+(VXBy)XB]—BVp, 9)

B=VX(UXBg)+ VX (UyxB), (10)

1
B. One-dimensional slab model (VX A)zzr(ar(rAﬁ)_aﬂAr)-

We consider a one-dimensional slab plasma. We expresH llels the radial di hil q
all quantities in Cartesiar—y—z coordinates where, to com- erex parallels the radial coordinate while y andz corre-

pare with tokamak geometry parallels the radialy the spond to the poloidal ) and tor_0|dal coordinates. Using
poloidal, andz the toroidal coordinates. Thels the direction these correspondences, we obtain

in which the ambient fields vary. The perturbation are func-  (yxB,),=0,

tions of x andy, while they are homogeneous with respect

toz (VXByp)y=0,
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1 The system(26)—(27) is homogeneous with respect to
the coordinateg and . Fourier transform ofp and ¢, thus,
yields “good quantum numbersk, andk, . Let us write

1
(VX BO)z: - ;ﬁx(x): - ;

The expression for{x By) X B becomes

.1 Y&, 7)=(r)elKeErtam,

(VXBO)XBZ—;VIJJ. (28)
— 3(r)eiketk,m)

After taking thecurl of the momentum equatio®) and the ¢(&mm=¢(ne '

curl ~* of Faraday Law(10) in Cartesian coordinates we ob-

tain Then, the system of PDE26) and (27) reduces into a sys-

tem of ODEs,
H(AP)—Axdy(Agp)=—edy(Ap)—ex 2oy, (16)
d -
dp— AXdy = —edy, (17 g [k k,AT)2+K 1)
whereA= g2+ &f, is the Laplacian. The second term on the .
right-hand side of16) brings about the kinkcurrent-driven = —eik ([ (kg+k,AT)2+K =Ry 2 ih, (29)
instability.
D= — ik, (30)
— = —€i .
1. NONMODAL REPRESENTATION dr K

We introduce a spatio-temporal coordinate transformye point out that Egs(23), (24), (25), and (28) imply the
moving frame(Lagrangian going with the mean shear flow,

E=x, (18 ky=kg+Ak,T,  ky=k,, (31
n=y+AXxt, (19 wherek, andk, are, respectively, the wave numbers in the
=t (20) andy coordinates. Equation@l) clearly shows that thé,

varies with time, implying that the shear flow deforms the
The above transformation represents the characteristic rayfode of perturbation.

of the convective derivative operat@/Dt=d;+ug-V. In- After simple manipulations, we obtain the following sec-
deed it can be readily obtained from the characteristic ODE 4 order ODE for)
associated witD/Dt. Solving ’

d x) ( 0 ) 2 d? G4 k( Tk, d .

—| 7= , i a —

dtly/ | -Ax dT? (ke(T)/ky)2+1 dT
subject to an initial condition (=2

2 0 y
0 2..|¢=0 (32
(X)(0)= g)’ (22) { (kx(T)/ky)?+1
y U

yields (18) and (19). wherek,(T)/k,=«,+aT andT,a,rq,«, are the normalized

Equations(18), (19), (20) induce the following transfor- duantities defined by

mation of the partials: N
T=7k a=A(k,) ", 1o=Rok,, rg;=kgk, . (33

dy= et AL, , (23 B
dy=3,, (24)  Defining
9=0d,+AXd,). (25 - Ka Tk, ke+aT
The convective derivativ®/Dt=a,—Axd, reduces into a m(T)= a(kx(T)/ky)2+1 - a(K§+aT)2+1' (34)

simple “temporal” derivatived ...
Equations(16) and (17) now read
o

’ — _ ’ _p2 Qz T= 2 1— " - -
7" §)=— e[ 0,(A ) —R3 2], (26 QAT) [ TR e

I, p=—€d, ¢, 27 (35

where A’ =7+ (1+A%?) 32+ 2At9,0, is the Laplacian
represented in the new coordinate system BRpds a con-
stant number representing the curvature radius of the system.
We note that the present model of field-line curvature as-  —_j4 /()
sumes radially localized perturbations. dT?

-2 -2
2 Mo

we write (32) as

d. QZ g
g (My=0.
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TABLE I. Relation betweenc, and u(T). Psi®
Case K¢ w(T) at smallT wu(T) at largeT
A + + +
B - - +

IV. ANALYSIS OF THE EVOLUTION OF THE
PERTURBATIONS

We pursue the analysis of E€B2) in three steps. First
we will examine the effect of the kinklike driving term and
the shear term separately and then we will investigate theil
combined action.

A. No shear flow (Ah‘vé n wave and kink |nstab|||ty ) FIG. 2. Evolution Ofljb liOI’ I’62:0, K= —4, GZAO.l, anda=0.5. As initial
values we have chose(0)=0.04 and ¢/dT) ¢(0)=0.05.

Assuminga=0 (zero flow), Eq. (32) becomes

d? . ro? | .
— ¢t el 1— 20 )z,b= 0. (36)  This behavior of the solution, which is due to the phase
dT kel mixing effect induced by the shear flow, presents an analogy

The curvature radius, is the characteristic parameter that Of the Landau damping that is induced by the shear flow in
dominates the behavior of the solution. For sufficiently largethe coordinate-velocity phase space of the kinetic theory. On
ro (small curvaturg i.e., r§> 1/(K§+ 1), (36) describes an tAhe contrary, a negative value a{T) yields amplification of
harmonic oscillator, which represents the Alfvweave. Fora .

small r, (large curvaturg we may have an exponentially The frictional coefficientu(T) depends on the param-
growing solution, representing the kink instability. The tran-eters k. and a. In the following analysis, without loss of
sition from a stable oscillatiofAlfvén wave to an unstable generality, we will take the signs & andk,, to be positive
motion (kink instability) depends on the wave numbeg (thenais positive. In Table | we summarize the dependence

(=const. ifa=0); rg=1/(x+1) is the critical number. of u(T) on the sign ofk;. We observe that, in any case,
w(T) is positive for largeT. This implies that the solution of
B. No kink drive (shear-flow damping ) (37) is finally damped. In Case Ay shows only damping

oscillations(Fig. 1), however, in Case B, a transient ampli-

fication offp occurs(Fig. 2). The maximum of the amplitude
is reached around the time wher{T) changes its sign.

In the absence of the kink-driving terrmJZ:O), Eq.
(32) reduces into

— a————— —=¢+ey=0.
dT? (ke+aT)?+1dT C A
ase
The behavior of the solution depends on the sign of the co-
efficient u(T) defined in(34). Invoking the analogy ot37) K
with Newton's equation of motion, we can interpret the sec- y DAMPING
ond term on the right-hand side 87) as a frictional force. > -
A positive 1(T) damps the oscillation ofs (Alfvén wave. k(0) k()
Psi® kx
0.2
0.15
Case B
0.1
AMPLIFICATION K DAMPING
0.05 O<t<T* y T>T*
_ T k(0) K (%) k(1)
1 00 0) 40 00 600
-0.05

k

FIG. 1. Evolution ofy for ry2=0, kg=4, €=0.1, anda=0.5. As initial )

values we have chose}(O)=0.04 and @/dT) f/f(O)=0.05. FIG. 3. Evolution ofk for positive and negative values kf.
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Psi® Psi~”

-0.2

FIG. 4. Evolution ofi for ry =400, ke=4,€=0.1, anda=0.5. As initial FIG. 6. Evolution ofy for ry %= 400, kg=—4,€=0.1, anda=>5. As initial
values we have chose(0)=0.04 and ¢/d T)#(0)=0.05. values we have chose(0)=0.04 and @/dT)(0)=0.05.

Let us see the evolution of the wave vedtdiin thex—y  (proportional toa) diminishes the magnitude of the kink-
coordinatesand its relation to the behavior @f. The initial driving term (for large T, it becomes proportional ta)'_z).
configuration isk(0)=(k;,k,). First we consider the case On the other handu(T) becomes positive for largd.
whenk, is positive. By(31) we find thatk, increases mono- Therefore, the phase mixing effect induced by the shear flow
tonically with time, i.e.,k is stretched in the positivé, is asymptotically stronger than the kink mode destabiliza-
direction (Case A of Fig. 3. This case corresponds to the tjon.
simple damping oscillations. Wheky is negative, the evo- Let us study the behavior of the solution(@®) in more
lution of k experiences two distinct phases. For8<7*  detail. Consider a small value of (highr,?), so that the
= —K;la, ky shrinks until it becomes zero, and during this mixing damping is negligible. The solution grows until

phase, the amplification of the perturbation proceeds.or Q2(T) becomes positive. Writin@z(ﬂzo this critical
=7*, the absolute value &, grows and is stretched in the '

positive k, direction (Case B of Fig. B This stretch ofk,
yield the phase mixing damping.

time T is given by the positive root of

— ket rg -1
- .

T= (39)

C. Competition between the kink drive and the shear-

flow induced damping We can then single out in the time domain an instability

) o ) . region [O,T_] of growth for the oscillations. As shown in
The discussion in the previous subsections shows th?igs. 4 and 5, the growth can be very rapid, especially for

following relations: negativek,. Equation(38) suggests that a strong shear can
Q3(T)>0: oscillatory behavior, diminish the time interval of the growth, resulting in a reduc-
5 ) - tion of the maximum amplitude. This phenomenon is shown
Q(T)<0: instability, in Figs. 6 and 7 where we compare two different shears. The

strong stabilizing effect of the shear is clearly visible. In
Figs. 8 and 9 we consider two different configurations of the

We have seen that the kink-driving tefproportional to  magnetic field. The results suggest that for small values of
ro 2) contributes negatively i2%(T). The shear-flow effect

u(T)>0: damping, w(T)<0: amplification.

Psi

-0.02

FIG. 5. Evolution of g for ry2=400, ke=—4, e=0.1, anda=0.5. As FIG. 7. Evolution of for ry2=400, ke=—4, e=0.1, anda=50. As
initial values we have chosep(0)=0.04 and @/dT)§(0)=0.05. initial values we have chosep(0)=0.04 and @/dT)#(0)=0.05.
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Psi

100 200 300 400 500 600

-2F

FIG. 8. Evolution of¢ for ry2=400, ke=—4, €=0.01, anda=0.5. As
initial values we have chosep(0)=0.04 and @/dT) §(0)=0.05.

(i.e., Bg and uy close to a condition of orthogonaljtythe
kinklike modes are more effectively stabilized.

V. SUMMARY
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FIG. 10. Spatial dependence of the real part of the perturbdtimiative to
zAp in Fig. 6 at four different times.

Thus, for a rigid flow, the coordinate transform does not
induce any time dependence lof In Fig. 10, we show the
spatial profile of the real part af (relative to the simulation

in Fig. 6) at four different times. We observe that the mode is
strongly deformed by the shear flow.

A shear flow brings about the strong stabilizing effect ~ 11€ evolution of a non-self-adjoint system is generally
that can overcome the kink-type instability at a sufficiently VETY complicated, and can be very different from usual os-
large time. The analysis of this process requires a nonmod&l‘"atory or exponential bghawor. Tralj3|ent amplification of
method. This stabilizing effect is due to the deformationP€rturbations may occur in an essentially stable syStem. .
(stretching of the mode of the instability. To highlight this th€ contrary, the mixing effect may induce a strong damping
point, let us compare the above-mentioned results with th&ffect that dominates the long-term behavior of the system.
calculations for a rigidnonshearedflow. For a rigid flow ~EVen though conspicuous transient growth for the perturba-
(0,— A,0) the transformation to a Lagrangian system is giver‘F'O” fields are observed, an increase in the magnitude of the
by a Galilean transform shear has a huge impact on the reduction of their maximum

amplitude.
&=x, mnp=y+At, 7=t, (39
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FIG. 9. Evolution of ¢ for ry2=400, ke=—4, €=0.3, anda=0.5. As
initial values we have chosep(0)=0.04 and @/dT)§(0)=0.05.




