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Resistive wall mode (RWM) is studied in a cylindrical plasma with a uniform longitudinal
plasma flow. In order to simplify the analysis, two steps current profile model is employed with
a constant current density jo for the inner region 0 < r < ag and a constant current density j;
for the outer region ap < 7 < a. Also the resistive shell is assumed sufficiently thin. Current
profiles from peaked ones to hollow ones are simulated by changing the ratio j1/jo. Based on the
incompressible MHD model, it is shown that RWM can be stabilized by adjusting the resistive
wall position, when the shear Alfvén resonance appears inside the plasma column, with the
increase of the uniform flow velocity. In this case the free energy destabilizing the RWM is
absorbed in the plasma column through the shear Alfvén resonance. However, except when the
RWM is close to the marginal state without a plasma flow, the flow velocity for stabilization is

comparable to the sound velocity.
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§1. Introduction

The ideal MHD stability of a cylindrical diffuse plasma
surrounded by a vacuum region and an ideal conducting
wall was completely analyzed by Newcomb.!)) A simi-
lar cylindrical plasma model applicable to a large as-
pect ratio tokamak was studied by Shafranov? for ideal
. and resistive MHD modes. Resistive tearing modes were
studied intensively by Furth, Rutherford and Selberg®
for different diffuse current profiles in a cylindrical toka-
mak. These results were reviewed by Wesson.*) Based
on these studies it is shown that the simple cylindrical
plasma model is useful to study MHD stability of circular
cross-section tokamak, particularly for low beta plasmas.

Recent interest of the tokamak MHD stability is in the
rotational effect on the ideal and resistive kink modes,
particularly when the ideal conducting wall is replaced
with the resistive wall.?) Here the kink mode appears
when the resonant surface r; satisfying ¢(rs) = m/n ex-
ists at the outside of plasma column, where m(n) is a
poloidal (toroidal) mode number and ¢ is a safety fac-
tor. There are some experimental results showing impor-
tance of plasma rotation in tokamak plasmas. One is the
H(high)—modeﬁ) with the edge transport barrier and the
other is the high-3, mode”) or negative (reversed) shear
mode®) with the internal transport barrier. There exists
positive correlation between the improvement of confine-
ment and the generation of plasma rotation.?) After the
L-H transition, density fluctuations were suppressed sub-
stantially; however, sometimes the edge localized modes
(ELMs) were excited.'® Another example is the observa-
tion of locked mode.'”) When the toroidal plasma rota-
tion was suppressed, MHD fluctuations were enhanced,
which led to the major disruption occasionally. It is a

practical way to stabilize the major disruption due to
the locked mode with the plasma rotation induced by
the neutral beam injection.?

It was pointed out that there is an interaction be-
tween the resistive wall and the plasma rotation for the
MHD stability.13:1%) The stability of the resistive wall
mode (RWM) depends on the position of resistive wall
in the cylindrical model. It was shown that the RWM ap-
pears when the resistive wall was sufficiently close to the
plasma column. By comparing tokamak stability results
with the RWM theory, it seems that the RWMs are more
stable than predicted theoretically for the cylindrical
tokamak. For the toroidal plasma model, it was shown
that the coupling of toroidicity and plasma rotation may
suppress the RWMs.'5) For the cylindrical model, it was
also shown that the magnetosonic resonance appeared in
the linearized MHD eigenvalue equation had a significant
stabilizing effect on RWMs in the presence of longitudi-
nal plasma flow.1®) In this paper we will point out that
the shear Alfvén resonance in the linearized MHD eigen-
value equation has a stabilizing effect on RWMs, which
occurs for w — Q = wy, where w is a mode frequency,
Q= —(n/R)V and w? = (Bs/r)*(m—nq)?/(upo). Here
Vo is a uniform longitudinal flow velocity, 27 R is a pe-
riodic length in the z direction, pg is a uniform plasma
density, and By an azimuthal magnetic field due to a
longitudinal current j,(r).

We use a simple cylindrical plasma model given by
Glasser, Furth and Rutherford'”) to demonstrate the sta-
bilization of RWMs by the shear Alfvén resonance in the
presence of uniform flow as shown in Fig. 1. The cur-
rent profile is composed of two uniform current density
regions as shown in Fig. 2. There are two surfaces with
the jump of current density at r = a¢ and r = a. The re-
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Fig. 1. A cylindrical plasma model surrounded by a vacuum re-

gion in a < r < ¢ and a thin resistive wall of a width d. Here
(r,0, z) is a cylindrical coordinates.
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Fig. 2. A model of longitudinal plasma current profile j.(r). The
broken line denotes the safety factor profile. (a) Corresponds to
positive shear case, and (b) Corresponds to negative shear case.
The current jump occurs at r = ag and » = a. The thin resistive

~ wall is located at r = c.

sistive wall is located at r = ¢. The current ratio is given
by p = j1/jo. In Fig. 2, safety factor profiles are shown
for the cases with p < 1 and p > 1. The former case
corresponds to the positive shear”) and the latter case to
the negative shear.®) This negative shear configuration
is a special case, since ¢min = s, Where gumin denotes
the minimum of safety factor and ¢, denotes the surface
g value. In §2 we show the linearized MHD eigenvalue
equation for the cylindrical plasma with a uniform longi-
tudinal flow associated with boundary conditions. In §3
we show both the growth rate and mode frequency for
the RWM with (m,n) = (2, 1) as a function of the resis-
tive wall position. When c is close to a, the existence of
RWM is clearly seen.?) The stability of RWM is checked
for various current profiles by changing the parameter p.
Next we increase the longitudinal flow velocity. In this
case we obtain the stabilizing tendency of RWM. In §4
we analyze the reason why the growth rate vanishes for
a longitudinal flow velocity exceeding a threshold value.
In §5 it is confirmed that the shear Alfvén resonance is
an important ingredient for stabilizing RWM, which is
similar to the shear Alfvén wave heating by applying an
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oscillating helical coil current.'® 1% Finally concluding
remarks will be given in §6.

§2. Linear MHD Stability of a Cylindrical

Plasma with a Uniform Longitudinal Flow

For a cylindrical tokamak plasma model with an equi-
librium magnetic field B = (0, By(r), By), the linearized
ideal MHD equation can be written as?®)

d[r 6, dy
a [7(‘*’A © )dr}
1 md

\/,UOPU-’A dr
S =0,
"

[(1~A2) +24%— }@p (2.1)

in the cylindrical coordinates (r,0,z), where & = w —
Q7 Q= —(Tl/R)Vo, w_%l = Fz//J“O,D7 F= (BQ/T)(mﬁnq)v
and A% = @2 /wfl. Here V, is a uniform flow velocity
in the z direction, j, is a plasma current in the z di-
rection and ¢ = (r/R)(Bo/Bs) is a safety factor. The
perturbed magnetic field is given by B = Vi x 2 and
Y(r,0,z,t) = Y(r) exp(—iwt + imb — inz/R) is assumed
to obtain eq. (1). Also the external longitudinal mag-
netic field By is assumed constant. It should be noted
that the surface satisfying F' = 0 or ¢ = m/n is called a
resonant surface. In deriving eq. (2), the pressure effect
is neglected under the low beta approximation, and the
mass density p is assumed constant.

The stability of current-driven MHD modes is studied
by solving eq. (1) as an eigen-value problem under appro-
priate boundary conditions. One characteristic bound-
ary condition is related to the thin resistive wall at r = ¢,
which is shown as

r dy .
[EWL_C o
where 1, = cd/n, is a skin time of the resistive wall
with a thickness d. Here [ - | in eq. (2) denotes the jump
condition for the case of d/c < 1. The wall resistivity is
denoted as 1,,. Next we consider the boundary condition
at the plasma surface r = a. We integrate eq. (1) in the
thin layer including r = a, [a — ¢, a + ¢, and take the

limit of € — 0 to obtain
5% {2 G
wdr ), .+ o w% ¥ dr -

m . By
— — (1 -A%j,+242=
F{( )j= + T} ,

r=a"

(2.2)

(2.3)

where at(a™) denotes a + €(a — €) in the limit of ¢ — 0.
Since the solution of the perturbed flux function ¢ in the
vacuum region is shown as ¢ = ¥17™ + )7~ ™ under the
condition of (m/n)? > (r/R)?, the boundary condition

(2) gives
rdy _ 1+ h(a/epm
<$-a?>r:a+ - 1_—“.(a_/c)m J (2.4)
where
h= (1 2im —1 -
* ;7?;) : (2.5)
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Here v; and vy are constants. Finally the boundary
condition at the axis of cylindrical plasma column is

P(r) ocr™, (2.6)
for the (m,n) mode.

§3. Numerical Scheme for Obtaining Eigenvalue
and Eigenfunction

We solved eq. (1) as the eigenvalue problem with the
boundary conditions (3), (4) and (6) by employing a
shooting method. Since the eigenvalue is complex, we
also use Newton method in the two-dimensional space.
For obtaining solutions (w,7) satisfying f(w,y) = 0
and g(w,v) = 0, we use the following relations be-
tween guessed values (wg,7,) and corrected values (w =
wy+ Do, 7=y + A7),

of of _
P = Gul 2 " ol 27 =0 B
dg 0
9(wg,79) — N Aw — a—g Avy=0. (3.2)
W=y Y=Yg

Explicit expressions of f and g are given by

_ rdy _[wh-w?(rdy
f‘Re[(¢dr>T:a+ { ") (wdr>}r=a_

_E{(l_AQ)jz+2A2€—’i}T:a_], (3.3)

F

g= Yar ) _.s w? Ydr /) ), .-
m ) By
—F {(1 - Az)]z + 2AZT}T____G_:' .

Here {(r/v)(dy/dr)},—.- can be obtained by solving
eq. (1) numerically with a Runge-Kutta method for the
assumed values (wg,7g)-

In order to check the above numerical scheme to ob-
tain the eigenvalue, our results are compared with the
analytic expression given by Finn®

o2 et R
1+ R(w)

for the uniform current density case in Fig. 2 or the p ='1
case, where

(3.4)

(3.5)

1 a?m\ iwT,
= (1-2- 3.6
Rw) = -3 (1- G ) "2 (36
72(c) _ 2B§ m — ng,
c PRPZ1— a?mjctm
X (1—a*™/c*™ — m+ng,) (3.7)

and 72, = 72(c — o0). The safety factor at 7 = a
is denoted by ¢,. For the case with p = 1, ap/a =
1, go = 1.5 and 2 = 0.5, numerical growth rates show
good agreement with eq. (11) with relative errors less
than 10~5 as shown in Fig. 3. Here other parameters
(m,n) = (2,1), R/a = 5, d/a = 0.02, and n,/a =
107%(Q). The RWM is seen for c¢/a < 1.18, since the
instability for ¢/a > 1.18 is essentially same as the ideal
kink mode.
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Fig. 3. Growth rates as a function of ¢/a for p = 1, ag/a =

1, go¢ = 1.5, = 0.5, R/a = 5, d/a = 0.02 and ny/a =
10~4(£2). Mode numbers are (m,n) = (2,1).
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Fig. 4. Growth rates of ideal kink mode and resistive wall mode

" (RWM) are shown as a function of c¢/a. Mode numbers are
(m,n) = (2,1) and qo = 1.2, 2 =0.13, p = 1. Growth rates of
RWM are also shown for 2 = 0 case.
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Fig. 5. Angular frequency of resistive wall mode (RWM) in case

of longitudinal uniform flow (2 = 0.13) as a function of c/a.
Other parameters are the same as those in Fig. 4.

For the case of g, = 1.2, p = 1.0 and Q = 0.13, growth
rates and mode frequencies are shown in Figs. 4 and 5,
respectively. In Fig. 4 the (m,n) = (2,1) mode is sup-
pressed when ¢/a < 1.5 for the ideal wall case; however,
for the resistive wall case without the uniform longitudi-
nal flow or plasma rotation, the (m,n) = (2,1) mode
becomes unstable with residual growth rates even for
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0.07. Current profile is changed with the parameter p.
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Stabilization of Resistive Wall Mode with
Shear Alfvén Resonance

In this section we concentrate in the longitudinal
flow velocity effect on the growth rates of resistive wall
mode. As shown in Fig. 8, growth rates of RWM de-
crease and become negative for 1.043 < c¢/a < 1.055
for Q = 0.075. In Fig. 9, eigenfunctions corresponding
to wall positions shown in Fig. 8 are shown for several
cases of ¢/a. The most peaked eigenfunction is obtained
for ¢/a = 1.043. Also for ¢/a = 1.055 the eigenfunc-
tion is peaked. These profiles suggest existence of res-
onant behavior at r/a = 0.8076 for ¢/a = 1.043 and
at r/a ~ 0.9808 for c¢/a = 1.055. The eigenvalues are
w? —@? = (—4.33 x 1074, 1.89 x 1073) for c¢/a = 1.043
and w? —©? = (-2.5x1072, 7.37x1072) for ¢/a = 1.055.

These eigenvalues suggest wfl — @2 = 0 for the resonant

condition. This corresponds to appearance of the regular
singular point in the second-order differential equation
(1), which is called shear Alfvén resonance in the MHD
theory. It should be noted that 2 plays an important
role to satisfy w} — @? = 0, since &2 = (w — Q)2. When

w? —®? = 0 is satisfied at r = rg, the Frobenius solution

Growth Rate
o
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Current Step Ratio p

0.007 * *
0.4 16 18 2

Fig. 7. Growth rates of RWM as a function of p for ¢, =
1.8, ap/a = 0.5, @ = 0.01 and c¢/a = 1.04. For p > 1, the
current profile becomes hollow and negative shear appears.

¢/a < 1.5. When the plasma rotation is included in the
resistive wall case, the growth rates for 1.36 < c¢/a < 1.5
are decreased. However, for ¢/a < 1.36, the growth rates
are enhanced. These are characteristics of RWM in the
presence of the uniform longitudinal flow. Figure 5 shows
that the mode frequency of RWM increases almost lin-
early for ¢/a 2 1.2. When the ideal kink mode becomes
unstable for ¢/a > 1.5, the mode frequency becomes con-
stant and equal to Q = 0.13 which is determined by the
longitudinal flow velocity Vj.
Figure 6 shows the current profile effect on the growth
rate of RWM, where p is changed from 0.25 to 1.0 for
Go = 1.5, ap/a = 0.5 and Q = 0.07. The peaked current
profile case with p = 0.25 gives the smallest growth rate
as a function of ¢/a. When the current profile becomes
flat with the increase of p, the RWM becomes unstable
and the ideal kink branch appears. The current profile
model shown in Fig. 2 may describe negative shear con-
figurations for p > 1. Figure 7 shows growth rates of
RWM for p > 0.5 with c/a fixed at 1.04. The growth
rate saturates and decreases gradually for p 2 1.0. It
seems that the negative shear configuration has no sig-
nificant stabilizing effect on the resistive wall mode in
the presence of longitudinal flow. We also confirmed this
result for smooth hollow current profiles.

in the neighborhood of r = ry is written as

Y(r) = [t + 2 In(ro — r)][1 — c1(ro — 7))

-+ 2’(‘&201 (7"0 - 7"), (41)
where
2
_ | wa
“= [wi)'r] o
m d 2\ - 2Bg
o))

In eq. (14), ¢1 and 2 are constants determined by
connection conditions to the external solutions far from
r = rg9. The Frobenius solution suggests existence of

logarithmic singularity in the eigenfunction.

In the numerical calculations the Frobenius solution
is connected with the external solutions in the regions
[0, 70 — €] and [ro + ¢, a] at » = rg + €. In particular, for
the marginally stable case, the eigenfunction v _ is real
in [0, 7o —€]. At r = ro — ¢ the connection conditions

that + and ' are continuous give
P_(ro —€) = (Y1 + Y2 In€)(1 — c1€) + 2¢hacie, (4.3)

1/1/_(7'() - 6) = +Cl(¢1 + 1[)2 lne)
— (2/€)(1 — c1€) — 21hacy,
where the prime denotes the radial derivative. When ¢ is
given, ¥ and 1) can be determined from eqs. (16) and

(17). For the connection conditions at r = rg + ¢, we
need the relation obtained by the analytic continuation

(4.5)

(4.4)

In(—¢) = In(e) £ im.

The sign of the second term in the RHS of eq. (18) de-
pends on the current profile. Since Q@ — w = wx(rs) is

satisfied at the singular point,
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Fig. 8. Dependence of growth rates of RWM with (m,n) = (2,1)
on the resistive wall position c/a for the several angular frequen-
cies 2 = —Vp/R = 0.05, 0.06 and 0.075, where V} is a longitu-
dinal flow velocity. Other parameters are g, = 1.8, ap/a = 0.5
and p = 0.5.
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Fig. 9. Radial profiles of eigenfunction v(r) for the (m,n) =
(2,1) mode in cases of c¢/a = 1.018, 1.025, 1.043, 1.055 and
1.066. Other parameters are g, = 1.8, ap/a = 0.5, p = 0.5 and
© =0.075.

_ to m ag(Go — j1)(@® — 5%

Q2 —Re(w) = 2(a? — 2)2 + 8a2[32
momj1  nBy
+ 8220 (4.6)
Im(w) = 0. ag(jo — j1)ap @7)

(a2 — 32)2 4 40232

for a complex variable ry = a + i with @ > 0. When
the current profile is peaked or jo > 71, eq. (20) gives
B >0 (8 <0) for Im(w) >0 (Im(w) < 0). Thus —ir is
appropriate in the analytic continuation in eq. (18) for
jo > 71 - On the contrary, we take +im for jo < j; or
hollow current cases.

Since the external solution in [rg + €, a] becomes com-
plex, ¥4+ = ¥4gr + i41, the connection conditions at
r =1+ € give

Yyr(ro+€) +ithyr(ro +¢)
= (’(/)1 + '(/)2 Ine — i'Tl"l/}Q)(l -+ 016) — 2¢2016
Vi r(ro+¢€) +igl 1 (ro +¢)

(4.8)

=c1(¢1 + Y2 lne —imyhy) + %(1 + c1€) — 2tp2c1.(4.9)
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Fig. 10. The upper figure shows f(w,0) = 0 (dotted line) and
g(w,0) = 0 (continuous line) in (w,c/a) plane, where w is the
real mode frequency and c/a is the normalized position of resis-
tive wall. The lower figure shows growth rates of RWM with
(m,n) = (2,1) as a function of ¢/a. Other parameters are
go = 1.8, ag/a=10.5, p=0.5 and Q = 0.075.

Here ¥ r, %11, ¥/, g and 9/ ; can be calculated, since
11 and v, are already determined. For the solution in
[ro + €, a], these given values become initial conditions
of the Runge-Kutta solver. From this numerical solu-
tion, the logarithmic derivative at the surface of plasma
column (ry’/¢)|,—,- is obtained. For the marginally
stable case, the position of resistive wall and the mode
frequency are given to satisfy the boundary condition at
r = a (3). The upper figure in Fig. 10 shows two lines
describing f(w,0) = 0 and g(w,0) = 0 in the (w,c/a)
plane. When these two curves are crossed in this plane,
the point corresponds to the marginal stability of RWM.
There are two cross points, and each point corresponds to
the marginal stability case in Fig. 8 as shown by the lower
figure in Fig. 10. These results mean that the RWM
with (m,n) = (2, 1) is stabilized for 1.043 < ¢/a < 1.055
due to the shear Alfvén resonance which absorbs the free
energy for exciting RWM. It is noted that the density
profile affects the resonance condition, since the Alfvén
velocity depends on density. Thus the density profile is
important for evaluating the stability condition quanti-
tatively.

§5. Properties of Shear Alfvén Resonance

Since the Alfvén resonance appears only for a rotating
plasma with © # 0, it is important to estimate the mini-
mum rotational frequency 2 or the minimum flow veloc-
ity Vp for suppressing the RWM. With the two steps cur-
rent profile model shown in Fig. 2, the marginal values of
Q) for appearance of shear Alfvén resonance in the case of
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Fig. 11. Dependence of marginal rotational frequency Q2 on p to
suppress RWM with (m,n) = (2,1) due to shear Alfvén reso-
nance for g, = 1.8 and ag/a = 0.5.

(m,n) = (2,1) are plotted in Fig. 11 as a function of p for
go = 1.8 and ag/a = 0.5. Here the marginal rotational
frequency case corresponds to that just one particular
resistive wall position makes the RWM marginal. ' The
RWM is still unstable for other resistive wall positions.
Figure 11 shows that the minimum value of 2 = 0.03
is obtained for p = 0.1, g, = 1.8 and ap/a = 0.5,
which corresponds to the case that the ideal kink mode
with (m,n) = (2,1) is almost marginal even without the
ideal conducting wall. It is noted that Q = 0.03 gives
Vo = 3.4 x 10°(m/s) for ¢ = lm, R = 5m, By = 1T
and n. = 10°°(m~3). Even for a high density plasma,
the longitudinal flow velocity Vo is a few times larger
than the typical toroidal flow velocity in the present large
tokamaks such as JT-60U and JET. As a reference an
ion sound velocity C; is given for a deuterium plasma,
Cs = 3.5 x 10°(m/s) at T. = 2.5keV. Thus Vj seems
comparable to Cs.

From the above numerical results, the RWM may be
stabilized when the Alfvén resonance appears inside the
plasma column with the increase of the rotational fre-
quency ). From Figs. 8 and 9, it is expected that the
right hand side of the stability window with the widest
region corresponds to the situation that the shear Alfvén
resonance is located at 7 = a. When the Alfvén reso-
nance exists at the plasma surface, (w — Q)% = (wa(a))?
is satisfied. Substituting this relation into eq. (3) yields

2m

réﬁﬁ) _
(E dr rea+ B ﬁm—TlQa '

Since wr,, > 1 for eq. (5), h ~ 1 is obtained in eq. (4).
Then from egs. (4) and (23), we obtain

c 2+m —ng, 1/2m
2 —m+ ng, '

(5.1)

(5.2)

- =

Figure 12 shows the resistive wall position for the
marginal rotational frequency case as a function of g,.
For comparison eq. (24) is plotted with the dotted line.

The resistive wall position given by eq. (24) should be

larger than the black circles in Fig. 12, since eq. (24) cor-
responds to the widest stability window case. However,
the approximate relation (24) gives a little lower c/a,
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Fig. 12. Resistive wall position for the marginal rotational fre-

quency case is shown as a function of g, with black circles. The
dotted line corresponds to eq. (24). Here RWM has the mode
numbers (m,n) = (2,1), p = 0.5 and ag/a = 0.5.

which comes from the assumptions in the derivation of
eq. (24). In spite of this fact, it may be considered that
eq. (24) predicts existence of marginal stability of RWM
due to the longitudinal uniform flow fairly well.

§6. Concluding Remarks

Recent topic for the improved confinement in toka-
maks is the study of negative (reverse) shear configura-
tion. When the confinement was improved by generating
the internal transport barrier, large toroidal rotation ve-
locity was usually observed in the negative or weak shear
region. Although the physical mechanism for generating
the transport barrier is not fully clarified, the MHD sta-
bility of the negative shear configuration with the plasma
rotation is an interesting subject. In the negative shear
region the ideal ballooning modes or interchange modes
become stable, while the resistive interchange modes be-
come unstable.?1:22)

It is pointed out that the resistive wall modes (RWMs)
or the kink modes unstable in the presence of the re-
sistive wall can be destabilized by the toroidal plasma
flow. However, in tokamak experiments, RWMs were not
clearly observed, which suggested existence of stabilizing
mechanisms neglected in the MHD model particularly for
the cylindrical tokamak plasma. Theories have been de-
veloped for the coupling between the RWM and sound
wave due to compressibility!®) and the coupling between
the RWM and stable MHD mode due to toroidicity.'®
In addition to these possibilities, the shear Alfvén res-
onance has been shown to stabilize the RWM even in
the cylindrical tokamak plasma model. The resonance
condition is (w — )2 = w%, where Q = —(n/R)V} is
the rotational frequency due to the uniform longitudinal
flow velocity Vy and w? = {(Bg/r)(m—nq)}?/uop. Here
m(n) is the poloidal (toroidal) mode number, g is the
safety factor, By is the poloidal magnetic field, and p is
a uniform plasma density. When the surface satisfying
(w—0)? = wi appears in the plasma column with the
increase of Vp, the shear Alfvén resonance becomes effec-
tive to stabilize the RWM. This stabilizing mechanism
has been confirmed numerically in this paper. However,
in order to realize the stabilization of RWM, the resis-
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tive wall position is restricted, which is fairly close to the
plasma column. The magnitude of the longitudinal flow
velocity to generate the shear Alfvén resonance depends
on the conducting wall position to stabilize the ideal kink
mode. When the ideal kink mode has a stabilizing ten-
dency due to a peaked current profile, the toroidal flow
velocity for stabilizing RWM is decreased.

According to our simple two steps current profile
model, it is shown that the negative shear configuration
or the hollow current profile case is vulnerable to the
RWM. It seems necessary to study the stability of RWM
in the negative shear configuration carefully for optimiz-
ing the safety factor profile. Also it will be necessary to
include the finite beta effect in the toroidal geometry for
the stability analysis considering the shear Alfvén reso-
nance to estimate rotational frequency at the marginal
state, which will ' be a future study.
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