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Shear-flow induced stabilization of kinklike modes
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The stabilizing effect of a shear flow on a current-driven instability has been studied by means of
Kelvin’s representation of spatially-inhomogeneous Galilean transform. Even though conspicuous
transient growth may occur, the mixing effect of the shear flow overcomes the instability and damps
kinklike modes. ©2000 American Institute of Physics.@S1070-664X~00!01506-8#
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I. INTRODUCTION

Shear flows represent a central feature and an open p
lem in various physical systems. The importance of the r
of shear flows stems from a simple fact; a spatially inhom
geneous flow can drastically alter the modes of their evo
tion. In other words, depending on the physical characte
tics of the system they are embedded in, sheared flows
lead to destabilization or stabilization. In the astrophysi
context, for example, differential rotation is considered to
the priming factor of a dynamo process which might acco
for the presence of strong magnetic fields in planets, st
and galaxies. In laboratory plasmas the interest in sh
flows concentrates on their possible stabilizing influence
unstable modes of fusion plasmas. In spite of their imp
tance, rigorous treatment of the effect of shear has alw
been deficient. This is primarily due to the formidable dif
culties which plagued the analysis of the differential ope
tors associated with shear flows. These operators indeed
out to be non-self-adjoint and this fact entails the impossi
ity of resolving them in terms of orthogonal eigenfunction
In recent years, however, the so-called nonmodal approa1,2

is driving important progress in the study of shear flows b
in ordinary hydrodynamics and in magnetohydrodynam
~MHD!. The nonmodal method, which was introduced
Lord Kelvin3 more than a century ago, consists of two ba
methods to solve hyperbolic partial differential equatio
~PDEs!; the characteristics method4 and the Fourier expan
sion method~modal method!. The solution to the character
istic ordinary differential equations~ODEs!, associated with
a shear flowu0 , gives a new coordinate system~spatio-
temporal! on which the convective~Lagrangian! derivative
(] t1u0•“) reduces into a simple temporal derivative (]t).
In some special cases, the remaining spatial derivatives
volved in the PDEs can be converted, by Fourier transfo
into multiplications of some coefficients~which may be time
dependent!. These two procedures transform a complicat
spatially inhomogeneous system of PDEs into an easily m
ageable, temporally inhomogeneous system of ODEs.

a!Electronic mail: fvolponi@plasma.q.t.u-tokyo.ac.jp
b!Electronic mail: yoshida@plasma.q.t.u-tokyo.ac.jp
c!Electronic mail: tatsuno@plasma.q.t.u-tokyo.ac.jp
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A remarkable finding due to the application of th
scheme was the so-called magnetorotational instability5 in
weakly magnetized accretion disks in astrophysical plasm
There are several pioneering theories predicting very tr
sient ~neither exponential nor sinusoidal! behavior of plas-
mas driven by shear flows. In these theories, the free en
that drives the dynamics is primarily due to the shear flow
real laboratory systems, as well as in space plasmas, s
different free energies can stem from spatial and geometr
inhomogeneities of ambient physical quantities such as m
netic fields. One of the most important neglect committed
the simple one-dimensional treatment of the ambient fie
~slab model! is the curvature of magnetic field lines, whic
yields the energy to drive the so-called ‘‘kink instability.’’

Although there are many phenomenological or appro
mate treatments of the kink modes under the influence o
shear flow, the basic relation between the shear flow and
instability remains unaddressed on a rigorous basis. The
of this paper is to develop a theoretical foundation for t
analysis of kinktype instabilities put in a shear flow.

We apply the nonmodal approach for a slab plas
model. As mentioned above, the naive formulation of a s
plasma drops the kink-mode driving term. However, invo
ing a standard technique of incorporating an equival
magnetic-field curvature effect, we can introduce an artific
‘‘kink-drive term’’ into the model. Physical applicability of
the model is rather limited; only spatially localized behav
is within the scope. The theory, however, captures the es
tial nature of the competition between the flow shear and
instability driving effect. We will show that the velocity
shear induces a time dependency on the wave vector, an
resultant ‘‘phase mixing’’ finally overcomes the instabilit
drive.

In Sec. II we derive the model equations. The nonmo
method is applied in Sec. III. Results are presented and
cussed in Sec. IV.

II. MODEL OF SHEAR-FLOW MHD

A. Ideal magnetohydrodynamics

Neglecting viscous and resistive effects the dynamics
a plasma is described by ideal MHD equations,
4 © 2000 American Institute of Physics
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r~] t1u•¹!uÄj3B2¹p, ~1!

] tB5¹3~u3B!, ~2!

] tr1¹•~ru!50, ~3!

wherer and j are, respectively, the mass and current den
ties, u is the velocity andB is the magnetic field. The con
vective derivative (] t1u•¹) represents the temporal deriv
tive in the frame of the fluid motion. Exploiting the relatio
j5m0

21¹3B (m0 is the vacuum permeability! and assuming
a barotropic relation¹p5cs

2¹r (cs is the sound speed! we
can eliminatej andp from Eq. ~1!.

We introduce the following set of dimensionless va
ables:

x5 l x̂, B5BTB̂, r5r0r̂, t5~ l /cA! t̂ , u5cAû, ~4!

wherel is a characteristic length scale of the system,BT and
r0 are the representing values of the magnetic field and d
sity, respectively, andcA5BT /(m0r0)1/2 is the Alfvén speed.
The dimensionless form of~1!–~3! is

r̂~] t̂1û•¹!û5~¹3B̂!3B̂2b¹r̂, ~5!

] t̂B̂5¹3~ û3B̂!, ~6!

] t̂ r̂1¹•~ r̂û!50, ~7!

whereb5(cs /cA)2. In what follows we will drop thehat in
order to simplify the notation.

We decompose the physical quantities into their equi
rium and small perturbative components to write

BÄB01B̃, uÄu01ũ, r5r01 r̃, ~8!

where the subscript ‘‘0’’ denotes equilibrium fields, and t
tilde, the perturbations fields. Linearizing~5!–~7!, we obtain

r0~] t1u0•¹!ũ1 r̃u0•¹u01r0ũ•¹u0

5@~¹3B̃!3B01~¹3B0!3B̃#2b¹r̃, ~9!

] tB̃5¹3~ ũ3B0!1¹3~u03B̃!, ~10!

] tr̃52¹•~r0ũ1 r̃u0!. ~11!

Here, we remark the importance of the inhomogeneous
bient flowu0 . The standard linear MHD theory assumes th
u05constant (.0). Then, the generator of the dynamics b
comes self-adjoint, and this fact allows us to apply the mo
method~spectral analysis!. When u0 is not constant, how-
ever, the system becomes non-self-adjoint, and this in
duces profound difficulties in the spectral analysis of
ideal MHD operator.6,7

B. One-dimensional slab model

We consider a one-dimensional slab plasma. We exp
all quantities in Cartesianx–y–z coordinates where, to com
pare with tokamak geometry,x parallels the radial,y the
poloidal, andz the toroidal coordinates. Thex is the direction
in which the ambient fields vary. The perturbation are fun
tions of x and y, while they are homogeneous with respe
to z.
i-
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We assume that the equilibrium density is a posit
constant and setr051. To model a tokamak plasma, w
assumeuB0y

/B0z
u5e!1, and setBT ~representative value o

B) 5B0z
. The equilibrium magnetic field is given by

B05S 0

2e

1
D . ~12!

The shear flowu0 is an incompressible flow given by

u05S 0

2Ax

0
D , ~13!

whereA represents the strength of the velocity shear.
By assuming a symmetry (]z50) and incompressibility

(¹"ũ50), we may write

B̃5¹c3¹z1B̃z¹z, ũ5¹f3¹z1ũz¹z. ~14!

A strong toroidal field (B0z
) allows us to assumeB̃z5ũz

50 ~tokamak ordering!. Then the perturbations are repr
sented by two fields;c (z component of the vector potentia!
andf ~velocity streamfunction! that give

B̃5¹c3¹z, ũ5¹f3¹z. ~15!

Under this assumption, the perturbations~15! obey a self-
consistent system of linear MHD equations, which descri
the shear Alfve´nic mode. We note that this mode of pertu
bations is decomposed from other compressional mo
~slow and fast modes! and forms a closed system. A kin
instability, that is an unstable shear Alfve´nic mode, becomes
most unstable when it is decoupled from compressio
modes that have positive energies.

Let us introduce the ‘‘kink-drive term’’ into the model
As mentioned above, we have to assume an artificial ‘‘c
vature’’ of the magnetic field lines, which yields the ener
to drive the kink mode.

In the evolution equation~9!, this effect appears as th
term (¹3B0)3B̃. Although ¹3B050 for the presentB0

@see~12!#, we may introduce an artificial curvature by calc
lating the curl derivative in the cylindrical coordinates.

For a general vector fieldA, we have

~¹3A!r5
1

r
]uAz2]zAu ,

~¹3A!u5]zAr2] rAz ,

~¹3A!z5
1

r
~] r~rAu!2]uAr !.

Herex parallels the radial coordinater, while y andz corre-
spond to the poloidal (u) and toroidal coordinates. Usin
these correspondences, we obtain

~¹3B0!x50,

~¹3B0!y50,
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~¹3B0!z52
1

x
]x~x!52

1

x
.

The expression for (¹3B0)3B̃ becomes

~¹3B0!3B̃52
1

x
¹c.

After taking thecurl of the momentum equation~9! and the
curl21 of Faraday Law~10! in Cartesian coordinates we ob
tain

] t~Df!2Ax]y~Df!52e]y~Dc!2ex22]yc, ~16!

] tc2Ax]yc52e]yf, ~17!

whereD5]x
21]y

2 is the Laplacian. The second term on t
right-hand side of~16! brings about the kink~current-driven!
instability.

III. NONMODAL REPRESENTATION

We introduce a spatio-temporal coordinate transfor8

from the fixed~Eulerian! reference framex–y–z to the local
moving frame~Lagrangian! going with the mean shear flow

j5x, ~18!

h5y1Axt, ~19!

t5t. ~20!

The above transformation represents the characteristic
of the convective derivative operatorD/Dt[] t1u0•¹. In-
deed it can be readily obtained from the characteristic O
associated withD/Dt. Solving

d

dt S x

yD 5S 0

2AxD , ~21!

subject to an initial condition

S x

yD ~0!5S j

h D , ~22!

yields ~18! and ~19!.
Equations~18!, ~19!, ~20! induce the following transfor-

mation of the partials:

]x5]j1At]h , ~23!

]y5]h , ~24!

] t5]t1Ax]h . ~25!

The convective derivativeD/Dt5] t2Ax]y reduces into a
simple ‘‘temporal’’ derivative]t .

Equations~16! and ~17! now read

]t~D8f!52e@]h~D8c!2R0
22]hc#, ~26!

]tc52e]hf, ~27!

where D85]j
21(11A2t2)]h

212At]j]h is the Laplacian
represented in the new coordinate system andR0 is a con-
stant number representing the curvature radius of the sys
We note that the present model of field-line curvature
sumes radially localized perturbations.
ys

E

m.
-

The system~26!–~27! is homogeneous with respect t
the coordinatesj andh. Fourier transform off andc, thus,
yields ‘‘good quantum numbers’’kj andkh . Let us write

c~j,h,t!5ĉ~t!ei (kjj1khh),
~28!

f~j,h,t!5f̂~t!ei (kjj1khh).

Then, the system of PDEs~26! and ~27! reduces into a sys
tem of ODEs,

d

dt
~@~kj1khAt!21kh

2 #f̂ !

52e ikh~@~kj1khAt!21kh
2 #2R0

22!ĉ, ~29!

d

dt
ĉ52e ikhf̂. ~30!

We point out that Eqs.~23!, ~24!, ~25!, and ~28! imply the
following transformation for the wave numbers:

kx5kj1Akht, ky5kh , ~31!

wherekx andky are, respectively, the wave numbers in thex
and y coordinates. Equations~31! clearly shows that thekx

varies with time, implying that the shear flow deforms t
mode of perturbation.

After simple manipulations, we obtain the following se
ond order ODE forĉ,

d2

dT2
ĉ12a

kx~T!/ky

~kx~T!/ky!211

d

dT
ĉ

1e2F12
r 0

22

~kx~T!/ky!211
G ĉ50, ~32!

wherekx(T)/ky5kj1aT andT,a,r 0 ,kj are the normalized
quantities defined by

T5tkh , a5A~kh!21, r 05R0kh , kj5kjkh
21. ~33!

Defining

m~T!52a
kx~T!/ky

~kx~T!/ky!211
52a

kj1aT

~kj1aT!211
, ~34!

V2~T!5e2F12
r 0

22

~kx~T!/ky!211
G5e2F12

r 0
22

~kj1aT!211
G ,

~35!

we write ~32! as

d2

dT2
ĉ1m~T!

d

dT
ĉ1V2~T!ĉ50.
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IV. ANALYSIS OF THE EVOLUTION OF THE
PERTURBATIONS

We pursue the analysis of Eq.~32! in three steps. Firs
we will examine the effect of the kinklike driving term an
the shear term separately and then we will investigate t
combined action.

A. No shear flow „Alfvé n wave and kink instability …

Assuminga50 ~zero flow!, Eq. ~32! becomes

d2

dT2
ĉ1e2S 12

r 0
22

kj
211

D ĉ50. ~36!

The curvature radiusr 0 is the characteristic parameter th
dominates the behavior of the solution. For sufficiently lar
r 0 ~small curvature!, i.e., r 0

2.1/(kj
211), ~36! describes an

harmonic oscillator, which represents the Alfve´n wave. For a
small r 0 ~large curvature!, we may have an exponentiall
growing solution, representing the kink instability. The tra
sition from a stable oscillation~Alfvén wave! to an unstable
motion ~kink instability! depends on the wave numberkj

~5const. ifa50); r 0
251/(kj

211) is the critical number.

B. No kink drive „shear-flow damping …

In the absence of the kink-driving term (r 0
2250), Eq.

~32! reduces into

d2

dT2
ĉ12a

kj1aT

~kj1aT!211

d

dT
ĉ1e2ĉ50. ~37!

The behavior of the solution depends on the sign of the
efficient m(T) defined in~34!. Invoking the analogy of~37!
with Newton’s equation of motion, we can interpret the se
ond term on the right-hand side of~37! as a frictional force.
A positive m(T) damps the oscillation ofĉ ~Alfvén wave!.

TABLE I. Relation betweenkj andm(T).

Case kj m(T) at smallT m(T) at largeT

A 1 1 1

B 2 2 1

FIG. 1. Evolution ofĉ for r 0
2250, kj54, e50.1, anda50.5. As initial

values we have chosenĉ(0)50.04 and (d/dT)ĉ(0)50.05.
ir

e

-

-

-

This behavior of the solution, which is due to the pha
mixing effect induced by the shear flow, presents an anal
of the Landau damping that is induced by the shear flow
the coordinate-velocity phase space of the kinetic theory.
the contrary, a negative value ofm(T) yields amplification of
ĉ.

The frictional coefficientm(T) depends on the param
eterskj and a. In the following analysis, without loss o
generality, we will take the signs ofA andkh to be positive
~thena is positive!. In Table I we summarize the dependen
of m(T) on the sign ofkj . We observe that, in any case
m(T) is positive for largeT. This implies that the solution o
~37! is finally damped. In Case A,ĉ shows only damping
oscillations~Fig. 1!, however, in Case B, a transient amp
fication of ĉ occurs~Fig. 2!. The maximum of the amplitude
is reached around the time whenm(T) changes its sign.

FIG. 2. Evolution ofĉ for r 0
2250, kj524, e50.1, anda50.5. As initial

values we have chosenĉ(0)50.04 and (d/dT)ĉ(0)50.05.

FIG. 3. Evolution ofk for positive and negative values ofkj .
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Let us see the evolution of the wave vectork ~in thex–y

coordinates! and its relation to the behavior ofĉ. The initial
configuration isk(0)5(kj ,kh). First we consider the cas
whenkj is positive. By~31! we find thatkx increases mono
tonically with time, i.e.,k is stretched in the positivekx

direction ~Case A of Fig. 3!. This case corresponds to th
simple damping oscillations. Whenkj is negative, the evo-
lution of k experiences two distinct phases. For 0<t<t*
52kj /a, kx shrinks until it becomes zero, and during th
phase, the amplification of the perturbation proceeds. Fot
>t* , the absolute value ofkx grows andk is stretched in the
positive kx direction ~Case B of Fig. 3!. This stretch ofkx

yield the phase mixing damping.

C. Competition between the kink drive and the shear-
flow induced damping

The discussion in the previous subsections shows
following relations:

V2~T!.0: oscillatory behavior,

V2~T!,0: instability,

m~T!.0: damping, m~T!,0: amplification.

We have seen that the kink-driving term~proportional to
r 0

22) contributes negatively inV2(T). The shear-flow effect

FIG. 4. Evolution ofĉ for r 0
225400, kj54, e50.1, anda50.5. As initial

values we have chosenĉ(0)50.04 and (d/dT)ĉ(0)50.05.

FIG. 5. Evolution of ĉ for r 0
225400, kj524, e50.1, anda50.5. As

initial values we have chosenĉ(0)50.04 and (d/dT)ĉ(0)50.05.
e

~proportional toa) diminishes the magnitude of the kink
driving term ~for large T, it becomes proportional toT22).
On the other hand,m(T) becomes positive for largeT.
Therefore, the phase mixing effect induced by the shear fl
is asymptotically stronger than the kink mode destabili
tion.

Let us study the behavior of the solution of~32! in more
detail. Consider a small value ofr 0 ~high r 0

22), so that the
mixing damping is negligible. The solution grows un
V2(T) becomes positive. WritingV2(T̄)50, this critical
time T̄ is given by the positive root of

T̄5
2kj6Ar 0

2221

a
. ~38!

We can then single out in the time domain an instabil
region @0,T̄# of growth for the oscillations.1 As shown in
Figs. 4 and 5, the growth can be very rapid, especially
negativekj . Equation~38! suggests that a strong shear c
diminish the time interval of the growth, resulting in a redu
tion of the maximum amplitude. This phenomenon is sho
in Figs. 6 and 7 where we compare two different shears.
strong stabilizing effect of the shear is clearly visible.
Figs. 8 and 9 we consider two different configurations of t
magnetic field. The results suggest that for small values oe

FIG. 6. Evolution ofĉ for r 0
225400, kj524, e50.1, anda55. As initial

values we have chosenĉ(0)50.04 and (d/dT)ĉ(0)50.05.

FIG. 7. Evolution of ĉ for r 0
225400, kj524, e50.1, anda550. As

initial values we have chosenĉ(0)50.04 and (d/dT)ĉ(0)50.05.
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~i.e., B0 and u0 close to a condition of orthogonality! the
kinklike modes are more effectively stabilized.

V. SUMMARY

A shear flow brings about the strong stabilizing effe
that can overcome the kink-type instability at a sufficien
large time. The analysis of this process requires a nonm
method. This stabilizing effect is due to the deformati
~stretching! of the mode of the instability. To highlight thi
point, let us compare the above-mentioned results with
calculations for a rigid~nonsheared! flow. For a rigid flow
(0,2A,0) the transformation to a Lagrangian system is giv
by a Galilean transform,

j5x, h5y1At, t5t, ~39!

which transforms the partial derivatives as

]x5]j , ]y5]h , ] t5]t1A]h . ~40!

FIG. 8. Evolution ofĉ for r 0
225400, kj524, e50.01, anda50.5. As

initial values we have chosenĉ(0)50.04 and (d/dT)ĉ(0)50.05.

FIG. 9. Evolution of ĉ for r 0
225400, kj524, e50.3, anda50.5. As

initial values we have chosenĉ(0)50.04 and (d/dT)ĉ(0)50.05.
t

al

e

n

Thus, for a rigid flow, the coordinate transform does n
induce any time dependence ofk. In Fig. 10, we show the
spatial profile of the real part ofc ~relative to the simulation
in Fig. 6! at four different times. We observe that the mode
strongly deformed by the shear flow.

The evolution of a non-self-adjoint system is genera
very complicated, and can be very different from usual
cillatory or exponential behavior. Transient amplification
perturbations may occur in an essentially stable system.9 On
the contrary, the mixing effect may induce a strong damp
effect that dominates the long-term behavior of the syste
Even though conspicuous transient growth for the pertur
tion fields are observed, an increase in the magnitude of
shear has a huge impact on the reduction of their maxim
amplitude.
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ĉ in Fig. 6 at four different times.


